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Monte Carlo simulations and mean-field modeling of electric double layers
at weakly and moderately charged spherical macroions
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Monte Carlo simulations are employed to determine the differential capacitance of an electric double layer
formed by small size-symmetric anions and cations in the vicinity of weakly to moderately charged macroions.
The influence of interfacial curvature is deduced by investigating spherical macroions, ranging from flat to
moderately curved. We also calculate the differential capacitance using a previously developed mean-field model
where, in addition to electrostatic interactions, the excluded volumes of the ions are taken into account using
either the lattice-gas or the Carnahan-Starling equation of state. For both equations of state, we compare the
mean-field model for arbitrary curvature with a recently developed second-order curvature expansion. Our Monte
Carlo simulations predict an increase in the differential capacitance with growing macroion curvature if the
surface charge density is small, whereas for moderately charged macroions the differential capacitance passes
through a local minimum. Both mean-field models tend to somewhat overestimate the differential capacitance
as compared with Monte Carlo simulations. At the same time, they do reproduce the curvature dependence of
the differential capacitance, especially for small surface charge density. Our study suggests that the quality of
mean-field modeling does not worsen when weakly or moderately charged macroions exhibit spherical curvature.
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I. INTRODUCTION

A charged macroion immersed in a salt-containing aqueous
solution induces the formation of an electric double layer
(EDL). EDLs continue to attract interest not only because
of their omnipresence in all living cells, but also due to
emerging technological applications such as in water desali-
nation [1,2], oil extraction from porous rocks [3], and energy
storage devices [4–13]. The ability of EDLs to store energy,
for instance, has received growing attention due to the im-
provement in the design of supercapacitors which, besides the
greater life cycle, offer an environment-friendly alternative
to conventional batteries. More precisely, theoretical [14–19]
and experimental [7,9,20–22] studies suggest that the energy
density of supercapacitors can be increased by using nanos-
tructured microporous electrodes based on carbide-derived
materials [23–28]. Generally, the ability of an EDL to store
energy is manifested by the differential capacitance Cdiff ,
which expresses the relationship between electrostatic po-
tential and charge density on the surface of an electrified
interface. Being an experimentally accessible property that
reflects the microscopic structure of the EDL [5,16,29,30],
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the differential capacitance Cdiff serves as a meaningful link
between experimental, theoretical, and simulation work for all
EDLs.

Most previous theoretical models for Cdiff have focused on
planar macroions because this geometry offers mathematical
simplicity. Recent modeling efforts have included the depen-
dence of EDL properties on macroion geometry, including
weakly curved [31], microporous [15,32–34], and spheri-
cal or cylindrical electrodes [35–39]. Analytic approaches
have also uncovered effective charge densities that dictate
the interactions between curved macroions [40,41]. Some of
these more recent geometry-focused investigations are based
either on mean-field approaches [32,34,42–44] or on more
advanced density functional theory [16,17,39,45–48] and de-
tailed Molecular Dynamics simulations [49–51]. Mean-field
approaches are conceptually simple but rely on significant
approximations; yet, on a qualitative level, they are often
found to describe the behavior of Cdiff correctly. For instance,
Kant and Singh [32] have developed a general analytical
theory for the capacitance of an EDL for a wide range of
electrode morphology and topology. They demonstrated that
the presence of geometrical fluctuations in porous systems
entails an enhanced dependence of the differential capacitance
on the average pore sizes. Effects of local curvature on the
ion distribution near an electrode have been studied by Yang
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[37] by taking into account the interface energy between elec-
trolyte solution and spherical cavities or cylindrical pores. In
the regime of small electrostatic potentials, the author reports
that the integral capacitance per unit area is dependent on the
radius of the cavity (or pore) and independent of the interface
energy; for large electrostatic potentials, however, the integral
capacitance is dependent only on the interface energy.

Recently, a formalism to compute properties of the EDL
as a function of small macroion curvature was proposed for
EDL models that apply mean-field electrostatics to nonideal
equations of state for the ions [52]. The formalism gener-
alizes results derived first by Lekkerkerker [53,54] for the
classical Poisson-Boltzmann model, where the underlying
equation of state is that of an ideal gas. Examples of frequently
used nonideal equations of state are the lattice-gas and the
Carnahan-Starling equations of state. These equations of state
account in an approximate manner for packing effects due
to the nonvanishing size of the mobile ions, which becomes
important at moderate and large ion concentrations. The same
formalism has also been used to calculate the dependence of
the differential capacitance Cdiff on macroion curvature [31],
again valid for a continuum description of the ions and an
underlying nonideal equation of state.

The question arises as to how the predicted curvature
dependence of these continuum models compares with
molecular simulations that account for the discrete nature and
finite size of the ions. The present study represents an attempt
to address this question. To this end, we have carried out
detailed Monte Carlo simulations for weakly and moderately
charged spherical macroions of various radii immersed in an
aqueous solution and compared the predicted Cdiff with two
mean-field models that both account approximately for the
nonvanishing size of the mobile ions: The first is based on
the lattice-gas (LG) equation of state, and the second is based
on the Carnahan-Starling (CS) equation of state. Throughout
this paper we refer to the two different mean-field approaches
as the LG model and the CS model. In the limit of small
macroion charge densities, the two mean-field models coin-
cide with the classical Poisson-Boltzmann model. In addition,
we show that the quadratic curvature expansion represents
an excellent approximation of the full mean-field models (for
both the LG model and the CS model) for all macroion sizes
and charge densities we have investigated. Our Monte Carlo
simulations predict that Cdiff becomes larger with increasing
macroion curvature for small macroion surface charge density
and passes through a local minimum with increasing macroion
curvature for moderate macroion surface charge density. Most
features of simulated behaviors are reproduced qualitatively
by our two mean-field models, the LG and CS models. The
agreement is best for small macroion surface charge density,
where the dependence (but not the absolute value) of Cdiff

on macroion curvature is reproduced almost quantitatively.
Overall, our study provides evidence that the quality of mean-
field models does not deteriorate when weakly and moderately
charged macroions are curved.

II. THEORY

We consider a spherical macroion (or, equivalently, spher-
ical electrode) immersed in an aqueous solution at fixed

FIG. 1. Schematic illustration of a spherical macroion of radius
Rm immersed in a symmetric 1:1 electrolyte: an aqueous solution
containing monovalent cations and anions of bulk concentration n0

each. The macroion carries a uniform surface charge density σ .

temperature T that contains monovalent cations and anions
of bulk concentration n0 and ion volume ν (the same volume
for both ion types). The macroion carries a uniform surface
charge density σ and has a corresponding electrostatic surface
potential �0. Its radius Rm is assumed to be much larger than
the size of the ions. In both the mean-field models and the
Monte Carlo simulations discussed in this paper, the aqueous
solution is modeled as a background of uniform dielectric con-
stant εw. This is commonly referred to as the primitive model.
Figure 1 shows a schematic illustration of the macroion with
its adjacent 1:1 electrolyte.

