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Differential dynamic microscopy (DDM) is a form of video image analysis that combines the sensitivity of
scattering and the direct visualization benefits of microscopy. DDM is broadly useful in determining dynamical
properties including the intermediate scattering function for many spatiotemporally correlated systems. Despite
its straightforward analysis, DDM has not been fully adopted as a routine characterization tool, largely due to
computational cost and lack of algorithmic robustness. We present statistical analysis that quantifies the noise,
reduces the computational order, and enhances the robustness of DDM analysis. We propagate the image noise
through the Fourier analysis, which allows us to comprehensively study the bias in different estimators of model
parameters, and we derive a different way to detect whether the bias is negligible. Furthermore, through use of
Gaussian process regression (GPR), we find that predictive samples of the image structure function require only
around 0.5%–5% of the Fourier transforms of the observed quantities. This vastly reduces computational cost,
while preserving information of the quantities of interest, such as quantiles of the image scattering function, for
subsequent analysis. The approach, which we call DDM with uncertainty quantification (DDM-UQ), is validated
using both simulations and experiments with respect to accuracy and computational efficiency, as compared with
conventional DDM and multiple particle tracking. Overall, we propose that DDM-UQ lays the foundation for
important new applications of DDM, as well as to high-throughput characterization.
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I. INTRODUCTION

Microscopy has become an essential tool for probing dy-
namical processes in complex materials and systems, but
typically requires sophisticated video image analysis to obtain
quantitative information. Although real-space analysis meth-
ods retain information regarding individualistic processes
within an image, feature tracking algorithms such as multiple
particle tracking (MPT) are often computationally expen-
sive and require user interactivity to determine algorithmic
parameters to isolate the dynamical process(es) of interest
[1,2]. By contrast, Fourier transform-based analysis retains
the statistical information encoded within the entire image,
and is therefore more sensitive to low-signal processes as
well as more robust to nonideal imaging conditions and op-
tically dense systems [3,4]. In this way, Fourier microscopy
combines the advantages of real-space imaging in feature
identification and segmentation with ensemble-level statistical
precision of Fourier-space analysis.

Of the various Fourier-space based approaches available,
differential dynamic microscopy (DDM) [5] has emerged as a
powerful and versatile analysis method to quantify spatiotem-
porally correlated dynamics from video microscopy data. This
versatility stems from its compatibility with a broad range of
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microscopy imaging modes, easy setup with instrumentation
available in most research laboratories, and straightforward
analysis routines. DDM has been applied to study an ever-
broadening range of phenomena in soft and biological matter
systems [3,4,6], including analysis of the dynamics of concen-
trated particle suspensions [7], motions of swimming bacteria
[8], binary mixture of molecular fluids [9], and the coarsening
dynamics of phase separating colloidal gels [10]. While it is
common to assume the material to be isotropic, anisotropic
properties such as the viscoelasticity of nematic liquid crystals
can also be extracted [11].

For a more comprehensive overview of DDM and its var-
ious applications, the interested reader is referred to various
reviews on the topic [3,4,12]. This work is concerned with
the development of a comprehensive statistical framework
that aims at quantifying errors, reducing computational cost,
and enhancing the robustness of the analysis of differential
dynamic microscopy (DDM) data. Similar developments have
been made previously for MPT analysis [2,13], and have
greatly improved the robustness and algorithmic develop-
ment of MPT in various applications. We therefore anticipate
similar benefits from a more thorough investigation of uncer-
tainty for DDM. To better motivate these developments, we
first summarize the analysis procedure of DDM, estimators
employed to extract physical parameters, and highlight the
features and limitations of DDM that inspired this study.

In DDM, a time sequence of image stacks represented by
the intensity matrix I (x, t ) is processed using a Fourier-based
technique where x = (x1, x2) denotes two spatial coordinates
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and t ∈ [tmin, tmax]. One first calculates the difference in inten-
sity at each pixel location between two frames separated by a
lag time �t :

�I (x, t,�t ) = I (x, t + �t ) − I (x, t ). (1)

The intensity differences are then Fourier transformed and
the absolute values squared to obtain the normalized squared
intensity function in Fourier space:

|�Î (q, t,�t )|2 = |F (�I (x, t,�t ))|2, (2)

where F (·) denotes the operator of the two-dimensional (2D)
discrete Fourier transformation (DFT), q = (q1, q2) is a coor-
dinate wave vector in reciprocal space.

The ensemble average of Eq. (2) is computed to obtain the
dynamic image structure function D(q,�t ):

D(q,�t ) = 〈|�Î (q, t,�t )|2〉

= 1

n�t nq

∑
t∈S�t

∑
(q1,q2 )∈Sq

|�Î (q, t,�t )|2, (3)

where 〈.〉 denotes averaging across all instances of t ∈ S�t and
(q1, q2) ∈ Sq with sets S�t = {t : tmin � t � tmax − �t}. The
sizes of the two sets are denoted by n�t = #S�t and nq = #Sq,
respectively.

We only consider isotropic materials in this work, in which
case D(q,�t ) = D(q,�t ) where Sq = {(q1, q2) : q2

1 + q2
2 =

q2}. However, the approach can be generalized to retain a
multidimensional q dependence as desired [14].

The following representation is routinely used to relate
observables commonly associated with scattering analysis to
the observations of D(q,�t ) [3,5,6]:

Do(q,�t ) = A(q)[1 − f (q,�t )] + B(q,�t ), (4)

where A(q) is determined by the properties of the imaged
material and imaging optics, B(q,�t ) is determined by the
noise of the detection chain, and the subscript “o” denotes
the observed value. As will be discussed in Sec. II A, the
mean of B(q,�t ) is a constant value shared across all q
and �t values, whereas the variance of B(q,�) depends on
the values of q and �t . The intermediate scattering function
(ISF), f (q,�t ), is in principle the same as that measured in
conventional light scattering measurements such as dynamic
light scattering (DLS). The ISF quantifies how the dynamic
structure decorrelates over the observed length scale 1/q in
Fourier space and timescale �t in real space, which encodes
the physical dynamics of the observed system. In gen-
eral, for randomly fluctuating, ergodic systems, f (q,�t →
0) = 1 and f (q,�t → ∞) = 0, and thus, Do(q,�t → 0) =
B(q,�t ) and Do(q,�t → ∞) = A(q) + B(q,�t ).

DDM’s ultimate integration into the characterization work-
flows of a diverse range of systems is not without challenges.
First, we note that, because DDM operates on a series of
finite-exposure images taken of time-fluctuating processes,
the measured DDM signal will contain inherent error related
to both static and dynamic effects, much in the same way MPT
incurs static and dynamic errors associated with the imaging
process [13]. Because of this, the observed value Do(q,�t )
will in general not be equal to the “true” image structure func-
tion D(q,�t ) that would be obtained from an ideal imaging
system. Separating the signal from the noise in estimating the

image structure function requires properly quantifying the un-
certainty of the background noise that propagates through the
analysis [5]. The observed intensity Do(q,�t ) typically over-
estimates D(q,�t ), as the mean of the noise term B(q,�t )
is positive, and is twice as large as the variance of the noise
in the original images [3]. In this study, we show that it is
critically important to obtain an accurate estimate of the mean
of the noise term B(q,�t ), which we denote as Best, to extract
dynamic information from systems, such as the mean squared
displacement, using DDM.

Several distinct methods to obtain the noise estimator Best

in DDM have been proposed in prior studies. However, to
our knowledge, there has yet to be a detailed study of how
the choice of estimator affects the estimation of dynamic
properties. For instance, Best has been assumed to be 0 [15],
estimated by the minimum value of D(q,�t ) at the temporal
resolution �tmin, denoted as Dmin(�tmin) [6], as the average
of the high-q limit of the observed image structure func-
tion 〈Do(qmax,�t )〉�t [16,17], or as the ensemble average of
the static power spectrum 2〈|Îo(qmax, t )|2〉t [18]. Although a
particular estimator of the noise term may work well under
certain experimental conditions, we will show that all esti-
mators are biased in general (see Sec. II A), and ultimately
introduce a way to discern whether the bias is negligible, or
if additional measurements are needed to estimate the noise.
Indeed, in both simulated scenarios and real experiments,
we found that the bias of noise estimation can substantially
impact the estimation accuracy of system dynamics. Finally,
we note that Best is sometimes treated as a fitting parameter
and estimated along with other parameters in the model of
f (q,�t ) [3,19,20]. This approach is applied to analyzing the
active actin dynamics from [20] in Sec. IV C. In general,
we find that estimation of the noise parameter is the most
challenging among all parameters, and could lead to a poor
fit to the observed values. The first contribution of this work
is a formal analysis of error propagation and comparison of
different estimators in representative experimental contexts.

After obtaining the estimate of the mean of the noise
Best, the amplitude parameter A(q) may be estimated by the
plateau of intensity through Do(q,�t → ∞) = A(q) + Best

[6,16], or through the connection A(q) + Best = 〈|Îo(q, t )|2〉t

[5,18,21]. In practice, it may be difficult to accurately obtain
Do(q,�t → ∞) as there are very few observations available
for intensities at large �t . Thus, we find that estimation of
A(q) through A(q) + Best = 〈|Îo(q, t )|2〉t is often more reli-
able, as it does not require the intensity to reach plateau at
large �t . These approaches will be compared using simulated
and experimental observations.

A second challenge of DDM analysis is the computational
cost: the most computationally expensive step for DDM is
performing a 2D fast Fourier transformation for each pixel
of the difference for each of the image pairs [T × (T − 1)/2
pairs, where T ∼ 103–104 is the total number of time points].
For T images with size N × N pixels (N ∼ 102–103), this re-
quires O[T 2N2 log2(N )] computational operations. Although
there has been recent progress in accelerated computation that
takes advantage of contemporary computational efficiency for
Fourier-based image analysis [7,22], these approaches still
require resolving the DDM signal over the full sampled space
of q and �t . To overcome the computational challenge, we use
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FIG. 1. Schematic representation of DDM-UQ-based data reduction, sampling, and fitting procedure used to determine material constants.
From the stack of images acquired by microscopy, around 0.5%–5% of the Fourier transforms are performed to obtain the observed image
structure function Do(q,�t ), from which a predictive sample is generated to estimate D(q∗,�t∗) at unobserved q∗ and �t∗, given Do(q,�t ).
In the graphs of Do(q, �t ) versus �t and f (q, �t ) versus �t , at select q’s, the asterisks denote data selected for fitting, the lines denote values
at all �t’s for a particular q. The shadow denotes 95% predictive interval, which is small compared to the range of the change in D(q,�t )
over the range of �t . The predictive samples preserve the quantiles of the distribution after transformation and are then used to find material
quantities of interest.

a probabilistic approach to downsample the image stacks and
reconstruct all image structure functions based on a fraction of
observations, which dramatically reduces the computational
cost of the required fast Fourier transform (FFT) algorithm.

The third, and often overlooked aspect, is the robustness
of the algorithm(s) for decomposing Do(q,�t ) into its more
physically meaningful components through Eq. (4). To ensure
applicability to a wide range of materials, it is desirable to
allow for an arbitrary form of f (q,�t ), such that the method
does not require prior knowledge of the system’s dynamical
properties. Moreover, the estimators used for A(q) and B(q)
may contain bias, which can cause the algorithm to be less ro-
bust for both small and large �t’s in estimating f (q,�t ) and
quantities derived from it [6]. Here we generate the predic-
tive samples based on the observed image structure function
Do(q,�t ) and use the predictive median to derive physical
parameters within the systems; this approach is more robust
than a simple ensemble based on Do(q,�t ) at selected wave
vectors.