At given Rm, n0, T , ν, and εw there will be a fixed rela-
tionship between the surface charge density σ and the surface
potential �0. The slope of the relationship σ = σ (�0) defines
the differential capacitance

Cdiff = dσ

d�0
, (1)

which is an experimentally accessible quantity measured
in farads per square meter (F/m2). The manner in which
changing the radius Rm of the macroion (or equivalently, its
curvature c = 1/Rm) affects Cdiff = Cdiff (c) is the subject of
this paper. We shall investigate this question by comparing
predictions of different mean-field models with results from
Monte Carlo simulations.

Instead of using n0, ν, and εw, it is convenient to intro-
duce three characteristic lengths. With the notation e for the
elementary charge, ε0 for the vacuum permittivity, and kB for
Boltzmann’s constant, the first length is the Bjerrum length,
lB = e2/(4πε0εwkBT ), the second length is the Debye length,
lD = (8π lBn0)−1/2, and the third length is l = lD

√
2n0ν. Note

that only the third length accounts for the nonvanishing ion
size. We also define two scaled (dimensionless) surface charge
densities, s = 4π lBlσ/e and p = slD/(2l ) = 2π lBlDσ/e. The
latter is somewhat more convenient to use in models where
the ion size is negligible, including the classical Poisson-
Boltzmann approach.
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A. Mean-field modeling

Our mean-field approach starts from a class of models of
the EDL that is characterized by a self-consistency relation
[52]

l2∇2� = f (�) f ′(�), (2)

for the dimensionless electrostatic potential � = e�/kBT ,
where � is the electrostatic potential, measured in volts, and
∇2 denotes the Laplacian. The yet unspecified function

f (�) =
√

2
∫ �

0
d�̄ tanh �̄ × h−1(2φ0eg′(2φ0 ) cosh �̄ ) (3)

and its first derivative f ′ = f ′(�) are determined by the un-
derlying equation of state,

P

kBT
= 2n0

[
1 − g(φ)

φ
+ g′(φ)

]
, (4)

of the bulk electrolyte, which describes the pressure P ex-
erted by the anions and cations, both present in the bulk with
concentration n0 and volume fraction φ0 = νn0 (implying a
total volume fraction φ = 2φ0 of the anions and cations). The
function g(φ) characterizes the degree of nonideality of the
electrolyte. Its first derivative g′(φ) enters Eq. (3), and so does
the inverse h−1 of the function h(φ) = φeg′(φ), defined such
that h−1[h(φ)] = φ.

For example, when modeling the electrolyte as an ideal gas,
P/kBT = 2n0, implying g(φ) = 0 and thus h(φ) = φ. From
Eq. (3) we find f (�) = 2(l/lD) sinh(�/2) and its deriva-
tive f ′(�) = (l/lD) cosh(�/2), and finally from Eq. (2) we
find the self-consistency relation l2

D∇2� = sinh �. This in-
deed is the classical Poisson-Boltzmann equation, valid for
pointlike ions.

In this paper we focus on two frequently used nonideal
equations of state. The first—the LG model—is based on a
lattice gas, where cubic cells (each of linear extension 2R)
either are vacant or contain a single (spherical) ion of volume
ν = 4πR3/3. The corresponding equation of state for the LG
model is

P

kBT
= −α

ν
ln (α − φ). (5)

Here, the factor α = π/6 accounts for the volume fraction
(4/3)πR3/(2R)3 = π/6 that a spherical ion of radius R oc-
cupies in a cubic cell of size 2R. From Eq. (5) we deduce the
nonideality contribution

g(φ) = φ(1 − ln α) + (α − φ) ln

(
1 − φ

α

)
(6)

in Eq. (4). The function h(φ) = φeg′(φ) = φ/(α − φ) can be
inverted, h−1(h) = αh/(1 + h). From Eq. (3) we then obtain

f (�) =
√

2α ln

[
1 + 2φ0

α
(cosh � − 1)

]
(7)

and thus the self-consistency relation

l2∇2� = 2φ0 sinh �

1 + 2φ0

α
(cosh � − 1)

, (8)

which has been analyzed extensively in the past, especially for
the planar macroion geometry [30,55,56].

The second model that we consider in this paper—the CS
model—is based on the Carnahan-Starling equation of state
[57–59],

P

kBT
= 2n0

1 + φ + φ2 − φ3

(1 − φ)3
, (9)

which predicts the pressure for a system of spherical parti-
cles more accurately than the lattice-gas equation of state in
Eq. (5). Comparing Eqs. (4) and (9) yields

g(φ) = φ2 4 − 3φ

(1 − φ)2
. (10)

Here, in contrast to Eq. (6), the ensuing function h(φ) =
φeg′(φ) = φ exp[(8φ − 9φ2 + 3φ3)/(1 − φ)3] can only be in-
verted numerically, preventing us from obtaining an explicit
expression of f (�) for the CS model. Nevertheless, we obtain
access to the right-hand side of Eq. (2) by computing f (�)
and its derivative f ′(�) numerically.

For both models, the LG model and the CS model, we have
numerically solved the self-consistency relation

l2

[
d2�

dr2
+ 2

r

d�

dr

]
= f (�) f ′(�) (11)

for our (spherically symmetric) macroion of radius Rm,
subject to the boundary conditions (d�/dr)Rm = −s/l and
(d�/dr)∞ = 0. From the relationship between the dimen-
sionless surface potential �0 = e�0/kBT and the scaled
surface charge density s = 4π lBlσ/e we obtain the differen-
tial capacitance

Cdiff = εwε0

l

ds

d�0
(12)

as a function of the macroion radius Rm and surface charge
density σ .

B. Second-order curvature expansion

As previously discussed [31], we can integrate Eq. (2) for a
spherical macroion of sufficiently small curvature lc � 1 and
fixed (scaled) surface charge density s. More specifically, we
express the dimensionless surface potential

�0 = f −1(s) − 2 lc

[
I

f f ′

]
ψ0= f −1(s)

+(lc)22

[
1

f f ′
d

dψ0

(
I2

f f ′

)

− 1

f f ′

∫ ψ0

0
dψ

I (ψ )

f (ψ )

]
ψ0= f −1(s)

(13)

explicitly as a function of s up to quadratic order in the
(scaled) curvature lc. Here, f = f (ψ0), f ′ = f ′(ψ0), I =
I (ψ0) = ∫ ψ0

0 dψ f (ψ ), and f −1 is the inverse function of f ,
defined such that f [ f −1(s)] = s. Note that the dependence of
�0 on s in Eq. (13) emerges upon calculating both the linear
and quadratic term in lc at ψ0 = f −1(s). That value is iden-
tical to the surface potential of a planar macroion. Knowing
the surface potential �0 = �0(s) of the spherical macroion in
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Eq. (13) enables us to calculate the differential capacitance

Cdiff = εwε0

l

1
d�0
ds

= C(0)
diff

[
1 + 2τ lc + 2β(lc)2

]
(14)

up to quadratic order in lc, where C(0)
diff is the differential

capacitance for a planar macroion (c = 0 or, equivalently,
Rm → ∞) and where the two constants τ and β describe
the first- and second-order dependence of Cdiff on curvature,
respectively. Comparing Eqs. (13) and (14) yields for the dif-
ferential capacitance of planar geometry C(0)

diff = εwε0 f ′(�0)/l
with �0 = f −1(s). Hence we arrive at the explicit expression

C(0)
diff = εwε0

l
f ′[ f −1(s)]. (15)

In addition, the two constants τ and β in Eq. (14) are given by

τ =
[

d

dψ0

(
I

f f ′

)]
ψ0= f −1(s)

,

β =
{

2

[
d

dψ0

(
I

f f ′

)]2

− d

dψ0

[
1

f f ′
d

dψ0

(
I2

f f ′

)]

+ d

dψ0

[
1

f f ′

∫ ψ0

0
d�

I (�)

f (�)

]}
ψ0= f −1(s)

. (16)

Note that, here again as in Eq. (13), the dependence on s enters
by calculating the final expressions at position ψ0 = f −1(s).
Equations (15) and (16) fully characterize the differential
capacitance and its dependence on spherical curvature up to
second order, subject only to specifying the function f (�) in
Eq. (2).

We illustrate the formalism of calculating Cdiff through
a second-order curvature expansion using the classi-
cal Poisson-Boltzmann model. As stated above, g(φ) =
0 entails f (�) = 2(l/lD) sinh(�/2) and its derivative
f ′(�) = (l/lD) cosh(�/2). To express the surface poten-
tial �0 of a spherical macroion, we also calculate I (�) =
8(l/lD) sinh2(�/4). With that, Eq. (13) reads

�0 = 2 ln(p + q) − lDc
4(q − 1)

pq

+ (lDc)2

[
4(q − 1)2(2q + 1)

p3q3
− 4 ln q+1

2

qp

]
, (17)

where we recalled p = slD/(2l ) = 2π lBlDσ/e and introduced
the definition q =

√
p2 + 1. Equation (17) was first derived by

Lekkerkerker [53]. Note that, unlike in the LG and CS models,
the classical Poisson-Boltzmann model does not account for
ion size, implying that the length l becomes meaningless.
The relevant length scale in the classical Poisson-Boltzmann
model is the Debye length lD. Indeed, the new scaled curvature
lDc instead of lc appears naturally in Eq. (17). From Eq. (15)
we calculate the differential capacitance at planar geometry

C(0)
diff = εwε0

lD
q = εwε0

lD

√
1 +

(
2π lBlD

σ

e

)2
, (18)

and from Eqs. (16) we find for the two curvature constants

τ = lD
l

[
1

q2
− 1

1 + q

]
,

β = l2
D

l2

[
3q2 − 2

q3(1 + q)
− 1

q4(1 + q)2
− 2q2 − 1

q2(q2 − 1)
ln

1 + q

2

]
,

(19)

where we recall (lD/l )2 = 1/(2n0ν). We point out again that
because the classical Poisson-Boltzmann theory applies to
pointlike ions, the length l (which is the only length scale
that reflects the ion volume) must disappear when inserting
Eqs. (18) and (19) into Eq. (14). This is indeed the case.
Figure 2 shows examples of the relationship between scaled
surface charge density p = slD/(2l ) = 2π lBlDσ/e and surface
potential �0 for different scaled curvatures lDc according to
Eq. (17) [Fig. 2(a)] and the corresponding scaled differential
capacitance Cdiff lD/(εwε0) = 2(d�0/d p)−1 [Fig. 2(b)]. Pos-
itive spherical curvature (as illustrated in Fig. 1) somewhat
flattens the curve of the differential capacitance (blue and
gray curves in Fig. 2) compared with planar geometry (green
curve in Fig. 2), where it is given by Eq. (18). Negative
spherical curvature (red and black curves in Fig. 2) deepen
the V shape of the differential capacitance curves. The depen-
dence of the differential capacitance on spherical curvature
for an uncharged surface (at p = 0) is simply given by Cdiff =
(εwε0)(1 + lDc)/lD, implying that positive and negative val-
ues of lDc lead to the same positive and negative change,
respectively, in Cdiff .

Usage of the classical Poisson-Boltzmann model is only
appropriate when the local ion concentration is sufficiently
small everywhere so that steric ion-ion interactions can be
neglected. We demonstrate in the Results section that for
our parameter choices (especially n0 and σ ) the nonvanish-
ing ion volume ν starts to affect the differential capacitance.
This, in fact, defines the regime of moderate surface charge
density as opposed to a highly charged macroion, where
ion stacking leads to multiple densely packed counterion
layers. Hence, rather than considering the classical Poisson-
Boltzmann model, we compare our Monte Carlo simulation
results with mean-field predictions based on the LG and CS
models.

C. Monte Carlo simulations

We have also performed Metropolis Monte Carlo simula-
tions in the canonical ensemble for a 1:1 electrolyte solution
of bulk concentration n0 confined in a neutral impenetra-
ble spherical simulation cell of radius 30 nm. A spherical
macroion of radius Rm and uniform surface charge density
σ is kept fixed at the center of the simulation cell. The
overall electroneutrality of the system is ensured by the addi-
tion of neutralizing counterions. Analogously to our previous
studies [60–62], we modeled the electrolyte solution within
the framework of the primitive model [63], where cations
and anions are treated as charged hard spheres of radius
R = (3ν/4π )1/3 = 0.2 nm immersed in a continuous medium
of uniform dielectric constant εw = 80. Thus the electro-
static interaction energy between any two ions i and j is
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FIG. 2. Predictions of the classical Poisson-Boltzmann model:
(a) shows the scaled surface charge density p = 2π lBlDσ/e as a
function of the surface potential �0 calculated according to Eq. (17).
In (b), we show the scaled differential capacitance Cdiff lD/εwε0 as
a function of p = 2π lBlDσ/e. In both plots, different colors indi-
cate different values of the scaled macroion curvature: lDc = −0.4
(black), lDc = −0.2 (red), lDc = 0 (green), lDc = 0.2 (blue), and
lDc = 0.4 (gray).

given by

uel (ri j )

kBT
=

{∞, ri j < 2R

ziz j
lB
ri j

, otherwise,
(20)

where zi and z j are the respective valencies of ions i and j
(adopting the values ±1 in this paper) and ri j is the center-
to-center distance between them. The electrostatic interaction
energy of a given ion i at distance ri away from the center of
the macroion is

uel (ri )

kBT
=

{∞, ri < (R + Rm)
4πR2

mlB
σ
e

zi
ri
, otherwise.

(21)

For each value of σ , our simulations generate the ionic con-
centrations of cations and anions, n+ and n−, respectively. We
use the resulting volume charge density ρ = e(n+ − n−) to
numerically solve the Poisson equation, ∇2� = −4π lBρ/e,
and obtain the (scaled) electrostatic potential � anywhere in
space. In order to extract the differential capacitance Cdiff , we
first create a list of values (σ,�0), where �0 is the average
surface potential. Then, we calculate the numerical values of
Cdiff using the algorithm developed by Lamperski and Zydor
[64].