An exemplifying context for the potential advantages
gained by overcoming these limitations is the recent applica-
tion of DDM to passive probe microrheology as an alternative
to conventional approaches such as MPT [6,23]. MPT-based
passive probe microrheology involves imaging the Brownian
fluctuations of embedded colloidal probes in order to resolve
their mean square displacements (MSD) 〈�r2(�t )〉 [1], which
in the limit of homogeneous, uniform materials can be related
to their linear viscoelastic moduli [24,25]. DDM offers an
alternative approach to MPT in estimating the MSD through
the estimation of f (q,�t ) using Eq. (4). DDM presents a
number of advantages in this regard, including applicability
and better statistical precision to low-signal or optically dense
probes and materials [6,17,26,27]. Importantly, since DDM
requires no a priori user-input parameters associated with
the probes or imaging system, it has the potential to provide

automated, user-free analysis that could enable high-
throughput characterization [12].

In this work, we make three contributions towards over-
coming these challenges of DDM: (1) We relate the mean
and variance of the error in the observed image structure
function to the variance of the error in the original image
intensities. By propagating the error, we show that there exists
potential bias in different estimators of the noise and am-
plitude parameter in DDM, and we propose a way to detect
and reduce such bias. (2) We speed up the computation by
using Gaussian process regression (GPR) [28] to overcome
the computational bottleneck introduced by the Fourier trans-
formations by subsampling the data at selected �t (Fig. 1).
(3) Finally, we use the median of the predictive samples from
GPR to robustly estimate the ISF, MSD, and other quantities
of interest. Furthermore, we illustrate through a broad range of
examples, both simulated and experimental, how the choice
of the estimators impacts the accuracy of the resultant MSD
and other quantities of interests. We demonstrate that accurate
estimation of the noise in image intensities is critical for
obtaining an accurate estimation of dynamical information in
DDM. We make available a user-friendly MATLAB software
package [29] that implements fast computational techniques
with uncertainty quantification developed in this work.

II. METHODOLOGY

We name our algorithm differential dynamic microscopy
with uncertainty quantification (DDM-UQ). The analysis rou-
tine is described schematically in Fig. 1. First, image stacks
I (x, t ) are acquired with a microscope or are produced using
a particle dynamics simulation algorithm. The variance of
the background noise intensity σ 2

0 is either assessed inde-
pendently or estimated from the image stack. Then, a small
subsample of a few percent of the image differences are
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squared and Fourier transformed to construct a set of observed
quantities Do(q,�t ). Thereafter, GPR is fit to Do(q,�t )
to obtain a predictive distribution D(q,�t ). Eventually, the
predictive samples for each q are used to obtain predic-
tive samples for quantities of interest [such as f (q,�t ) and
〈�r2(�t )〉]. Through analysis of a number of simulated and
experimental data sets, we demonstrate that our approach
not only reduces the computational time, but in many cases
also improves the accuracy and robustness of estimation, as
compared to previous DDM approaches and MPT.

A. Error quantification

To develop a statistical approach to error quantification and
analysis, we write the observed intensity as

Io(x, t ) = I (x, t ) + ε(x, t ), (5)

where I (x, t ) is an (unknown) deterministic function of the ob-
served sample and imaging system; ε(x, t ) is an independent
random noise with mean zero and variance σ 2

0 ; the subscript
“o” denotes the observed value. Several artifacts are known to
impact the accuracy of DDM and are expected to contribute
to ε(x, t ), including camera detection noise, edge effects aris-
ing from the finite field of view [30], and effects of finite
exposure time [15]. Others are known to affect MPT, such
as the depth of field [2] and finite pixel size [13], and are
expected to impact DDM as well. Here we consider ε(x, t ) to
be the difference between the measured signal and the “true”
intensity I (x, t ) at each pixel without regard to the actual
physical origin of the error. We note that there are other known
spatially or temporally correlated artifacts, such as illumina-
tion fluctuations, that do not satisfy the criteria assumed for
ε(x, t ). These will not be considered in the present analysis.

We illustrate how the error in Eq. (5) propagates in the
analysis of DDM. The derivation of Eqs. (6)–(10) is given in
Appendix A. Assuming that Eq. (5) holds, we can express the
observed squared intensity function in reciprocal space as

|�Îo(q, t,�t )|2

= |�Î (q, t,�t )|2 + 2�Î (q, t,�t )�ε̂(q, t,�t )

+ |�ε̂(q, t,�t )|2, (6)

where the closed form expressions of |�Î (q, t,�t )|2,
�Î (q, t,�t )�ε̂(q, t,�t ), and |�ε̂(q, t,�t )|2 are given in
Eqs. (A1)–(A3) in Appendix A, respectively.

The expected value (i.e., mean) of |Io(q, t,�t )|2 is given
by

E[|Îo(q, t,�t )|2] = |�Î (q, t,�t )|2 + 2σ 2
0 . (7)

Note that the mean of the cross-product term
〈�Î (q, t,�t )�ε̂(q, t,�t )〉 is zero under the assumptions
made for ε(x, t ).

By combining Eqs. (3) and (6), we can express the obser-
vations of the dynamic image structure function as follows:

Do(q,�t ) = 〈|�Î (q, t,�t )|2〉+ 2〈�Î (q, t,�t )�ε̂(q, t,�t )〉
+ 〈|�ε̂(q, t,�t )|2〉, (8)

where 〈·〉 denotes the ensemble with respect to q ∈ Sq and
t ∈ S�t . The mean of Do(q,�t ) follows:

E[Do(q,�t )] = D(q,�t ) + 2σ 2
0 . (9)

Further assuming ε(x, t ) ∼ N (0, σ 2
0 ) independently, we can

calculate the variance

V [Do(q,�t )]

= 2σ 2
0

nqn�t

[
2σ 2

0 + 2D(q,�t ) + max(0, (T − 2�t ))

×
(

σ 2
0

n�t
− 2Sq,�t

(T − 2�t )n�t nq

)]
, (10)

where the expression of Sq,�t is given in Eq. (A5) in Ap-
pendix A.

The result in Eq. (10) is intuitive: the ratio 1
nqn�t

arises
from the fact that the Do(q,�t ) is averaged from nq and n�t

observations of 〈Î (q, t,�t )|2〉, as shown in Eq. (3), which
decreases the variance. The other terms arise from the covari-
ance between the sin and cos terms from the Fourier transform
and that of the recursive sampling of the same image in dif-
ferent �t .

Note that by Eq. (9), an unbiased estimator of D(q,�t )
is Do(q,�t ) − 2σ 2

0 , while using the observations Do(q,�t )
alone typically overestimates the image structure function by
2σ 2

0 on average. Potential practical procedures for estimating
2σ 2

0 will be discussed later.
We have shown that Do(q,�t ) can be separated into a

deterministic term of the signal [D(q,�t )] and a random term
containing the noise and cross product of the noise and signal.
This representation can be related to Eq. (4) by letting

B(q,�t ) = 2〈�Î (q, t,�t )�ε̂(q, t,�t )〉 + 〈|�ε̂(q, t,�t )|2〉,
(11)

where the mean and variance

E[B(q,�t )] = 2σ 2
0 , (12)

V [B(q,�t )] = V [Do(q,�t )], (13)

where V [Do(q,�t )] is given in Eq. (10). We observe that
specifying B as 0 typically underestimates the mean of
the noise term. On the other hand, specifying B as the
average of the high-q limit of observed image structure func-
tion 〈Do(qmax,�t )〉�t , or as the ensemble average of static
power spectrum 2〈|Îo(qmax, t )|2〉t [18], tends to overestimate
the mean of the noise by a small amount 〈A(qmax)[1 −
f (qmax,�t )]〉�t . Note that [1 − f (qmax,�t )] is close to 1 for
large �t . Thus, the bias is non-negligible when A(qmax) is
large. Also note that A(qmax) typically increases when the
number of objects in the image or their peak intensity in-
creases, when the image pixel size increases, or when the
object size decreases; the relationship of A(q) to some of these
quantities was considered in [31]. Indeed, we found that for
a system with a large number of small objects, the bias can
be large (Fig. 5, Appendix C). When the pixel size is large,
such as in the case of the actively driven system considered
in Sec. IV C, one may also tend to overestimate the noise.
Similarly, using Dmin(q,�tmin), i.e., the minimum value of
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TABLE I. Potential bias in estimation approaches of noise Best in
DDM.

Best Scenarios for non-negligible bias

0 Underestimation in all scenarios
〈Do(qmax,�t )〉�t Overestimation when particle number, peak

intensity, or pixel size is large, or if particle size
is small

2〈|Îo(qmax, t )|2〉t Overestimation in similar scenarios as the above
Dmin(�tmin ) Overestimation when [1 − f (q, �tmin )] is not

close to zero in similar scenarios as the above

intermediate scattering function at the smallest �t , may also
overestimate B in these scenarios. We found that the overesti-
mation by Best = Dmin(q,�tmin) may be smaller than the ones
by Best = 〈Do(qmax,�t )〉�t or Best = 2〈|Îo(qmax, t )|2〉t , as the
term [1 − f (q,�tmin)] can be close to zero. Furthermore, both
estimators may slightly underestimate the noise due to its
stochastic nature. For instance, when the signal contained in
Do(q,�tmin) is close to zero, the ensemble average across q’s
serves as a good estimator, whereas the minimum tends to
underestimate the noise. In these cases, Do(q,�t ) tends to
underestimate the noise much less frequently than overesti-
mating the noise.

We summarize the limitations for each of the available
approaches in estimating the mean of the noise in DDM in
Table I and offer a simple test to detect the bias in Appendix C.
In such a scenario, one may change experimental conditions,
such as by reducing the number of objects, or increasing the
object size, reducing the pixel size, etc., to reduce the bias;
alternatively, the noise can be measured independently, or
a more accurate estimator of the noise may be used. One
goal of this exercise is to illustrate the importance of noise
quantification, and to provide a way to detect potential bias in
a wide range of scenarios.

For applications of DDM to microrheology, and assum-
ing dilute probes with diffusive particle dynamics involving
Gaussian displacements, we can relate the MSD 〈�r2(�t )〉 at
each q to the image structure function and related quantities
as follows [6,32]:

f (q,�t ) = exp

(
−q2〈�r2(�t )〉

4

)

×
[

1 + α2q4〈�r2(�t )〉2

32
+ · · ·

]
, (14)

where the first order non-Gaussian parameter α2 =
d〈r4(�t )〉

(d+2)〈�r2(�t )〉 − 1 (d = dimensionality) is a measure of the
heterogeneity or nondiffusive dynamics of the sample [33].
As is common in microrheology, we assume the contribution
of the non-Gaussian parameter is negligible [24], and thus
�r2(q,�t ) at each q may be estimated from D(q,�t )
through the following approach:

�r2
est (q,�t ) = 4

q2
ln

[
A(q)

A(q) − Do(q,�t ) + B(q,�t )

]
. (15)

It is common to assume sample ergodicity, and use the en-
semble average of �r2(q,�t ) to estimate the mean squared
displacement 〈�r2(�t )〉. However, we note that the variance

FIG. 2. Illustration of how four different approaches to estimat-
ing B(q) influence the calculated MSD. For given q, the quantity
�tq,min satisfies Do(q, �tq,min ) = Dmin(�tmin ).

of Do(q,�t ) given in Eq. (10) is not the same across dif-
ferent values of q and �t . A simple ensemble average over
wave vectors without addressing the weights due to different
variances could introduce substantial bias in the estimation,
when D(q,�t ) at different wave vectors is not the same. We
found that using the median, instead of the mean, can be more
robust in such estimations. Numerical comparison between
these estimation approaches will be discussed in the context
of the simulated and experimental studies.