III. RESULTS

We have calculated the differential capacitance from
Monte Carlo simulations and from two mean-field theories
(the LG and CS models), the latter both for numerically
solving the self-consistency relation for arbitrary curvature as
specified in Eq. (11) and for the small-curvature expansion
according to Eq. (14). Throughout this paper, we fix anions
and cations of our symmetric 1:1 electrolyte to have a radius
R = 0.2 nm and bulk concentration n0 = 0.056 nm−3 (which
is a 0.1 M solution). Together with the dielectric constant of
water, εw = 80, this leads to a Bjerrum length lB = 0.7 nm,
a Debye length lD = 1 nm, and l = 0.061 nm. The two pa-
rameters we vary are the surface charge density σ and radius
of the spherical macroion Rm. In our simulations, we have
varied the scaled surface charge density p = 2π lBlDσ/e in
the range −1.76 � p � 1.76. For the surface charge density,
this corresponds to a maximal magnitude of |σ | = 0.4 e/nm2.
We have not carried out Monte Carlo simulations beyond that
limit.

Figure 3(a) shows the scaled differential capacitance
Cdiff lD/(εwε0) as a function of p. Monte Carlo simulation
results are displayed as colored circles; different colors refer
to different macroion radii: Rm = 2 nm (green), Rm = 3 nm
(blue), Rm = 4 nm (red), Rm = 5 nm (black), and the limiting
case Rm → ∞ (gray). Corresponding mean-field predictions
based on the LG model [i.e., numerical solutions of Eq. (11)]
are added as color-matching solid lines.

The results for a planar macroion with Rm → ∞ [the
gray circles and gray solid line in Fig. 3(a)] have been
presented and discussed in previous work [60–62,65]. Espe-
cially for small surface charge densities, the mean-field model
prediction overestimates the simulation results. This can be
corrected phenomenologically by adding a Stern layer to the
mean-field model [65,66]. However, Monte Carlo simulations
predict the thickness of the Stern layer to shrink with growing
ion size, which is inconsistent with the commonly postulated
proportionality of ion size and Stern layer thickness [67].
Qualitative agreement between simulations and mean-field
modeling is recovered upon adding short-ranged ion-ion inter-
actions (which represent hydration effects due to the ordering
of water molecules near ions) to the Coulomb and excluded
volume interaction [60]. In this case, there is no need anymore
to add a Stern layer. Hydration-mediated interactions are not
accounted for in this paper; we nevertheless find it beneficial
to refrain from adding a Stern layer: This exposes the cur-
vature dependence of the mean-field predictions more clearly
and discharges us from speculating as to how the Stern layer
might behave as a function of macroion curvature. Despite
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FIG. 3. (a) and (c) Scaled differential capacitance Cdiff lD/εwε0 as
a function of scaled surface charge density p = 2π lBlDσ/e. Different
colors indicate different macroion radii: Rm = 2 nm (green), Rm =
3 nm (blue), Rm = 4 nm (red), Rm = 5 nm (black), and the limiting
case Rm → ∞ (gray). (a) is for the LG model, and (c) is for the
CS model. (b) and (d) Scaled differential capacitance Cdiff lD/εwε0

vs macroion curvature 1/Rm. Different colors correspond to differ-
ent values of the surface charge density: σ = 0.01 e/nm2 (black),
σ = 0.05 e/nm2 (red), σ = 0.2 e/nm2 (blue), and σ = 0.4 e/nm2

(green). (b) is for the LG model, and (d) is for the CS model. In
all four plots, circles are predictions obtained from Monte Carlo
simulations, and solid lines indicate the results from numerically
solving the self-consistency relation in Eq. (11). The dashed lines
in (b) and (d) are results from the small-curvature expansion accord-
ing to Eqs. (14)–(16). The four choices of σ displayed in (b) and
(d) are indicated at the bottom of (a) and (c) by small color-matching
arrowheads.

the differences between simulation and mean-field results, the
planar macroion geometry serves us as a useful reference to
investigate the influence of macroion curvature.

Figure 3(a) reveals a growing differential capacitance with
increasing curvature for small |σ |. This increase reflects the
larger space available to the ions near the macroion surface,
which allows some ions to decrease their distance to the
macroion. This stronger condensation implies a larger differ-
ential capacitance. Representing the electric double layer by
a water-filled spherically curved parallel-plate capacitor with
one plate having curvature 1/Rm and surface charge density σ

and the other plate having curvature 1/(Rm + lD) and surface
charge density σ/(1 + lD/Rm)2, we find in the limit Rm � lD
the expression

Cdiff = εwε0

(
1

lD
+ 1

Rm

)
, (22)

in agreement with our observation of a growing differen-
tial capacitance for the smaller macroions. As already stated
above, Eq. (22) is also the correct result of the small-curvature
expansion in the Debye-Hückel limit p → 0 [Eqs. (14)–(16)
in the limit of vanishingly small surface charge density]
for any curvature c = 1/Rm. That is, Eq. (22) also results
from solving the differential equation � ′′(r) + 2�(r)/r =
�(r)/l2

D, subject to the boundary conditions � ′(Rm) = −s/l
and �(r → ∞) = 0, and subsequent calculation of Cdiff

through Eq. (12).
To more clearly discern the dependence of Cdiff on cur-

vature, we have replotted a subset of the simulation data as
a function of curvature 1/Rm in Fig. 3(b). The four values
for 2π lBlDσ/e that we have selected to be displayed are
marked near the bottom of Fig. 3(a) by four arrowheads,
colored black, red, blue, and green. Figure 3(b) shows Monte
Carlo results and corresponding mean-field predictions using
the same coloring scheme: σ = 0.01 e/nm2 (black), σ =
0.05 e/nm2 (red), σ = 0.2 e/nm2 (blue), and σ = 0.4 e/nm2

(green). Solid lines in Fig. 3(b) account for the full curva-
ture dependence according to Eqs. (11) and (12), and dashed
lines represent the small-curvature expansion according to
Eqs. (14)–(16). Clearly, apart from the difference between
simulations and mean-field predictions that we already ob-
served for planar macroion geometry [60–62], the mean-field
model reproduces the curvature dependence of the differential
capacitance reasonably well. This applies to both the increase
in the differential capacitance with curvature for small |σ |
[see the black, red, and blue solid lines in Fig. 3(b)] and the
local minimum in Cdiff for larger |σ | [see the green solid line
in Fig. 3(b)]. The second-order curvature expansion [dashed
lines in Fig. 3(b)] accurately reproduces the numerical results
from Eq. (11) (the corresponding solid lines) up to the maxi-
mal curvature, 1/Rm = 1/(2 nm), used in our simulations.

Figures 3(c) and 3(d) compare our simulation data with the
mean-field model that employs the CS equation of state. All
parameters and color coding in Figs. 3(c) and 3(d) correspond
to our choices in Figs. 3(a) and 3(b); the only difference is the
underlying equation of state: Eq. (5) for Figs. 3(a) and 3(b)
and Eq. (9) for Figs. 3(c) and 3(d). For small surface charge
density (p � 1), both mean-field models effectively coincide
and are also identical to the classical Poisson-Boltzmann
model. The underlying reason is that the small value of νn0 =
0.0019 renders steric ion-ion interactions in the bulk virtu-
ally irrelevant. In the limit p → 0, both mean-field models
recover the Debye-Hückel limit according to Eq. (22). Close
to that limit, both mean-field models reproduce the curvature-
induced changes (but not the absolute value) of Cdiff almost
quantitatively. Differences arise for larger |p|, where none of
the two mean-field models is able to capture the qualitative
features of the observed simulation results. Specifically, at
σ = 0.4 e/nm2 [the green lines in Figs. 3(b) and 3(d)] the
LG model predicts a largely constant Cdiff and the CS model
predicts an increasing Cdiff as a function of curvature, whereas
the Monte Carlo simulations produced an initial decrease.

Our two mean-field models (the LG model and the CS
model) make similar predictions for |p| � 2 but deviate sub-
stantially for |p| � 2. Figure 4 compares the differential
capacitance of the two models directly for a larger range
of |p| than that covered by our simulations: Solid lines
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FIG. 4. Scaled differential capacitance Cdiff lD/εwε0 vs scaled sur-
face charge density |p| = 2π lBlD|σ |/e for Rm = 2 nm (green), Rm =
3 nm (blue), Rm = 4 nm (red), Rm = 5 nm (black), and the limiting
case Rm → ∞ (gray). Solid lines correspond to the LG model, and
dashed lines correspond to the CS model, both calculated according
to Eq. (11). The dotted gray line is the prediction of the classical
Poisson-Boltzmann model for flat geometry (Rm → ∞) according to
Eq. (18).

correspond to the LG model, and dashed lines correspond
to the CS model. For |p| � 2, the local ion concentrations
close to the macroion surface become large, rendering the
differences between the LG and CS equations of state increas-
ingly important and exhibiting the characteristic camel-shape
that emerges as a consequence of the counterion stacking
near highly charged surfaces [68]. The gray lines correspond
to the planar geometry (Rm → ∞). For reference, we have
also added the prediction of the classical Poisson-Boltzmann
model for flat geometry according to Eq. (18) (dotted gray
line). Most notably for a highly charged macroion, the CS
model predicts a smaller differential capacitance as compared
with the LG model. This can be rationalized by the larger os-
motic pressure associated with the CS model, thus pushing the
mobile ions closer to the macroion surface [60]. This feature
is only weakly modulated by the curvature of the macroion.

In Fig. 5, we display the constants, τ [Fig. 5(a)] and β

[Fig. 5(b)], as a function of the scaled surface charge den-
sity |p| = 2π lBlD|σ |/e. The red dashed lines in each plot
correspond to the classical Poisson-Boltzmann model with
its analytic expressions in Eq. (19). Already the Poisson-
Boltzmann predictions of τ and β as a function of |p| are
rather complex, with sign changes and local extrema in both
cases. Recall from Eq. (19) that the limit p = 0 produces
τ = lD/(2l ) = 8.20 and β = 0, in agreement with Fig. 5.
With increasing |p|, the constant τ decreases, vanishes for p =
1.27, and then adopts the local minimum τ = −0.141 lD/l at
q = 3.21. For large |p| � 1, the constant τ approaches the
limit τ = 0. Analogously, with increasing |p| the constant β

initially increases, adopts the local maximum β = 0.261 l2
D/l2

at |p| = 0.951, then (while decreasing) passes through β = 0
at |p| = 5.83, adopts the local minimum β = −0.007 19 l2

D/l2

FIG. 5. The constants τ (a) and β (b) as a function of the scaled
surface charge density |p| = 2π lBlD|σ |/e. Symbols (black circles)
are data from Monte Carlo simulations, and dashed lines correspond
to mean-field results obtained according to the classical Poisson-
Boltzmann theory (red), the LG model (blue), and the CS model
(green). The solid lines connecting the black circles serve as a guide
to the eye.

at |p| = 10.24, and finally approaches the limiting value β =
0 for |p| � 1.

Figure 5 also shows predictions from the LG model (blue
dashed lines) and from the CS model (green dashed lines).
In the Debye-Hückel regime, |p| � 1, the predictions of all
our mean-field models coincide. For growing |p|, we observe
the same qualitative behavior, namely, a local minimum for τ

and a local maximum for β. Qualitative differences emerge
in the limit |p| � 1, where both the LG and CS models
converge to the same limiting behavior [31], dictated by the
stacking of counterion layers in the vicinity of the highly
charged macroion surface. To find the limiting behavior, we
consider a spherical macroion of radius Rm = 1/c and charge
density σ � 0, with a region of counterions of uniform density
−e/ν inside a spherical shell Rm < r < Rm + w with the shell
thickness

w = Rm

[(
1 + 3νσ

eRm

)1/3

− 1

]
. (23)
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The potential at the macroion surface �0 = �(Rm) results
from the differential equation εwε0[�′′(r) + 2�′(r)/r] = e/ν
subject to the boundary conditions εwε0�

′(Rm) = −σ and
�(Rm + w) = 0. We find for the differential capacitance

Cdiff = dσ

d�0
= εwε0

Rm

[
1 − 1

(1+ 3νσ
eRm )1/3

] . (24)

Expanding this result up to quadratic order in c yields

Cdiff = εwε0

[
e

νσ
+ 2c − 2νσ

3e
c2

]
(25)

and upon comparison with Eq. (14) thus τ = νσ/(el ) =
2pl/lD = s and β = −(νσ/el )2/3 = (4/3)p2l2/l2

D = −s2/3.
This agrees with our findings for the LG and CS models in the
limit |p| � 1 shown in Fig. 5.

Figure 5 also displays an estimate of τ and β from our
Monte Carlo simulations (black circles). We have extracted
this estimate from Figs. 3(b) and 3(d) by fitting a quadratic
function to the first three simulation data points (for c = 0,
c = 0.2 nm−1, and c = 0.25 nm−1). Although this estimate
suffers from the absence of data points at macroion curvatures
0 < c < 0.25 nm−1, the qualitative features of τ exhibiting
a pronounced local minimum and β passing through a pro-
nounced local maximum appear to be reproduced.

IV. CONCLUSIONS

In this paper, we have compared the predictions for the
differential capacitance Cdiff from Monte Carlo simulations
with those from mean-field modeling. In the Monte Carlo sim-
ulations we have represented the mobile ions of the electrolyte
by hard spheres of radius 0.2 nm and the solvent by a uniform
dielectric background. Our goal was to extend the comparison
from the planar geometry to spherically curved macroions
(of radii from Rm = 2 nm to Rm = 5 nm) with small and
moderate surface charge densities (|σ | � 0.4 e/nm2). Our
mean-field models were based on two underlying equations of
state, the lattice-gas (LG) and Carnahan-Starling (CS) equa-
tions of state, and numerical solutions of the corresponding
self-consistency relation. We emphasize that our work sys-
tematically compares these modified mean-field models of
the EDL with simulations for curved macroions. For small

surface charge densities we find that while our mean-field
models overestimate Cdiff , they accurately reproduce its curva-
ture dependence. The overestimation is related to the absence
of a Stern layer, which we have previously discussed in detail
for the planar geometry [60–62,65]. For moderate surface
charge density, our mean-field models turn less capable to
reproduce the qualitative features of the curvature dependence
of Cdiff .