To illustrate the importance of proper error estimation
in estimating MSD, we consider the outcomes using four
different ways of estimating B, graphed in Fig. 2. If there
exists �tq,min, such that Do(q,�tq,min) = Dmin(�tmin) for a
given q, and B is estimated by Dmin(�tmin) (red solid line),
then from Eq. (15), the argument of the natural logarithm
approaches unity, and �r2(q,�tq,min) → 0, which in turn
drives log10(�r2(q,�tq,min)) → −∞, as shown. Choosing
B = 〈Do(qmax, t )〉t (purple solid line) will similarly overesti-
mate the noise at small �t , when A(q) does not sufficiently
approach 0 at qmax.

On the other hand, if B is estimated to be 0 (green
solid line), then approximately log10(�r2(q,�t → 0)) →
log10[ 4

q2 ln( A(q)
A(q)−2σ 2

0
)] (an asymptotic value denoted by the

green dotted line), as the expected value of Do(q, 0),
E(Do(q, 0)) = 2σ 2

0 . When we use the correct estimator B =
2σ 2

0 (blue solid line), the estimated �r2(q,�t ) → 0 when
�t → 0.

These asymptotic limits demonstrate the crucial impor-
tance of properly estimating the mean of B by σ 2

0 when
extracting dynamical properties from DDM such as the ISF or
MSD, particularly at small �t , a result that is further validated
in simulated and experimental examples (see, e.g., Figs. 4 and
5). A similar point about B was noted previously by other re-
searchers: while uncertainty in A(q) is considered to dominate
the analysis because it pertains to the signal, overestimating
B(q) such as in [6] can lead to spurious results when com-
puting 〈�r2(�t )〉 [23], and hence other authors proposed an
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iterative scheme to solve for 〈�r2(�t )〉. Treating B as a fitting
parameter was also commonly used in prior studies [5,20,34],
although the optimized value of B can be unstable in some
scenarios, particularly if the weights of Do(q,�t ) are not
properly accounted for (see, e.g., Fig. 11). Through various
simulation and real experiments in this study, we advocate that
accurately estimating the noise parameter is crucial in DDM.
In experiment, the noise term σ 2

0 may be measured, typically
through independent experiments using immobilized particles
under identical imaging conditions, if a large bias of the esti-
mator is detected. The variance of the image difference is then
computed to give σ 2

0 . In MPT, a “noise floor” is commonly
quantified [13] and frequently subtracted from all data to give
a more realistic estimate of the MSD [35–37]. We show that
while many estimators have negligible bias in approximating
2σ 2

0 in many cases, other times it may be necessary to evoke
an independently measured 2σ 2

0 , and we propose that noise
characterization should be routine for DDM as well.

B. Gaussian process regression

The second challenge of DDM is the computational bottle-
neck that arises when performing a massive number of Fourier
transformations. We overcome this problem by representing
the logarithm of image structure function by a Gaussian pro-
cess regression (GPR) approach on a fraction (0.5%–5%) of
data. GPR is a widely used machine learning tool for estimat-
ing nonlinear, smooth response surfaces and the predictions
from GPR is the equivalence to the kernel ridge regression
(KRR) estimator [38–46].

We apply GPR to the logarithm of Do(q,�), denoted
D̃o(θ) = ln[Do(θ)], with two input parameters: the natural
logarithm of the wave vector (in reciprocal space) and time are
denoted by (q̃,�t̃ ) = ( ln(q), ln(�t )) = θ. After obtaining
the predictive samples of the logarithm of the image structure
function, we transform it back to obtain predictive samples
for the image structure function. Because the logarithm of
the ISF is smoother, the GPR approach works much better
using logarithm of Do(q,�) as observations. Assuming that n
observations D̃o(θi ), i = 1, 2, . . . , n, are used, predictions by
GPR can be represented through the following optimization,
which simultaneously penalizes mean squared errors of the
estimation with respect to the observations, as well as the
complexity of the estimation:

D̃∗ = argmin
D̃∈H

{
1

n
[D̃o(θi ) − D̃(θi )]

2 + λ||D̃||2H
}
, (16)

where || · ||H denotes the reproducing kernel Hilbert spaces
regression (RKHS) norm (or native norm) [28] that penalizes
the complexity of the estimation to avoid overfitting and λ is
a regularization parameter. For any θ∗, the solution of (16),
known as KRR, is a weighted average of observations

D̃∗(θ∗) = wT D̃o =
n∑

i=1

wiD̃o(θi ), (17)

where w = (w1, . . . ,wn) = rT
θ∗R̃−1 is a row vector of

weights, where R̃ = R + nλIn with In being an identity ma-
trix of size n and R is an n × n correlation with (i, j)th
entry parametrized by a kernel function K (θi, θ j ), and rθ∗ =

(K (θ1, θ∗), . . . , K (θn, θ∗))T is the correlation between predic-
tive output and observations.

Note that Eq. (17) is only a point estimator without giv-
ing assessment of uncertainty. One advantage of the GPR
approach is the uncertainty of estimation can be quantified
in a probabilistic framework. We model the latent function
D̃o(·) by a Gaussian process with noises, meaning that any
marginal distribution D̃o = (D̃o(θ1), . . . , D̃o(θn))T at n inputs
{θ1, . . . , θn} follows a multivariate normal distribution:

((D̃(θ1), . . . , D̃(θn))T | m, R̃, σ 2) ∼ MN (m, σ 2R̃), (18)

where m = (m(θ1), . . . , m(θn))T is a vector of the mean [as-
sumed to be a constant in this work, i.e., m = (m, . . . , m)T ]
and σ 2 is a variance parameter.

The power (stretched) exponential covariance function
and Matérn covariance function are often used for GPR
[28]. For any two inputs θa = (q̃a,�t̃a) and θb = (q̃b,�t̃b),
we use a product covariance function σ 2K (θa, θb) =
σ 2K1(q̃a, q̃b)K2(�t̃a,�t̃b), with Kl (·, ·), l = 1, 2, following a
Matérn correlation with roughness parameter 5

2 such that

Kl (xa, xb) =
(

1 +
√

5βl d + 5β2
l d2

3

)
exp(−

√
5βl d ), (19)

where d = |xa − xb| for any real valued input xa and xb with
inverse range parameter βl ∈ R+, l = 1, 2. The sample path
of the Gaussian process with Matérn correlation in (19) is
twice differentiable and is often used as a default correlation
in GPR [47].

The parameters in GPR (m, σ,β, λ) can be estimated by
the maximum likelihood approach discussed in Appendix B.
Plugging in the estimated parameters (mest, σ

2
est,βest, λest ), the

predictive distribution of D̃(θ∗) at any θ∗ follows a normal
distribution [28]:

(D̃(θ∗) | D̃o) ∼ N (D̃est (θ∗), σ̂ 2K∗(θ∗, θ∗) + σ̃ 2
∗ ), (20)

where σ̃ 2
∗ is the variance of the noise εθ∗ with

D̃est (θ∗) = mest + rT
θ∗R̃−1(D̃o − mest1n), (21)

K∗(θ∗, θ∗) = σ 2
est

(
K (θ∗, θ∗) − rT

θ∗R̃−1rθ∗
)
. (22)

We use the predictive median D̃est (θ∗) for predicting the
logarithm of the ISF to obtain the unsampled θ∗ and the pre-
dictive median of Do(θ∗) can be obtained by transforming the
predictive median of D̃o(θ∗) through the exponential function.
The predictive median in Eq. (21) is equivalent to KRR in
Eq. (17) when the mean parameter is zero mest = 0. Here
the uncertainty of predictions and predictive samples can be
obtained by the predictive distribution in Eq. (20).

C. Predictive sampling by a downsampled data set

After obtaining the image intensities, DDM-UQ analysis
starts by selecting a fraction of the �t’s equally spaced log-
arithmically along the input space coordinates to compute
Do(q,�t ) as shown in Fig. 3(a). Here, we choose not to
downsample observations at wave vectors (q), but the ap-
proach can be extended to q as well, if one wishes to further
reduce the computational cost. The Fourier transformation
is only performed on this reduced set of image differences,
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FIG. 3. (a) The design points (blue circles) are selected along the logarithmically scaled coordinates (q,�t ), requiring only a fraction of
the Fourier transformations to compute Do(q,�t ). (b) Predictive median and predictive samples by GPR for representative values of q’s. The
variance of noise is proportional to the inverse of the number of pixels in ensemble. 300 predictive samples for each q were generated to
obtain the 95% credible interval (gray shadow). The observations used for GPR are plotted as black dots. The full observations (black lines)
overlap with the predictions (colored lines). (c) The predictive samples for the intermediate scattering function are plotted against the �t .
(d) Predictive mean squared displacement is plotted against the �t using all three methods. The 95% predictive interval is shown with the error
bar for DDM-UQ. The inset shows a snapshot of experiment with MPT trajectory overlay. Plots (b)–(d) are derived from a movie with 1-μm
probe particles diffusing in a viscous fluid.

allowing for fast, high-throughput analysis. Since an estimate
of the plateau of the image structure function at long times
is often required by the analysis, we ensure that at least five
design points lie on the interval [0.7�tmax, 0.9�tmax] on the
�t̃ axis for each chosen q̃ [Fig. 3(b)]. For all numerical results
analyzed in this study, we only use Do(q,�t ) at 25 �t points
in DDM-UQ, which represents around 0.5% to 5% of total
observations. The predictive median of Do(q,�t ) is smoother
than the observed Do(q, t ) since spurious noise is effectively
filtered out [see, e.g., the black curves and colored curves in
Fig. 3(b)].

Note that our goal is to relate Do(q,�t ) to other quanti-
ties of interest, such as the intermediate scattering function
f (q,�t ) or mean squared displacement 〈�r2(�t )〉, both of
which are nonlinear transformations of Do(q,�t ). To achieve
this, we sample image structure functions from the predic-
tive distribution in Eq. (20) and transform the samples to
obtain other quantities of interest. The transformed predictive
samples can be used to estimate the predictive interval of
quantities of interest at a given set of input (q,�t ). In this
work, we sample 1000 observations, denoted as Ds(q,�t ) for
s = 1, 2, . . . , 1000 at any (q,�t ), and transform Ds(q,�t ) to
obtain other quantities of interest, such as intermediate scat-
tering function fs(q,�t ) via Eq. (4) after estimating Best and
Aest (q). The determination of these two estimators is discussed
in Sec. III A. For each (q,�t ), the 95% predictive interval

of f (q,�t ) can be estimated by the lower 2.5% quantile and
the upper 2.5% quantile of the transformed predictive samples
fs(q,�t ) for s = 1, 2, . . . , 300.