The LG and CS equations of state are members of a class
for which we have recently calculated the energy [52] and the
differential capacitance [31] of the EDL near weakly curved
interfaces (up to quadratic order in curvature). Consequently,
we have used the quadratic curvature expansion of Cdiff and
compared it with the full solutions of the self-consistency
relation, resulting in excellent agreement for the macroion
radii and surface charge densities considered in this paper.

Hence two conclusions emerge from the present work:
First, the level of accuracy of mean-field modeling is inde-
pendent of the macroion radius, at least for small surface
charge density of the macroion. Second, the quadratic curva-
ture expansion of Cdiff for the LG and CS models accurately
reproduces the corresponding numerical solutions of the self-
consistency relation, which are valid for any curvature. These
conclusions are subject to the macroion radii and surface
charge densities considered in this paper. Investigations for
large curvature (where the radii of curvature approach the
ion sizes) and highly charged macroions (where ion stacking
takes place), as well as extensions of the present approach
via the incorporation of nonelectrostatic interactions—such
as solvent-mediated hydration interactions—remain as future
projects.

ACKNOWLEDGMENTS

This research was supported by resources supplied by
the Center for Scientific Computing (NCC/GridUNESP)
of the São Paulo State University (UNESP). D.L.Z.C. thanks
the São Paulo Research Foundation (FAPESP, Grants No.
2013/08293-7 and No. 2019/19662-0) and the Coordenação
de Aperfeiçoamento de Pessoal de Nível Superior, Brasil
(CAPES), Finance Code 001, for the financial support. G.V.B.
acknowledges support from a postdoctoral fellowship from
the São Paulo Research Foundation (FAPESP, Grant No.
2017/21772-2). S.J.d.C. is grateful to the São Paulo Research
Foundation (FAPESP, Grant No. 2018/01841-2).

[1] R. Epsztein, E. Shaulsky, M. Qin, and M. Elimelech, Activation
behavior for ion permeation in ion-exchange membranes: Role
of ion dehydration in selective transport, J. Membr. Sci. 580,
316 (2019).

[2] P. Shui and E. Alhseinat, Quantitative insight into the effect
of ions size and electrodes pores on capacitive deionization
performance, Electrochim. Acta 329, 135176 (2020).

[3] F. Mugele, B. Bera, A. Cavalli, I. Siretanu, A. Maestro, M.
Duits, M. Cohen-Stuart, D. van den Ende, I. Stocker, and I.
Collins, Ion adsorption-induced wetting transition in oil-water-
mineral systems, Sci. Rep. 5, 10519 (2015).

[4] J. R. Miller and A. F. Burke, Electrochemical capacitors:
Challenges and opportunities for real-world applications,
Electrochem. Soc. Interface 17, 53 (2008).

[5] B. E. Conway, Electrochemical Supercapacitors: Scientific
Fundamentals and Technological Applications (Springer, New
York, 2013).

[6] J. Yan, Q. Wang, T. Wei, and Z. Fan, Recent advances in design
and fabrication of electrochemical supercapacitors with high
energy densities, Adv. Energy Mater. 4, 1300816 (2014).

[7] P. Simon, Y. Gogotsi, and B. Dunn, Where do batteries end and
supercapacitors begin? Science 343, 1210 (2014).

034609-8

https://doi.org/10.1016/j.memsci.2019.02.009
https://doi.org/10.1016/j.electacta.2019.135176
https://doi.org/10.1038/srep10519
https://doi.org/10.1149/2.F08081IF
https://doi.org/10.1002/aenm.201300816
https://doi.org/10.1126/science.1249625


MONTE CARLO SIMULATIONS AND MEAN-FIELD … PHYSICAL REVIEW E 104, 034609 (2021)

[8] F. Béguin, V. Presser, A. Balducci, and E. Frackowiak, Car-
bons and electrolytes for advanced supercapacitors, Adv. Mater.
(Weinheim) 26, 2219 (2014).

[9] K. Brousse, P. Huang, S. Pinaud, M. Respaud, B. Daffos, B.
Chaudret, C. Lethien, P.-L. Taberna, and P. Simon, Electro-
chemical behavior of high performance on-chip porous carbon
films for micro-supercapacitors applications in organic elec-
trolytes, J. Power Sources 328, 520 (2016).

[10] M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P.-L. Taberna,
C. P. Grey, B. Dunn, and P. Simon, Efficient storage mecha-
nisms for building better supercapacitors, Nat. Energy 1, 16070
(2016).

[11] R. Burt, K. Breitsprecher, B. Daffos, P.-L. Taberna, P. Simon,
G. Birkett, X. Zhao, C. Holm, and M. Salanne, Capacitance
of nanoporous carbon-based supercapacitors is a trade-off be-
tween the concentration and the separability of the ions, J. Phys.
Chem. Lett. 7, 4015 (2016).

[12] C. Bodin, E. Mourad, D. Zigah, S. Le Vot, S. A. Freunberger, F.
Favier, and O. Fontaine, Biredox ionic liquids: New opportuni-
ties toward high performance supercapacitors, Faraday Discuss.
206, 393 (2018).

[13] Z. Li, G. Jeanmairet, T. Méndez-Morales, B. Rotenberg, and M.
Salanne, Capacitive performance of water-in-salt electrolytes
in supercapacitors: A simulation study, J. Phys. Chem. C 122,
23917 (2018).

[14] J. Huang, B. G. Sumpter, and V. Meunier, A universal model for
nanoporous carbon supercapacitors applicable to diverse pore
regimes, carbon materials, and electrolytes, Chem. Eur. J. 14,
6614 (2008).

[15] H. Wang and L. Pilon, Accurate simulations of electric double
layer capacitance of ultramicroelectrodes, J. Phys. Chem. C
115, 16711 (2011).

[16] E. Paek, A. J. Pak, and G. S. Hwang, Curvature effects on the
interfacial capacitance of carbon nanotubes in an ionic liquid,
J. Phys. Chem. C 117, 23539 (2013).

[17] J. Yang, A. Gallegos, C. Lian, S. Deng, H. Liu, and J. Wu,
Curvature effects on electric-double-layer capacitance, Chin. J.
Chem. Eng. 31, 145 (2021).

[18] E. H. Lahrar, I. Deroche, C. Matei Ghimbeu, P. Simon, and
C. Merlet, Simulations of ionic liquids confined in surface-
functionalized nanoporous carbons: Implications for energy
storage, ACS Appl. Nano Mater. 4, 4007 (2021).

[19] Z. Lian, H. Chao, and Z.-G. Wang, Effects of confinement and
ion adsorption in ionic liquid supercapacitors with nanoporous
electrodes, ACS Nano 15, 11724 (2021).

[20] S. Kondrat and A. Kornyshev, Superionic state in double-
layer capacitors with nanoporous electrodes, J. Phys.: Condens.
Matter 23, 022201 (2010).

[21] P. Simon and Y. Gogotsi, Charge storage mechanism in
nanoporous carbons and its consequence for electrical double
layer capacitors, Philos. Trans. R. Soc., A 368, 3457 (2010).

[22] K. Jayaramulu, D. P. Dubal, B. Nagar, V. Ranc, O. Tomanec, M.
Petr, K. K. R. Datta, R. Zboril, P. Gómez-Romero, and R. A.
Fischer, Ultrathin hierarchical porous carbon nanosheets for
high-performance supercapacitors and redox electrolyte energy
storage, Adv. Mater. (Weinheim) 30, 1705789 (2018).

[23] E. Frackowiak and F. Beguin, Carbon materials for the elec-
trochemical storage of energy in capacitors, Carbon 39, 937
(2001).

[24] A. G. Pandolfo and A. F. Hollenkamp, Carbon properties and
their role in supercapacitors, J. Power Sources 157, 11 (2006).

[25] G. Wang, L. Zhang, and J. Zhang, A review of electrode mate-
rials for electrochemical supercapacitors, Chem. Soc. Rev. 41,
797 (2012).

[26] H. Shao, Y.-C. Wu, Z. Lin, P.-L. Taberna, and P. Simon,
Nanoporous carbon for electrochemical capacitive energy stor-
age, Chem. Soc. Rev. 49, 3005 (2020).

[27] C. Ma, Q. Fan, M. Dirican, N. Subjalearndee, H. Cheng, J. Li,
Y. Song, J. Shi, and X. Zhang, Rational design of meso-/micro-
pores for enhancing ion transportation in highly-porous carbon
nanofibers used as electrode for supercapacitors, Appl. Surf.
Sci. 545, 148933 (2021).

[28] R. Pal, S. L. Goyal, I. Rawal, A. K. Gupta, and Ruchi, Efficient
energy storage performance of electrochemical supercapaci-
tors based on polyaniline/graphene nanocomposite electrodes,
J. Phys. Chem. Solids 154, 110057 (2021).

[29] V. Lockett, M. Horne, R. Sedev, T. Rodopoulos, and J.
Ralston, Differential capacitance of the double layer at the
electrode/ionic liquids interface, Phys. Chem. Chem. Phys. 12,
12499 (2010).

[30] K. Bohinc, G. V. Bossa, and S. May, Incorporation of ion and
solvent structure into mean-field modeling of the electric double
layer, Adv. Colloid Interface Sci. 249, 220 (2017).

[31] G. V. Bossa, R. Downing, J. Abrams, B. K. Berntson, and S.
May, Differential capacitance of electrolytes at weakly curved
electrodes, J. Phys. Chem. C 123, 1127 (2018).

[32] R. Kant and M. B. Singh, Generalization of the Gouy-
Chapman-Stern model of an electric double layer for a
morphologically complex electrode: Deterministic and stochas-
tic morphologies, Phys. Rev. E 88, 052303 (2013).

[33] S. Kondrat and A. Kornyshev, Charging dynamics and opti-
mization of nanoporous supercapacitors, J. Phys. Chem. C 117,
12399 (2013).

[34] A. A. Lee, S. Kondrat, and A. A. Kornyshev, Single-File Charge
Storage in Conducting Nanopores, Phys. Rev. Lett. 113, 048701
(2014).

[35] M. C. Henstridge, E. J. Dickinson, and R. G. Compton, On the
estimation of the diffuse double layer of carbon nanotubes using
classical theory: Curvature effects on the gouy–chapman limit,
Chem. Phys. Lett. 485, 167 (2010).

[36] H. Wang, J. Varghese, and L. Pilon, Simulation of electric
double layer capacitors with mesoporous electrodes: Effects of
morphology and electrolyte permittivity, Electrochim. Acta 56,
6189 (2011).

[37] F. Yang, Size effect on electric-double-layer capacitances of
conducting structures, Phys. Lett. A 383, 2353 (2019).

[38] M. Janssen, Curvature affects electrolyte relaxation: Studies of
spherical and cylindrical electrodes, Phys. Rev. E 100, 042602
(2019).

[39] M. Abareghi and E. Keshavarzi, Diffuse and stern capacitances
at the concave wall of spherical cavities by density functional
theory, J. Electroanal. Chem. 883, 115060 (2021).

[40] L. Šamaj and E. Trizac, Effective charge of cylindrical and
spherical colloids immersed in an electrolyte: The quasi-planar
limit, J. Phys. A: Math. Theor. 48, 265003 (2015).

[41] L. Šamaj and E. Trizac, Electric double layers with surface
charge modulations: Exact Poisson-Boltzmann solutions, Phys.
Rev. E 100, 042611 (2019).

034609-9

https://doi.org/10.1002/adma.201304137
https://doi.org/10.1016/j.jpowsour.2016.08.017
https://doi.org/10.1038/nenergy.2016.70
https://doi.org/10.1021/acs.jpclett.6b01787
https://doi.org/10.1039/C7FD00174F
https://doi.org/10.1021/acs.jpcc.8b07557
https://doi.org/10.1002/chem.200800639
https://doi.org/10.1021/jp204498e
https://doi.org/10.1021/jp408085w
https://doi.org/10.1016/j.cjche.2020.10.039
https://doi.org/10.1021/acsanm.1c00342
https://doi.org/10.1021/acsnano.1c02506
https://doi.org/10.1088/0953-8984/23/2/022201
https://doi.org/10.1098/rsta.2010.0109
https://doi.org/10.1002/adma.201705789
https://doi.org/10.1016/S0008-6223(00)00183-4
https://doi.org/10.1016/j.jpowsour.2006.02.065
https://doi.org/10.1039/C1CS15060J
https://doi.org/10.1039/D0CS00059K
https://doi.org/10.1016/j.apsusc.2021.148933
https://doi.org/10.1016/j.jpcs.2021.110057
https://doi.org/10.1039/c0cp00170h
https://doi.org/10.1016/j.cis.2017.05.001
https://doi.org/10.1021/acs.jpcc.8b10933
https://doi.org/10.1103/PhysRevE.88.052303
https://doi.org/10.1021/jp400558y
https://doi.org/10.1103/PhysRevLett.113.048701
https://doi.org/10.1016/j.cplett.2009.12.034
https://doi.org/10.1016/j.electacta.2011.03.140
https://doi.org/10.1016/j.physleta.2019.04.051
https://doi.org/10.1103/PhysRevE.100.042602
https://doi.org/10.1016/j.jelechem.2021.115060
https://doi.org/10.1088/1751-8113/48/26/265003
https://doi.org/10.1103/PhysRevE.100.042611


CAETANO, DE CARVALHO, BOSSA, AND MAY PHYSICAL REVIEW E 104, 034609 (2021)

[42] E. J. Dickinson and R. G. Compton, Diffuse double layer at
nanoelectrodes, J. Phys. Chem. C 113, 17585 (2009).