Since the predictive samples of D(q,�t ) preserve informa-
tion such as quantiles of distribution for any transformation,
transforming these samples can be used to estimate the ISF
f (q,�t ) and MSD 〈�r2(�t )〉 as shown in Figs. 3(c) and 3(d).
The predictive median is used for estimating MSD at each �t
as it is typically more robust than the mean. Conditional on the
observed values Do(q,�t ), the predictive samples of f (q,�t )
and 〈�r2(�t )〉 can be used to assess estimation uncertainty as
well.

III. VALIDATION THROUGH SIMULATION

A. Image formation and analysis approach

To validate our methodology, we first employ simulations
of a time series of images demonstrating particle motion. This
approach has the significant advantage that the true particle
motion is known a priori and the true MSD has a closed form
expression, thus allowing quantitative comparison with results
obtained using DDM, DDM-UQ, and MPT, the latter obtained
using an open source tracking algorithm [1,48]. Moreover, it is
possible to investigate systematically how different sources of
noise influence algorithm performance, and whether different
functional forms of 〈�r2(�t )〉 perform differently.
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We first examine simulated video images of particles in
motion, each with a Gaussian intensity profile with peak
intensity Ic = 255 and standard deviation of σp = 2 pixels.
In principle, the intensity recorded at a single pixel Ip(x) could
arise from intensity contributions of multiple particles in the
vicinity. The contribution of the jth particle located in x j (t ) is
given by

Ip(x, x j (t )) = Ic exp

(
− [x − x j (t )]2

2σ 2
p

)
. (23)

To account for noise in the background intensity signal, a
time-varying, random uniform noise Ib(x, t ), centered around
zero, in the range [−10, 10] is added. Thus, we may compute
σ 2

0 as the variance of the background noise Ib(x, t ): σ 2
0 =

202

12 ≈ 33.3. Thus, the signal at a time t is the sum of signals
attributed to all particles as well as the background:

I (x, t ) = Ib(x, t ) +
np∑
j=1

Ip[x − x j (t )]. (24)

Note that the pixel intensities in simulation are not sub-
jected to a cutoff ceiling value as are those obtained in
imaging (e.g., 0–255 for an eight-bit image). Moreover, unlike
MPT, where the relative brightness of particle and background
significantly affects tracking precision [13], in DDM signal
quality depends sensitively on the magnitude of the image
difference. Keeping this context in mind, we simulate particles
with brightness Ip[x − x j (t )] that does not vary with time, and
we vary the step size by which the particles move in each
time step instead. It is well known that DDM performance
deteriorates, and can completely break down, in the limit of
small probe displacements [6]. For diffusive particles taking
a step with a variance σ 2

s , we compare the performance of
DDM, DDM-UQ, and MPT in calculating the MSD values.

The DDM-UQ analysis represents data obtained using our
proposed approach based on the downsampled Fourier trans-
formation of �I (x,�t )’s with GPR and predictive samples.
For all numerical results that extract the MSD using DDM-
UQ, we estimate Best to be the minimum of Dmin(�tmin)
and 〈Do(qmax,�t )〉�t , to reduce the overestimation bias, as
summarized in Table I. The estimate of the amplitude param-
eter Aest (q) is obtained by Aest (q) + Best = 2〈I2

o (q, t )〉t , as it
applies to all wave vectors, regardless of whether or not a
plateau is reached at the given �t . Furthermore, extracting
the MSD from the ISF at extremal wave vectors could lead to
large errors. This is because the intensities of only a few pixels
are used to calculate the ISF at small wave vectors, leading
to large uncertainty in estimation. On the other hand, A(q)
can approach zero at large wave vectors, leading to unstable
estimate of MSD in this regime. To avoid these extremes,
DDM-UQ uses Do(q,�t ) based on 80 intermediate q values,
typically ranging from the 4th up to 83rd largest q’s.

Additionally, we record the MSD estimations for �t values
that are no larger than 90% of the estimated plateau values
according to Eq. (15). In this limit, the denominator is suf-
ficiently different from zero to ensure a small variance of
the estimation. Finally, we truncate the estimation of MSD
at those �t where fewer than 10 wave vectors are available,
to avoid selection bias in estimation when sampling is limited.
Other approaches to truncating the wave-vector range and lag

FIG. 4. The ensemble-averaged MSD calculated from the simu-
lated 2D Brownian motion of 800 particles. Estimation of MSD by
DDM-UQ with four different ways of estimating the mean of the
noise. The error bars denote 95% predictive interval of DDM-UQ
with B = 2σ 2

0 . The truth of 〈�r2(�t )〉 = 8�t is denoted as the black
line. The inset shows the initial position of particles, where particles
are enlarged for better visualization. Note that it is not possible to
perform MPT due to the large number of particles moving within the
frame.

time based on standard deviation of the data were explored
in prior DDM analyses [6]. Weighting D(q,�t ) based on
the variance of the data without truncation of wave vectors
and time points could be an efficient way to reduce selection
bias while allowing robust estimation of the extracted MSD at
longer �t . This is a potential future topic for research.

For DDM analysis in practice, we perform the Fourier
transformation of all values of �I (x,�t ), and estimate B(q)
using the average of D(qmax,�t ) over all �t’s at qmax,
〈D(qmax,�t )〉. Our first simulated case contains 800 small
particles (Fig. 4), whereas we include 50 moderately large
particles in the latter 6 simulations. As shown in Fig. 5, all
estimators of the mean of the noise B for the six latter simu-
lated examples are very similar, as expected. We then test how
the DDM analysis is affected by estimating A(q) two different
ways. Following the procedures (I) from [6] we estimate A(q)
from the plateau or (II) using the static power spectrum [i.e.,
Aest (q) + Best = 2〈I2

o (q, t )〉t ] per [16,17]. We largely follow
the procedures defined by [6,31] to select the wave vectors
and �t values for estimation and data selection for both DDM
analysis approaches.

Also included is the MPT approach, which was performed
by locating particles in each frame, and searching in the vicin-
ity to link trajectories of individual particles. The localization
error is not characterized, given the high-particle intensity
compared to the background intensity in all cases investigated.
Note that for certain cases, such as optically dense cases
of simple diffusive processes compared in Sec. III B, MPT
cannot identify the large number of probes, so MPT results
are not compared in these two studies.

In detail, in all cases, we generated videos of the motion of
np = 50 particles, except for the case described in Sec. III B,
where np = 800. The simulation box is a 2D square with sides
L = 480. The movie spans time steps t = 1, 2, . . . , 1000. We
further imposed displacements in each successive time step
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FIG. 5. Comparison of different estimators (denoted by different
color bars) for all simulation scenarios. Note that the true noise 2σ 2

0

is kept constant in all simulations and denoted by the thick black line.

�xi, j (t ) = xi, j (t + 1) − xi, j (t ) (where i = 1, 2 stands for the
x1, or x2 directions in the Cartesian coordinates in 2D).

We construct three scenarios that represent the general
features observed in a broad range of experiments: simple dif-
fusion, diffusion with drift, and constrained diffusion within a
harmonic potential well (i.e., an Ornstein-Uhlenbeck process).
These scenarios will result in distinct shapes of 〈�r2(�t )〉
and highlight various challenges to each analytical approach.
The derivations of the expected values of the MSDs for all
simulated scenarios are given in Appendix D.

As a metric of the accuracy of a given analysis method, we
compare the normalized root mean squared error (N-RMSE)
for the estimated MSD relative to the known true MSD:

N-RMSE =
√

1
n�t

∑
�t∈�T

[〈�r̃2(�t )〉 − 〈
�r̃2

est (�t )
〉]2

σ̃r
,

(25)
where 〈�r̃2(�t )〉 is the logarithm of the true MSD with base
10, 〈�r̃2

est (�t )〉 is the corresponding estimate using DDM

with two different A(q) estimators, DDM-UQ or MPT, and σ̃r

is the sample standard deviation of the logarithm of the true
MSD with base 10. In practice, not all �t values are available
for every method, due to large fluctuations at large �t values,
and this provides a limit to the total �t range captured in each
case. To ensure that the four methods are evaluated on the
same test set �T and to ease quantitative comparisons, we
determine the usable range of �t’s by the smallest maximum
�t available among the three methods. The N-RMSE of dif-
ferent simulated cases is summarized in Table II.

B. Validating the use of σ2
0 as an estimator for B

We have shown that the mean of B is 2σ 2
0 , and that the

estimation of σ 2
0 is critically important to the analysis of DDM

data. To illustrate this point, we first show the results of a
simulation of np = 800 particles with σp = 0.5 moving in a
purely viscous fluid. We generate movies demonstrating sim-
ple Brownian motion: at each time step, �xi, j (t ) ∼ N (0, σ 2

s )
independently, where σs represents the step size with units
of pixels. The expected MSD of the Brownian motion is
E[〈�r2(�t )〉] = 2σ 2

s �t . For 2D diffusive motion, we thus
expect 〈r2(�t )〉 = 4Dm�t , where Dm is the diffusion coef-

ficient. Dm can be associated with the step size Dm = σ 2
s
2 . For

σ 2
s = 4, and Dm = 2, the truth is 〈r2(�t )〉 = 4Dm�t = 8�t .

This simulation represents an optically dense case with a
large number of small particles, which can induce a large
bias in estimating the noise (Table I). We demonstrate this
by comparing the estimation of noise by B = Dmin(�tmin),
B = 〈Do(qmax,�t )〉�t , and B = 2〈|Îo(qmax, t )|2〉t to the truth
B = 2σ 2

0 (horizontal line) as shown in Fig. 5. We found that
all three estimators overestimate the mean of B in the analysis.
The first approach, B = Dmin(�tmin), has the smallest bias
among the three, as the term 1 − f (q,�tmin) in Eq. (4) is
relatively small at the smallest �t .

Next, we calculated the MSDs by DDM-UQ using
each of the following ways for estimating the noise, as
shown in Fig. 4: B = Dmin(�tmin) (red diamonds), B =
〈Do(qmax,�t )〉�t (purple squares), B = 2σ 2

0 (blue circles),
and B = 0 (green triangles). The truth is plotted as the thick
black line. Our results reveal that estimating the noise accu-
rately is necessary to obtain an accurate estimate of MSD,
whereas overestimating or underestimating the noise leads
to an inaccurate estimate, particularly for sufficiently small
�t , where the displacements are smaller and therefore more
strongly impacted by a poorly estimated noise term.

A simple way to detect the estimation bias of B is to plot
Do(q,�t ) as a function of q for a given �t (here selected to
be �tmin) across all q values, as shown Fig. 6. If the signal

TABLE II. N-RMSE of simulated cases. The analysis mode with the lowest N-RMSE is shown in bold in each scenario.

Scenario DDM [A(q) from plateau] DDM [A(q) from 〈|Îo(q, t )|2〉t ] DDM-UQ MPT

Simple diffusion, σs = 2 0.109 0.047 0.025 0.024
Simple diffusion, σs = 0.5 0.396 0.034 0.057 0.129
Simple diffusion, σs = 4 0.130 0.095 0.014 0.492
Diffusion with drift 0.061 0.052 0.074 0.026
Diffusion with drift, optically dense 0.041 0.049 0.029 0.424
O-U process with drift 0.243 0.063 0.183 0.213
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FIG. 6. A close look at the estimators of noise Best in the first
and second scenarios of simple diffusion with identical underlying
dynamics σs = 2, above. The difference lies in that the second case
includes 16× as many particles while particle radius decreases by 4×
(filled circles). For the range of q probed, Do(q, �t ) does not decay
to zero at qmax.