[43] J. Varghese, H. Wang, and L. Pilon, Simulating electric double
layer capacitance of mesoporous electrodes with cylindrical
pores, J. Electrochem. Soc. 158, A1106 (2011).

[44] A. Reindl, M. Bier, and S. Dietrich, Electrolyte solutions at
curved electrodes. I. Mesoscopic approach, J. Chem. Phys. 146,
154703 (2017).

[45] J. Huang, B. G. Sumpter, and V. Meunier, Theoretical model
for nanoporous carbon supercapacitors, Angew. Chem., Int. Ed.
47, 520 (2008).

[46] A. Reindl, M. Bier, and S. Dietrich, Electrolyte solutions at
curved electrodes. II. Microscopic approach, J. Chem. Phys.
146, 154704 (2017).

[47] T. Yumura, M. Ishikura, and K. Urita, Why pore width of
nanoporous carbon materials determines the preferred solvated
states of alkaline cations: A density functional theory calcula-
tion study, J. Phys. Chem. C 123, 21457 (2019).

[48] E. Keshavarzi and S. Safdaar, Ionic competition over adsorption
into charged spherical cavities affecting the shape of electric
double layer capacitance curve and zeta potential: A density
functional theory study, J. Electrochem. Soc. 168, 060535
(2021).

[49] Z. Bo, C. Li, H. Yang, K. Ostrikov, J. Yan, and K. Cen, Design
of supercapacitor electrodes using molecular dynamics simula-
tions, Nano-Micro Lett. 10, 33 (2018).

[50] M. Biagooi and S. N. Oskoee, The effects of slit-pore geometry
on capacitive properties: A molecular dynamics study, Sci. Rep.
10, 6533 (2020).

[51] J. Seebeck, P. Schiffels, S. Schweizer, J.-R. Hill, and R. H.
Meißner, Electrical double layer capacitance of curved graphite
electrodes, J. Phys. Chem. C 124, 5515 (2020).

[52] G. V. Bossa, B. K. Berntson, and S. May, Curvature Elasticity of
the Electric Double Layer, Phys. Rev. Lett. 120, 215502 (2018).

[53] H. Lekkerkerker, Contribution of the electric double layer to the
curvature elasticity of charged amphiphilic monolayers, Phys.
A (Amsterdam) 159, 319 (1989).

[54] H. Lekkerkerker, The electric contribution to the curvature elas-
tic moduli of charged fluid interfaces, Phys. A (Amsterdam)
167, 384 (1990).

[55] I. Borukhov, D. Andelman, and H. Orland, Steric Effects in
Electrolytes: A Modified Poisson-Boltzmann Equation, Phys.
Rev. Lett. 79, 435 (1997).

[56] Y. Nakayama and D. Andelman, Differential capacitance of
the electric double layer: The interplay between ion finite
size and dielectric decrement, J. Chem. Phys. 142, 044706
(2015).

[57] N. F. Carnahan and K. E. Starling, Equation of state for nonat-
tracting rigid spheres, J. Chem. Phys. 51, 635 (1969).

[58] T. Boublík, Hard-sphere equation of state, J. Chem. Phys. 53,
471 (1970).

[59] G. Mansoori, N. Carnahan, K. Starling, and T. Leland Jr,
Equilibrium thermodynamic properties of the mixture of hard
spheres, J. Chem. Phys. 54, 1523 (1971).

[60] D. L. Z. Caetano, G. V. Bossa, V. M. de Oliveira, M. A. Brown,
S. J. de Carvalho, and S. May, Role of ion hydration for the
differential capacitance of an electric double layer, Phys. Chem.
Chem. Phys. 18, 27796 (2016).

[61] D. L. Z. Caetano, G. V. Bossa, V. M. de Oliveira, M. A. Brown,
S. J. de Carvalho, and S. May, Differential capacitance of an
electric double layer with asymmetric solvent-mediated inter-
actions: Mean-field theory and Monte Carlo simulations, Phys.
Chem. Chem. Phys. 19, 23971 (2017).

[62] G. V. Bossa, D. L. Z. Caetano, S. J. de Carvalho, and S.
May, Differential capacitance of an electrical double layer with
asymmetric ion sizes in the presence of hydration interactions,
Electrochim. Acta 321, 134655 (2019).

[63] T. L. Hill, An Introduction to Statistical Thermodynamics
(Courier, North Chelmsford, MA, 2012).

[64] S. Lamperski and A. Zydor, Monte Carlo study of the
electrode|solvent primitive model electrolyte interface,
Electrochim. Acta 52, 2429 (2007).

[65] G. V. Bossa, D. L. Caetano, S. J. de Carvalho, K. Bohinc,
and S. May, Modeling the camel-to-bell shape transition of
the differential capacitance using mean-field theory and Monte
Carlo simulations, Eur. Phys. J. E: Soft Matter Biol. Phys. 41,
113 (2018).

[66] L. Daniels, M. Scott, and Z. Mišković, The role of Stern layer
in the interplay of dielectric saturation and ion steric effects for
the capacitance of graphene in aqueous electrolytes, J. Chem.
Phys. 146, 094101 (2017).

[67] O. Stern, Zur theorie der elektrolytischen doppelschicht, Z.
Elektrochem. Angew. Phys. Chem. 30, 508 (1924).

[68] M. S. Kilic, M. Z. Bazant, and A. Ajdari, Steric effects in the
dynamics of electrolytes at large applied voltages. I. Double-
layer charging, Phys. Rev. E 75, 021502 (2007).

034609-10

https://doi.org/10.1021/jp906404h
https://doi.org/10.1149/1.3622342
https://doi.org/10.1063/1.4979947
https://doi.org/10.1002/anie.200703864
https://doi.org/10.1063/1.4979948
https://doi.org/10.1021/acs.jpcc.9b03568
https://doi.org/10.1149/1945-7111/ac0aae
https://doi.org/10.1007/s40820-018-0188-2
https://doi.org/10.1038/s41598-020-62943-7
https://doi.org/10.1021/acs.jpcc.9b10428
https://doi.org/10.1103/PhysRevLett.120.215502
https://doi.org/10.1016/0378-4371(89)90400-7
https://doi.org/10.1016/0378-4371(90)90122-9
https://doi.org/10.1103/PhysRevLett.79.435
https://doi.org/10.1063/1.4906319
https://doi.org/10.1063/1.1672048
https://doi.org/10.1063/1.1673824
https://doi.org/10.1063/1.1675048
https://doi.org/10.1039/C6CP04199J
https://doi.org/10.1039/C7CP04672C
https://doi.org/10.1016/j.electacta.2019.134655
https://doi.org/10.1016/j.electacta.2006.08.045
https://doi.org/10.1140/epje/i2018-11723-7
https://doi.org/10.1063/1.4976991
https://onlinelibrary.wiley.com/doi/abs/10.1002/bbpc.192400182
https://doi.org/10.1103/PhysRevE.75.021502