A(q)[1 − f (q,�t )] does not approach zero at the highest q
values, then Do(q,�t ) continues to decrease as q increases.
We found this to be the case for Do(q,�t ) for the optically
dense case (with Np = 800 probes, shown as filled circles,
Fig. 6). Hence, estimating B using Do at qmax introduces non-
negligible bias in this example. In contrast, when there are
only Np = 50 particles (shown as open circles), the Do(q,�t )
approaches zero at high q and the bias for B is is negligible
across all methods of estimation (Fig. 5). To overcome the bias
induced by the estimator, one may adjust the experimental
conditions to avoid the scenarios summarized in Table I, or
may attempt to measure the noise using a separate sample with
probes immobilized in solid matrix under similar imaging
conditions. Deriving a more accurate estimator of the noise
at these experimentally challenging scenarios will be an inter-
esting future direction.

C. Simple diffusion with different step size σs

To explore the effects of varying step size (which is a
proxy for varying diffusivity) on our analysis, three additional
scenarios with diffusive dynamics are explored, using simula-
tions of particles taking different step sizes σs, but for which
all other settings and conditions were held constant. When
σs = 2, corresponding to an intermediate step size, all four
methods (DDM with two different estimators, DDM-UQ and
MPT) provide results that reasonably approximate the true
values that are directly calculated from the inputted particle
positions [Fig. 7(a)]. When the N-RMSE values are calculated
and compared, we find that the results from MPT provide the
best approximation of the true values for this case, whereas
DDM-UQ provide nearly the same level of accuracy as MPT
(Table II).

We next calculated the MSDs for simple diffusion with
lower (σs = 0.5) and higher (σs = 4) step sizes [Figs. 7(b)
and 7(c)]. The largest differences are observed at high step
size [Fig. 7(c)] where particle displacements are large (σs =
4). In this limit, DDM-UQ outperforms MPT by a large
margin (Table II). The reason is intuitive for MPT: as par-
ticle displacement becomes large, the likelihood of two or
more particles exchanging positions within the search radius

increases significantly. This can lead to the algorithm misiden-
tifying the particle, thereby resulting in erroneous linking of
the trajectories.

D. Diffusion with drift

We next consider particles subjected to diffusive-
convective motion (i.e., “drift”). At each time step, a particle
moves by �xi, j ∼ N (μD, σ 2

s ), resulting in a random walk
with step size σs = 0.56 superimposed on a deterministic
drift with mean velocity μD = 0.1 in units of pixels and
time step in the same direction for all particles. The expected
value of the MSD in this case is E[〈�r2(�t )〉] = 2σ 2

s �t +
2μ2

D�t2. At short �t , the motion is primarily diffusive
[Fig. 7(d)], 〈�r2(�t )〉 ∼ �t with a transition to convective
motion 〈�r2(�t )〉 ∼ �t2, at large �t . This results in an in-
creasing value of d〈�r2(�t )〉

d�t with �t , and permits a measure
of the relative strength of the two dynamic processes through
measure of the local slope on a log-log scale.

We also compare the performance of the different analyt-
ical routines under differing initial conditions. In particular,
we vary the initial positions where particles were released at
t = 1, holding all other settings equal, to compare an optically
dilute scenario [Fig. 7(d)], where particles were uniformly
distributed throughout the simulation box, and an optically
dense scenario [Fig. 7(e)], where particles were released from
a small L

20 × L
20 square in the middle of the frame caus-

ing them to be near each other and even overlap for some
frames. When particles are evenly distributed in the simulation
box, all methods closely track the truth, with MPT having
the lowest RMSE in the optically sparse scenario, whereas
DDM-UQ performs the best in the optically dense scenarios.
The optically dense scenario mimics situations where a high
concentration of particles is present, which is known to lead to
tracking issues in MPT since it is often difficult to distinguish
particles in close proximity. By contrast, DDM and DDM-UQ
perform strongly in this limit (Table II). The range of �t that
can be resolved by any method decreases as compared to the
dilute case, due to the large variability of MSD at different
wave vectors in this scenario.

E. Ornstein-Uhlenbeck process with drift

Finally, we simulated particles from an Ornstein-
Uhlenbeck (O-U) process with drift. Such a process mimics
thermally driven particle motion in an effective elastic
medium with drifts distinct to each particle. The convective
term is constant in magnitude μD, and fixed in direction θ

for an individual particle, but randomized for all particles.
A pure O-U process without a convective term can lead to
a 〈�r2(�t )〉 that plateaus at a certain �t , and thus f (q,�t )
does not decorrelate for some finite values of �t . Adding a
convective term leads to complete decorrelation and allows
the dynamics at these �t’s to be captured. Moving the sample
to achieve ensemble averaging for sample that manifested
constrained heterogeneity has previously been applied to light
scattering on polymer gel samples [49].

Here, just like the original O-U process, successive steps
have a weak correlation with previous steps:

Xi, j (t + 1) = ρXi, j (t ) + εi, j,t , (26)
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FIG. 7. Comparisons of MSDs calculated using DDM-UQ, DDM, and MPT for various simulated scenarios: (a)–(c) Simple diffusion with
(a) σs = 2, (b) σs = 0.5, and (c) σs = 4, corresponding to intermediate, low, and high step sizes. (d), (e) Diffusion with drift in (d) optically
dilute and (e) optically dense samples, and (f) diffusion of a particle within a harmonic potential well (Ornstein-Uhlenbeck process) subjected
to drift. The pink diamonds and the cyan triangles indicate mean values obtained by estimating A(q) from the plateau in D(q, �t ), or from
〈|Îo(q, t )|2〉t , respectively, using DDM algorithm based on all values of D(q, �t ). The blue circles and error bars depict the mean and 95%
predictive interval estimated by DDM-UQ based on 1% of the D(q, �t ), respectively. The golden squares and black solid line represent the
output of MPT analysis and the true values as directly calculated from the known particle positions, respectively. The generated particle
trajectories are shown in the insets, in a simulation box of 480 × 480 pixels.

where εi, j,t ∼ N (0, σ 2
s (1 − ρ2)), with ρ = 0.95, σs = 5, and

Xi, j (t ) = xi, j (t ) − (t − 1)μi j − xi, j (1) for any t ; the indices
represent the jth particle and ith direction (i = 1, 2) and μ1 j =
μD cosθ j , μ2 j = μD sinθ j , respectively, with μD = 0.02. Each
particle’s initial position was generated by a normal distribu-
tion centered around xi j (t0) with variance σ 2

s , i.e., xi j (t1) ∼
N (xi j (t0), σ 2

s ), where xi j (t0) are randomly distributed within
a square 3L

4 × 3L
4 in the middle of the simulation box to reduce

the likelihood that a particle moves out of the frame during the
simulation. The motion is subject to an attractive potential to-
wards xi j (t0) + (t − 1)μi j with drift (μDcos(θ j ), μDsin(θ j ))T

at the t th time point for the jth particle. The expected

value of MSD for O-U process with drift is E[〈�r2(�t )〉] =
4σ 2

s (1 − ρ�t ) + μ2
D�t2. There is a diffusive contribution that

dominates at sufficiently small �t from the first term 1 −
ρ�t ≈ 1 − [1 + ln(ρ)�t] = ln(ρ−1)�t , by Taylor expansion
at small �t . The second convective term captures the convec-
tive flow, and can represent the type of dynamics observed in
some actively driven systems [20,50].

The process results in a trace of MSD versus �t with
multiple inflection points: 〈�r2(�t )〉 first grows with decreas-
ing slope until the plateau value is reached ( d〈�r2(�t )〉

d�t ≈ 0);
at much longer �t’s, the MSD will grow with an increas-
ing slope until eventually the convective motion dominates
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( d〈�r2(�t )〉
d�t = 2). In contrast to all previous scenarios, we find

that D(q,�t ) exhibits nonmonotonic behavior at some wave
vectors, and that the MSD shows apparent q dependence over
�t for many intermediate q values. Specifically, a local maxi-
mum in D(q,�t ) appears before D(q,�t ) reaches the plateau
at long �t . Such nonmonotonic behavior in the resulting
f (q,�t ) has previously been observed in a system consisting
of self-catalytic Janus particles [15].

We find that all approaches are able to capture the general
trends and magnitude of motion [Fig. 7(f)]. At short �t , the
response of all four methods is similar. We note that this
scenario constitutes an “ideal” case for MPT: the particle
locations are sparse, and each particle moves toward their
respective attractive centers xi j (t0), never to cross paths with
one another. Yet, DDM-UQ still outperforms MPT in this
case, even though it can be shown that some marginal benefit
can be gained by using the full data set. Still, with limited
sampling, DDM-UQ has performance on par with DDM and
MPT, evaluated by the N-RMSE in Table II.

Overall, we find that DDM-UQ accurately determines
〈�r2(�t )〉 for a range of experimentally relevant scenarios
based on a fraction of the observations, which substantially
reduces the computational cost. Note that DDM-based al-
gorithms are more automated compared to MPT, as DDM
does not require manually chosen inputs of model parame-
ters such as particle sizes and search radius. On the other
hand, MPT can provide more reliable dynamic information at
larger �t than the current model-free DDM-based algorithms.
The DDM-UQ algorithm developed in this study enables a
model-free automated DDM-based analysis with results that
are comparable to MPT with optimized settings, with less
computational cost and tuning parameters. Indeed, DDM-UQ
even outperforms MPT for certain challenging experimental
scenarios (e.g., high concentration, fast moving objects, etc).
Furthermore, many other scenarios abound where the ISF
f (q,�t ) rather than the MSD can provide physical insight
to the system, and the DDM-UQ algorithm provides an au-
tomated, model-free estimation of the ISF. These findings
affirm the sensitivity of this ensemble-based method as well
as the need for an unbiased estimator of noise and other model
parameters, and validates our data reduction approach.

IV. ANALYSIS OF EXPERIMENTAL DATA

A. Newtonian fluid

We first measured the properties of a Newtonian fluid in
which we expect simple diffusive particle dynamics. Experi-
mentally, we suspended fluorescent polystyrene microspheres
of diameter 2a = 100 nm (yellow-green with excitation max-
ima of λex = 441 nm and emission maxima at λem = 485 nm,
Polysciences, Warrington, PA) in a 30 wt.% sucrose solution
(Sigma-Aldrich, St. Louis, MO) at a particle volume fraction
φ ≈ 3 × 10−5. This composition was previously studied by
dark-field DDM [31], and the exact viscosity value of the
sucrose is well documented [51]. The particle suspension
is introduced into a homemade sample cell formed using a
glass slide and glass cover slip separated by 100 μm spacers.
The sample is imaged in epifluorescence using an Olympus
IX73 inverted microscope, outfitted with a halogen lamp with

FIG. 8. Mean squared displacements estimated from the motions
of 100 nm diameter probe particles in a 30 wt.% sucrose solution,
which serves as a model Newtonian fluid. The pink diamonds and
the cyan triangles indicate MSD obtained by using A(q) determined
from the plateau in Do(q,�t ), or from 〈|Îo(q, t )|2〉t , respectively,
based on all values of D(q,�t ). Blue circles denote results obtained
using the DDM-UQ analysis by a small fraction of the data; in this
case A(q) was only estimated using 〈|Îo(q, t )|2〉t . The black solid line
denotes reference values and is calculated using the known viscosity
(at 20 ◦C) and the Stokes Einstein equation. The inset shows a single
experimental image of the movie, where particles appear to be grainy
and cannot be individually resolved.

green fluorescent protein (GFP) filter set (λex = 457–487 nm,
λem = 502–538 nm), using a 40× objective (NA = 0.6),
which provides a spatial resolution of 97 nm/pixel. Images
are collected using a 8-bit Point Grey Chameleon USB camera
using a 100 ms exposure time, 10 Hz frame rate, and 960 pixel
× 960 pixel frame size.

In this experiment, the limited resolution of fluorescence
microscopy relative to the particle size precludes identifica-
tion of individual particles by MPT [see Fig. 8(a), inset], and
thus prevents MPT analysis. Despite the lack of particle-level
information, DDM is nevertheless capable of detecting the
minute differences in image intensities due to particle motion,
and recovers the correct diffusive dynamics [Fig. 8(a)]. Thus,
DDM shows extraordinary sensitivity even when the particle
size is below the diffraction limit of the microscope.

The reference value of the MSD determined by the Stokes-
Einstein relation [31] is reported by the solid black line.
We generally find quantitative agreement by both DDM and
DDM-UQ over most of the measured �t’s, with noticeable
deviations from the linear trend and the expected values at the
smallest �t (Fig. 8). Here the effects of using the different
estimators of noise are very small, as Do(q,�t ) levels off
at high q values for any given �t . When the approaches are
compared, DDM-UQ (blue diamonds), which stabilizes large
fluctuations through the use of the predictive median, leads to
more accurate estimates of the MSD. Furthermore, we found
that estimating A(q) from Aest (q) + Best = 〈|Îo(q, t )|2〉t (blue
circles and cyan triangles) improves the estimate of the MSD
at large �t over cases where A is estimated from the plateau
values only (pink diamonds). We attribute this improvement
to averaging more Do(q,�t )’s from more q’s in determining
the ISF, regardless of whether there is a plateau or not at the
finite �t that are accessible in experiment.
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FIG. 9. Results of microrheology and bulk rheology measurements of solutions wormlike micelles, which form viscoelastic
fluids. (a) Mean squared displacements obtained from full Do(q,�t ) with A(q) estimated from the plateau in D(q, �t ) (pink di-
amonds), from 〈|Îo(q, t )|2〉t (cyan triangles), DDM-UQ (blue circles), and MPT (golden squares). The inset shows an experimental
snapshot of the microrheology experiment. (b)–(d) Comparison of the frequency-dependent linear viscoelastic moduli obtained either from bulk
rheology experiments (black symbols) or calculated from the MSDs obtained by either using (b) DDM with A(q) estimated from 〈|Îo(qmax, t )|2〉
(pink diamonds), (c) DDM-UQ (blue circles), or (d) MPT (golden squares). Solid symbols denote the storage [elastic, G′(ω)] modulus while
open symbols denote the loss [viscous, G′′(ω)] modulus. MSDs estimated by MPT and by DDM-UQ nearly overlap.

B. Viscoelastic fluid

We next investigate the performance of DDM in probing
the dynamics of a non-Newtonian fluid, namely, a viscoelas-
tic wormlike micelle solution of 12.5 mM sodium salicylate
(NaSal; Sigma-Aldrich, St. Louis, MO) and 15 mM cetylpyri-
dinium chloride (CPyCl; Sigma-Aldrich, St. Louis, MO)
that forms an entangled network. To this solution, fluores-
cent polystyrene microspheres of diameter 2a = 1500 nm
(carboxylated yellow-green ex/em = 505/515, Life Tech-
nologies, Carlsbad, CA) are added at a volume fraction φ ≈
2 × 10−4. The sample is mixed and allowed to relax overnight
prior to loading into a capillary tube, which is sealed on both
sides with optical glue (Norland Products, Inc.) and cured
under a UV lamp. We note that this sample is similar in
composition, but not identical, to a solution characterized by
DDM microrheology in previous work [6]. The sample is
imaged using a Zeiss Axio Observer 7 microscope in fluores-
cence mode using a Colibri 7 light source, standard GFP filter
sets and a 40× water-immersion objective lens (NA = 1.2),
which provides a magnification of 150 nm/pixel. Images were
recorded with an Axiocam 702 monochromatic camera using
15 ms exposure time, 10 Hz frame rate, and 512 × 512 pixels
frame size. In this case, the reference data set is obtained by
a bulk rheology measurement of an identical sample without
tracer particles using an AR-G2 stress-controlled rheometer
(TA Instruments, New Castle, DE) to perform a frequency
sweep in the linear viscoelastic limit using a 40-mm diameter
cone-and-plate fixture, with a 2◦ cone angle and a 55 μm
truncation, at 2% shear strain over a frequency range of 0.01–
10 rad/s. The instrument is outfitted with a solvent trap to
minimize evaporation during testing.

Wormlike micelles (WLMs) manifest complex frequency-
dependent viscoelasticity that nonetheless follow simple
scaling laws [6,52]. Such a system is challenging to charac-
terize: small probe displacements at low �t make it difficult
to determine if the flattening of the MSD at low �t is char-
acteristic of system behavior or a result of “pixel biasing”
due to particle localization error [13]. The slow dynamics
also contributes to the sensitivity of q selection. In this case,

solidlike behavior at high frequency (low �t) is confirmed
by bulk rheometry measurements [Figs. 9(b)–9(d)] and thus a
“flattening” of the MSD trace is expected at small �t . With
this information, we evaluate the four methods.

In this experiment, the noise estimators Best =
〈Do(qmax,�t )〉�t and Best = Dmin(�tmin) produce similar
results by DDM, although neither method performs well
because the estimation error for A(q) at high values of wave
vector is relatively large due to the small displacements,
which approach the resolution limit at small lag times.

By contrast, the DDM-UQ algorithm using the median
from the predictive sampling based on Do(q,�t ) on moder-
ately large wave vectors is more robust than using a simple
ensemble of Do(q,�t ) in DDM. The MSD trace for DDM-
UQ is very close to the MPT result, and is more consistent
with the Maxwell fluidlike behavior [Fig. 9(a)]. Note that
we only compute the Fourier transformation of intensity
difference at 25 selected �t’s in DDM-UQ analysis, instead
of 6000 �t points in DDM, which reduces the computational
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FIG. 10. Pair bar graphs demonstrating the computation effi-
ciency of DDM-UQ scheme (blue) over current DDM approaches
(pink). The size of each image stack is labeled underneath the data
set, in terms of frame size × time points (Lx × Ly × T ).
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cost by more than 100 times (shown in Fig. 10) while provid-
ing more accurate results.

Next we convert the measured MSD data into measures of
the frequency-dependent viscoelastic moduli using the gener-
alized Stokes Einstein relation (GSER) [53]:

|G∗(ω)| ≈ kBT

πa〈�r2(1/ω)〉
[1 + α(ω)]
, (27)

where T is the temperature, kB is the Boltzmann constant, and
α(ω) the power-law slope [on a log-log plot of 〈�r2(�t )〉].

The procedure of determining the power law slope α(ω)
usually involves first taking the numerical derivative of
〈�r2(�t )〉 with respect to �t , and then fitting a polynomial of
the data around a particular �t , which is then Laplace trans-
formed to frequency space [53]. As shown in Figs. 9(b)–9(d),
the moduli we measured directly by bulk rheology generally
agree with those computed from 〈�r2(�t )〉 using microrhe-
ology approaches, even at high frequency, in both magnitude
and in the frequency of the crossover. The result from DDM
with A(q) estimated from the plateau is shown in pink di-
amonds [Fig. 9(b)], the result using DDM-UQ is shown in
blue circles [Fig. 9(c)], and MPT is shown in golden squares
[Fig. 9(d)]. The MSD by DDM with A(q) estimated from
the relation Aest (q) + Best = 〈|Îo(q, t )|2〉t (cyan triangles) con-
tains very large error, and thus it fails to estimate moduli, so
the result is not shown here.

Both the frequency dependence and magnitude of the mod-
uli in the high-frequency regime are extremely sensitive to
the MSD at low �t . Nevertheless, MPT and DDM-UQ are
in an approximate agreement with the values obtained with
macroscale rheology at higher frequencies. By contrast, in
a slow moving system, or at large q’s (which correspond
to small displacements), when the movement is less than a
pixel on average over �t , it is not possible to capture the
system dynamics by calculating the image difference. As a
result, estimates of the MSD from the Do(q,�t ) tend to
provide underestimates as compared to the true values at
small �t .

We note that the numerical differentiation of 〈�r2(�t )〉
introduces a high degree of uncertainty into the moduli that
is not represented on Fig. 9. A more robust estimation method
for the moduli is an area of future research.

C. Model fitting for actively driven systems

Beyond thermally driven dynamics and microrheology,
DDM can be applied in the realm of non-Brownian, active
systems where models of f (q,�t ) can provide insight into
the physics associated with the system dynamics. In such
cases, the time variation of the image structure function does
not arise from probe motion but from structural evolution
of actively powered components within the system such as
migrating bacteria [8] or advection due to internal stresses that
arise from phase separation and aging [10], among other ex-
amples. Here we demonstrate that DDM-UQ analysis can be
applied to such anomalous dynamics as well. Specifically, the
statistical approach we have developed should be applicable to
any system that sufficiently decorrelates over the experimental
observation time, thus greatly reducing computational time
and increasing the robustness of model fits.

As an example, we consider the dynamics of actively
driven composite cytoskeletal networks of actin and mi-
crotubules, by (re)analyzing the experimental data recently
reported by Lee et al. [20]. Actin and microtubules are ubiq-
uitous and essential in eukaryotic cells, and in vitro networks
of the purified filamentous proteins are widely studied for
their potential to self-organize and form model nonequilib-
rium materials when acted upon by ATP-driven molecular
motors such as myosin. In recent work, Lee et al. [20]
investigated a composite network comprising actin and micro-
tubules, which were each labeled with distinct fluorophores,
and acted upon by myosin. DDM was then used as a means
of disentangling the motions recorded through the individual
fluorescence channels, allowing investigation of the mecha-
nisms of cross correlation of actin and microtubule dynamics
within the entangled network. By contrast, MPT can provide
only information on the bulk network itself.

Here we follow [20] to model the dynamics of such an
active system by a stretched exponential model [20]:

f (q,�t ) = exp

[
−

(
�t

τ (q)

)γ (q)]
, (28)

where γ (q) > 1 means the system shows contractile dy-
namics, while γ (q) < 1 when the system shows stretching
dynamics. A relaxation time scaling where τ (q) = 1

vq de-
scribes a system exhibiting ballistic motion with velocity v,
whereas τ (q) = 1

Dmq2 describes a system exhibiting diffusive
motion where Dm represents the diffusion coefficient.

Given the intrinsically heterogeneous nature of such sys-
tems, multiple replicates of the same composition are often
examined, increasing the already heavy computational costs
that are typical of DDM analysis. To demonstrate this, we
reanalyze six replicates of the active actin data set from [20]
to show that despite computing the Fourier transformation of
the intensity difference at only 25 selected �t’s, which signif-
icantly reduces the computational cost, DDM-UQ extracts the
information that is as accurate as the DDM approach that was
originally employed. In detail, the full Do(q,�t ) is computed
directly from the image stacks by DDM, from which a subset
of values Do(q,�t ) are preselected to obtain the predictive
distribution by DDM-UQ.

This example specifically compares the DDM and DDM-
UQ analysis when a parametric model with four fitting
parameters are specified. When a stretched exponential model
[Eq. (28)] for f (q,�t ) with coefficients τ (q) and γ (q), along
with A(q) and B(q), is fit to either the full matrix Do(q,�t )
(DDM) or the predictive distribution D(q,�t ) (DDM-UQ)
for each q, the estimated image structure function De(q,�t )
is obtained. D(q,�t ) contains the same number of entries
as Do(q,�t ); it is reconstructed using the mean of values
sampled from the predictive distribution D(q,�t ) [300 in-
stances at every (q, �t )]. The purpose of this step is to extract
coefficients τ (q) and γ (q) relevant to the underlying physical
process. Here for DDM, we use the conventional approach
by minimizing the square error loss between the model and
the D(q,�t ), which is used as the loss function, whereas
for DDM-UQ, we minimize the weighted square loss where
the weights are calculated from the inverse variance of the
predictive samples from GPR.
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FIG. 11. Example of analysis of an actively driven system.
Experimental data extracted from a fluorescently labeled actin-
myosin-microtubule composite network system reported in [20],
processed using DDM (red symbols) or DDM-UQ (blue symbols),
and fit to a stretched exponential model to describe the system dy-
namics [Eq. (28)]. (a) Comparing DDM and DDM DQ fits to the
original Do(q,�t ) matrix, where the uncertainty is denoted by the
gray shaded area, which is very small as the uncertainty is low. The
solid line denotes full Do(q,�t ) data, while the solid dots denotes
Do(q, �t ) selected to obtain the predictive distribution. (b) Fits to
f (q, �t ) shown at several different q’s. (c) Parameter τ , which
describes the system relaxation time, plotted as a function of q.
Different symbols represent τ extracted from six different data sets.
From this, the system velocity is obtained (Fig. 12).

The difference between the estimated quantity De(q,�t )
from fitting stretched exponential model and observed quan-

TABLE III. N-RMSE of active actin networks.

<70% Plateau Full data

Sample ID DDM DDM-UQ DDM DDM-UQ

1 0.0576 0.0417 0.0700 0.0507
2 0.0641 0.0689 0.0882 0.0948
3 0.0406 0.0265 0.0573 0.0373
4 0.0759 0.0699 0.0835 0.0769
5 0.0462 0.0285 0.0576 0.0355
6 0.0588 0.0317 0.0724 0.0390

tity Do(q,�t ) is evaluated by the N-RMSE:

N-RMSE

=
√

1
nqn�t

∑
�t∈�T

∑
q∈Q[〈D̃o(q,�t )〉 − 〈D̃e(q,�t )〉]2

σ̃D
,

(29)

where D̃o(q, t ) and D̃e(q,�t ) are the logarithms of the ob-
served and estimated image structure function by different
approaches, and σ̃D is the logarithm of sample standard de-
viation; �T and Q are the sets of �t and q available for
comparison, respectively.

Figure 11(a) shows reconstructed D(q,�t ) (dashed lines)
from fitting the full observation (solid line) using DDM as
well as a reconstructed D(q,�t ) obtained by resampling with
only a fraction of design points (black dots) using DDM-UQ.
There is general agreement between the two approaches at
all q values, with some differences observed at short times
because DDM-UQ weighs more heavily data at small �t , as
the predictive variance is small at these regions. Fitting via a
weighted least squares minimization approach is more robust
for estimating the noise term B. One B(q) is estimated to be
very close to 0 (2.13 × 10−8) in DDM, whereas it is estimated
to be around 3.3 × 104 in DDM-UQ. The significant underes-
timation of the noise by DDM explains the large deviation of
the fit at this wave vector shown in Fig. 11(a). This example
illustrates the importance of estimating the noise parameters
accurately, and that fitting a parametric model of f (q,�t )
without addressing the uncertainty by the least squared esti-
mator can be unreliable in estimating the noise parameter.

In Fig. 11(b) we show the same fits of the stretched ex-
ponential model used to reconstruct f (q,�t ) at different q’s
using the full observed image structure function Do(q,�t )
obtained by the DDM (red lines) and DDM-UQ analysis (blue
lines). Note that DDM-UQ only uses observations Do(q,�t )
at selected q and �t , but it performs equally well even for
unobserved q values for which there is no observation for any
�t [see Fig. 11(a), bottom curve].

The differences between the estimated and observed values
of Do(q,�t ) for DDM and DDM-UQ are quantified by the
N-RMSE in Eq. (29) as shown in Table III. Since D(q,�t )
at large �t contains fewer independent samples and shows
large fluctuations, it is informative to compare the accuracy
of the fit only up to a threshold value, chosen here to be 70%
of the �t values before the plateau is reached. In all cases,
DDM-UQ outperforms DDM in more closely approximating
the Do(q,�t ) when comparing the truncated data set, and
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FIG. 12. Velocity estimates and confidence intervals extracted
from fitting the stretched exponential model to either the full obser-
vations (DDM) or to reconstructed D(q, �t ) from selected design
points (DDM-UQ). The error bars denote 95% confidence intervals.

in almost all cases the fit of DDM-UQ, which has much
lower computational cost, is comparable to that of DDM, as
shown in Table III. Thus, DDM-UQ significantly accelerates
the analysis without any observable sacrifice in accuracy with
respect to postprocessing of the data such as model fitting.

As described in Eq. (28), f (q,�t ) contains the fit parame-
ters γ (q) and τ (q). Following [20], we fit the data to a linear
model τ (q) = 1

vq and extract the characteristic velocities of
the active actin mixture [Fig. 11(c)]. The maximum likeli-
hood estimator (MLE) and the confidence interval (CI) for the
velocities from different replicates are tabulated in Fig. 12.
Importantly, DDM-UQ with its limited observations largely
recovers similar characteristic velocities and confidence in-
tervals as those obtained using the full matrix, paving the
way for high-throughput analysis of the dynamic properties
of complex biomaterial systems.

V. CONCLUDING REMARKS

DDM can be applied to a structurally evolving image
stack to obtain the image structure function and intermedi-
ate scattering function. It provides an aggregated measure of
dynamics, potentially offering higher accuracy in extracting
physical quantities than using real-space data alone. While
the theoretical framework of DDM is well established, to our
knowledge, this work represents an exploration into propagat-
ing the uncertainty associated with measurement noise, and
analyzing the effects of noise in parameter estimation through
mathematical and numerical analysis.

Based on error propagation in estimating the image struc-
ture function, we derived the mean and variance of the noise
term B, leading to more accurate estimation of the ISF and
MSD at small �t .

Moreover, we showed that only a small subset of Do(q,�t )
(around 0.5%–5%) at selected q and �t need to be computed,
and when they are used in a GPR model, it is possible to obtain
the predictive median and samples in the image structure
function at unobserved inputs and subsequent quantities of

interest could be robustly predicted. Both simulations and ex-
periments were presented to demonstrate that our method has
virtually no loss of information, while reducing the compu-
tational time by 25–120 times. The combined improvements
offered by the error propagation and predictive median from
GPR results in more robust estimation of the intermediate
scattering function and mean squared displacements. Through
the comparisons made here between DDM-UQ, other formu-
lations of DDM, and MPT, we highlight the need for accurate
noise estimation in the analysis and interpretation of DDM
experiments.

We anticipate that these results will enable many new ap-
plications of DDM to complex biomaterial and soft material
systems [54,55]. With the potential to carry out real-time anal-
ysis via downsampling, the proposed method can be extended
to map out an entire phase space of material composition
or physicochemical conditions in a high-throughput manner.
This increased performance also places new demands on
the general applicability of the algorithm, for instance, to
provide meaningful analysis of stiffer materials that do not
fully decorrelate as quickly as a more fluidlike samples, as
well as heterogeneous samples, through analysis of subpop-
ulations that demonstrate distinct features. Future extensions
of DDM-UQ analysis should include reducing the selection
bias by properly weighting the ISF by the inverse variance
of the noise, which should provide a more reliable and fully
automated estimation of physical quantities at larger lag times.
Another potential direction is to derive a more robust estima-
tor of the imaging noise σ 2

0 from the image stack that can
contain less bias to some challenging experimental scenarios
(summarized in Table I). These directions will be pursued in
future work.
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APPENDIX A

Proof of Eqs. (6) and (7). The observed difference of the
intensity at two time points (t + �t ) and t can be described as

�Io(x, t,�t ) = �I (x, t,�t ) + �ε(x, t,�t ),
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where �I (x, t,�t ) = I (x, t + �t ) − I (x, t ) and �ε(x, t,
�t ) = ε(x, t + �t ) − ε(x, t ). We denote the minimum time
interval by �tmin = 1 and �t = l�tmin = l , where l is a posi-
tive integer smaller than T .

We apply 2D discrete Fourier transformations on
�Io(x, t,�t ) and obtain

|�Îo(q, t,�t )|2

= 1

N2

∣∣∣∣∣
N−1∑
x1=0

N−1∑
x2=0

�Io(x, t,�t ) exp

(
− i2πxT q

N

)∣∣∣∣∣
2

= 1

N2

{
N−1∑
x1=0

N−1∑
x2=0

�Io(x, t,�t ) cos

(
2πxT q

N

)}2

+ 1

N2

{
N−1∑
x1=0

N−1∑
x2=0

�Io(x, t,�t ) sin

(
2πxT q

N

)}2

= �Î2
o,1(q, t,�t ) + �Î2

o,2(q, t,�t ),

where Îo,1(q, t,�t ) and Îo,2(q, t,�t ) are independent from
each other by the orthogonality of the Fourier basis with

E[Îo,1(q, t,�t )] = 1

N

N−1∑
x1=0

N−1∑
x2=0

�I (x, t,�t ) cos

(
2πxT q

N

)
,

E[Îo,2(q, t,�t )] = 1

N

N−1∑
x1=0

N−1∑
x2=0

�I (x, t,�t ) sin

(
2πxT q

N

)
,

V [Îo,1(q, t,�t )] = V [Îo,2(q, t,�t )] = σ 2
0 .

Furthermore

|�Îo(q, t,�t )|2 = |�Î (q, t,�t )|2 + 2�Î (q, t,�t )

× �ε̂(q, t,�t ) + |�ε̂(q, t,�t )|2,
where

|�Î (q, t,�t )|2 = �Î2
1 + �Î2

2 , (A1)

�Î (q, t,�t )�ε̂(q, t,�t ) = �Î1�ε1 + �Î2�ε2, (A2)

|�ε̂(q, t,�t )|2 = �ε̂2
1 + �ε̂2

2 (A3)

with

�Î1 = 1

N

N−1∑
x1=0

N−1∑
x2=0

�I (x, t,�t ) cos

(
2πxT q

N

)
,

�ε̂1 = 1

N

N−1∑
x1=0

N−1∑
x2=0

�ε(x, t,�t ) cos

(
2πxT q

N

)
,

�Î2 = 1

N

N−1∑
x1=0

N−1∑
x2=0

�I (x, t,�t ) sin

(
2πxT q

N

)
,

�ε̂2 = 1

N

N−1∑
x1=0

N−1∑
x2=0

�ε(x, t,�t ) sin

(
2πxT q

N

)
.

The expected value of E[|Îo(q, t,�t )|2] can be verified using
properties of the Fourier basis. �

Proof of Eqs. (8)–(10). The observations of image struc-
ture function can be obtained through computing ensemble
average of the observed intensity

Do(q,�t ) = 〈|�Îo(q, t,�t )|2〉
= 〈|�Î (q, t,�t )|2〉 + 〈|ε̂(q, t,�t )|2〉

+ 2〈�Î (q, t,�t )�ε̂(q, t,�t )〉
with expected value and variance:

E[Do(q,�t )]

= E[〈|�Î (q, t,�t )|2〉] + E[〈|ε̂(q, t,�t )|2〉]
+ 2E[〈�Î (q, t,�t )�ε̂(q, t,�t )〉]

= 〈|�Î (q, t,�t )|2〉 + 1

n�t nq

∑
t∈S�t

∑
(q1,q2 )∈Sq

E
[
�ε̂2

1 + �ε̂2
2

]

+ 2

n�t nq

∑
t∈S�t

∑
(q1,q2 )∈Sq

�Î (q, t,�t )E[�ε̂(q, t,�t )]

= D(q,�t ) + V (�ε̂1) + V (�ε̂2)

= D(q,�t ) + 2σ 2
0 ,

where 〈·〉 denotes averaging over available time points for
each �t , and (q1, q2) ∈ Sq with Sq = {(q1, q2) : q2

1 + q2
2 =

q2}, nq = #Sq, and n�t = T − �t :

V [Do(q,�t )] = V [〈|�Îo(q, t,�t )|2〉]

= V

[
1

nqn�t

∑
(q1,q2 )∈Sq

∑
t∈S�t

|�Îo(q, t,�t )|2
]
.

The variance of the average of intensity over available time
points for each �t and tmax = T is

V

[
1

n�t

∑
t∈S�t

|�Îo(q, t,�t )|2
]

= V

[
1

n�t

∑
t∈S�t

[
�Î2

o,1(q, t,�t ) + �Î2
o,2(q, t,�t )

]]

= 1

n2
�t

∑
t∈S�t

V
[
�Î2

o,1(q, t,�t )
]

+ 1

n2
�t

∑
t∈S�t

V
[
�Î2

o,2(q, t,�t )
]

+ 1

n2
�t

∑
t1 
=t2

Cov
(
�Î2

o,1(q, t1,�t ),�Î2
o,1(q, t2,�t )

)

+ 1

n2
�t

∑
t1 
=t2

Cov
(
�Î2

o,2(q, t1,�t ),�Î2
o,2(q, t2,�t )

)
,

where the first two terms can be computed as

1

n2
�t

∑
t∈S�t

(
V

[
�Î2

o,1(q, t,�t )
] + V

[
�Î2

o,2(q, t,�t )
])

= 1

n2
�t

n�t∑
t=1

(V [(�Î1 + �ε̂1)2] + V [(�Î2 + �ε̂2)2])
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= 1

n2
�t

n�t∑
t=1

(
V

[
2�Î1�ε̂1 + �ε̂2

1

] + V
[
2�Î2�ε̂1 + �ε̂2

2

])

= 1

n2
�t

n�t∑
t=1

(
4σ 2

0

(
�Î2

1 + �Î2
2

) + V
(
�ε̂2

1

) + V
(
�ε̂2

2

))

= 1

n2
�t

n�t∑
t=1

(
4σ 2

0 |�Î (q, t,�t )|2 + 4σ 4
0

)
,

and for �t = 1, 2, . . . , �(T − 1)/2�, the last two terms
follow:∑

t1 
=t2

Cov
(
�Î2

o,1(q, t1,�t ),�Î2
o,1(q, t2,�t )

)

= 2
T −2�t∑

t=1

Cov
(
�Î2

o,1(q, t,�t ),�Î2
o,1(q, t + �t,�t )

)

= 2
T −2�t∑

t=1

Cov([�Î1(q, t,�t ) + ε̂1,t+�t − ε̂1,t ]
2

× [�Î1(q, t + �t,�t ) + ε̂1,t+2�t − ε̂1,t+�t ]
2)

= 2
T −2�t∑

t=1

Cov
(
E[[�Î1(q, t,�t ) + ε̂1,t+�t − ε̂1,t,�t ]

2],

× E[[�Î1(q, t+�t,�t ) + ε̂1,t+2�t−ε̂1,t+�t ]
2]|ε̂1,t+�t )

+ 2
T −2�t∑

t=1

E[Cov((�Î1(q, t,�t ) + ε̂1,t+�t − ε̂1,t )
2,

[�Î1(q, t + �t,�t ) + ε̂1,t+2�t − ε̂1,t+�t )2|ε̂1,t+�t )]

= 2
T −2�t∑

t=1

(
Cov

(
ε̂2

1,t+�t , ε̂
2
1,t+�t

) − 4�Î1(q, t,�t )

× �Î1(q, t + �t,�t )Cov(ε̂1,t+�t , ε̂1,t+�t )
)

= 2
T −2�t∑

t=1

(
σ 4

0

2
− 2σ 2

0 �Î1(q, t,�t )�Î1(q, t + �t,�t )

)
,

with

ε̂1,t = 1

N

N−1∑
x1=0

N−1∑
x2=0

ε(x, t ) cos

(
2πxT q

N

)
,

ε̂2,t = 1

N

N−1∑
x1=0

N−1∑
x2=0

ε(x, t ) sin

(
2πxT q

N

)
.

Similarly, for �t = 1, 2, . . . , �(T − 1)/2� and tmax = T ,

∑
t1 
=t2

Cov
(
�Î2

o,2(q, t1,�t ),�Î2
o,2(q, t2,�t )

)

= 2
T −2�t∑

t=1

(
σ 4

0

2
− 2σ 2

0 �Î2(q, t,�t )�Î2(q, t + �t,�t )

)
.

For general �t > �(T − 1)/2�,∑
t1 
=t2

Cov
(
�Î2

o,1(q, t1,�t ),�Î2
o,1(q, t2,�t )

)

=
∑
t1 
=t2

Cov
(
�Î2

o,2(q, t1,�t ),�Î2
o,2(q, t2,�t )

)
= 0.

Combining the variance and covariance expressions devel-
oped above, the variance of the average of intensity is

V

[
1

n�t

∑
t∈S�t

|�Îo(q, t,�t )|2
]

= 2σ 2
0

n�t

[
2σ 2

0 + 2
∑n�t

t=1 |�Î (q, t,�t )|2
n�t

+ max(0, T − 2�t )

(
σ 2

0

n�t
− 2Sq1,q2,�t

n�t (T − 2�t )

)]

with

Sq1,q2,�t =
T −2�t∑

t=1

(�Î1(q, t,�t )�Î1(q, t + �t,�t )

+ �Î2(q, t,�t )�Î2(q, t + �t,�t )). (A4)

Finally, we have

V [Do(q,�t )]

= V

[
1

nq

∑
(q1,q2 )∈Sq

1

n�t

∑
t∈S�t

|�Îo(q, t,�t )|2
]

= 1

n2
q

∑
(q1,q2 )∈Sq

2σ 2
0

n�t

[
2σ 2

0 + 2
∑n�t

t=1 |�Î (q, t,�t )|2
n�t

+ max(0, T − 2�t )

(
σ 2

0

n�t
− 2Sq1,q2,�t

n�t (T − 2�t )

)]

= 2σ 2
0

nqn�t

[
2σ 2

0 + 2D(q,�t )

+ max(0, T − 2�t )

(
σ 2

0

n�t
− 2Sq,�t

(T − 2�t )n�t nq

)]

with

Sq,�t =
∑

(q1,q2 ):q2
1+q2

2=q2

Sq1,q2,�t . (A5)

�

APPENDIX B: PARAMETER ESTIMATION IN GAUSSIAN
PROCESS REGRESSION

Let D̃o = (D̃o(θ1), . . . , D̃o(θn))T denote the n observa-
tions. The parameters in the Gaussian process contain
mean parameter m, variance parameter σ 2, and inverse
range parameters β = (β1, β2) in the kernel function. Con-
ditional on β and the regularization parameter λ, the
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maximum likelihood estimator of the mean parameter
is mest = (1T

n R̃−11T
n )−11T

n R̃−1D̃o, with R̃ = R + nλIn and
σ 2

est = S2/n with S2 = (D̃o − 1nm̂)T R̃−1(D̃o − 1nm̂). Plug-
ging (mest, σ

2
est ), the profile likelihood of parameters (β, λ)

in the covariance function follows L(β, λ) ∝ |K|− 1
2 (S2)−

n
2 .

Since no closed formed expression of the maximum likeli-
hood estimator for the range and regularization parameters is
available, one often numerically maximizes the profile likeli-
hood to obtain the estimates of (β, λ). When the sample size is
small, the MLE can be unstable and marginal posterior mode
estimation with robust parametrization is often used [56].
We implemented the parameter estimation and predictions
of GPR by the “ROBUSTGASP” package available in R and
MATLAB [47].

APPENDIX C: DETECTION OF ESTIMATOR BIAS

The overestimation by a series of previously used methods
can be detected by plotting Do(q,�t ) over all q values at one
�t (see Fig. 6). If at high q, Do(q,�t )’s rate of change slows,
then this implies that A(q)[1 − f (q,�t )] is close to zero, and
the bias in estimating the noise term by the second to the
fourth estimator in Table I is negligible. However, if Do(q,�t )
decreases (even slightly) as the value q increases, then the bias
of the estimator is non-negligible.

APPENDIX D: DERIVATION OF MEAN SQUARED
DISPLACEMENT

Here we derive the MSD for each of the different scenar-
ios explored in simulation. First, the simulated particles in
Secs. III B and III C all undergo Brownian motion. Without
loss of generality, we may assume the variance of �xi, j (t )
is σ 2

s . For any x(t ), x(t + �t ) ∈ R2, the MSD can be simply

computed by

E[[xi j (t + �t ) − xi j (t )]2]

= V [xi j (t + �t ) − xi j (t )] + {E[xi j (t + �t ) − x(t )]}2

= V

[
�t−1∑
k=0

�xi j (t + k)

]
+ 0 = σ 2

s �t,

for any j = 1, . . . , p and i = 1, 2. Since particles move
isotropically in a 2D space, the MSD is 2σ 2

s �t .
In simulated scenarios presented in Sec. III D, similarly we

can split the MSD into two terms. Noting E[xi j (t + �t ) −
xi j (t )] = μD�t and the process is isotropic, the MSD is
2σ 2

s �t + 2μ2
D�t2,

In simulated scenarios presented in Sec. III E, note that
when t = t1, xi j (t1) ∼ N (xi j (t0), σ 2

D). For any t > t1, it is not
hard to show

E[x1 j (t )] = (t − 1)μDcos(θ j ) + x1 j (t0),

E[x2 j (t )] = (t − 1)μDsin(θ j ) + x2 j (t0),

and consequently

E

[
2∑

i=1

(xi j (t + �t ) − xi j (t ))2

]
= μ2

D�t2. (D1)

It is easy to verify V [xi j (t )] = σ 2
s . Thus, we have

V [xi j (t + �t ) − xi j (t )]

= V [xi j (t + �t )] + V [xi j (t )] − 2 Cov(xi j (t + �t ), xi j (t ))

= 2σ 2
s − 2Cov(ρ�t xi j (t ), xi j (t ))

= 2σ 2
s − 2σ 2

s ρ�t . (D2)

Since the process is on a two-dimensional space, combining
(D1) and (D2), the MSD is 4σ 2

s − 4σ 2
s ρ�t + μ2

D�t2.
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