PHYSICAL REVIEW E 104, 034502 (2021)

Partition-function-zero analysis of polymer adsorption for a continuum chain model
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Polymer chains undergoing adsorption are expected to show universal critical behavior which may be
investigated using partition function zeros. The focus of this work is the adsorption transition for a continuum
chain, allowing for investigation of a continuous range of the attractive interaction and comparison with recent
high-precision lattice model studies. The partition function (Fisher) zeros for a tangent-hard-sphere N-mer
chain (monomer diameter o) tethered to a flat wall with an attractive square-well potential (range Ao, depth
€) have been computed for chains up to N = 1280 with 0.01 < A < 2.0. In the complex-Boltzmann-factor plane
these zeros are concentrated in an annular region, centered on the origin and open about the real axis. With
increasing N, the leading zeros, w; (N ), approach the positive real axis as described by the asymptotic scaling
law wy(N) —y. ~ N~%, where y, = e“/*#7¢ is the critical point and 7, is the critical temperature. In this work,
we study the polymer adsorption transition by analyzing the trajectory of the leading zeros as they approach
¥, in the complex plane. We use finite-size scaling (including corrections to scaling) to determine the critical
point and the scaling exponent ¢ as well as the approach angle 6., between the real axis and the leading-zero
trajectory. Variation of the interaction range A moves the critical point, such that 7, decreases with A, while the
results for ¢ and 6, are approximately independent of 1. Our values of ¢ = 0.479(9) and 6, = 56.8(1.4)° are in
agreement with the best lattice model results for polymer adsorption, further demonstrating the universality of
these constants across both lattice and continuum models.

DOI: 10.1103/PhysRevE.104.034502

I. INTRODUCTION

The reversible adsorption of a flexible polymer chain to an
attractive surface is an important problem in polymer, materi-
als, and surface science [1]. For a long chain this adsorption
transition is a second-order phase transition, characterized by
universal critical exponents. Of particular interest for the poly-
mer adsorption problem is the so called crossover exponent
¢ which governs the number of adsorbed sites for a N-mer
chain at the transition via the asymptotic scaling behavior
na(T,) ~ N?, where T, is the transition temperature in the
thermodynamic (N — oo) limit. In one of the first compre-
hensive studies of this transition Eisenriegler et al. estimated
this exponent to have the value ¢ = 0.58(2) [2]. Over the
past several decades the details of the polymer adsorption
transition have remained a topic of active theoretical interest
[3-20]. In particular, until recently, there has been a persistent
lack of consensus as to the exact value of the exponent ¢
with values being reported in the range 0.4 < ¢ < 0.67. It
was clear that system size was a limiting issue in accurate
determination of the critical temperature 7. and that the ¢
estimates are quite sensitive to the 7, estimate [7,9]. It was
also suggested that ¢ might be super-universal, with its value
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in three dimensions matching the exactly known value in two
and four dimensions of ¢ = 1/2 [4-6].

With advances in both simulation algorithms and computer
hardware, longer chain lengths have become accessible and
Grassberger, studying an absorbing chain on the simple cubic
lattice using the PERM algorithm for chains up to length N =
8000, obtained the result ¢ = 0.484(2) [8]. Grassberger’s
value of ¢ < 0.5, which implies a nondiverging specific heat
at the transition, has now been confirmed in a number of
studies (all using the simple cubic lattice model) [13,18-20],
although there remains a small spread in the reported results
not covered by the estimated statistical errors. The recent work
by Bradly et al. [19] has shown that for both two- and three-
dimensional lattice chains different approaches to obtaining
T, can lead to ¢ estimates whose scatter is larger than the
estimated statistical uncertainty for each approach.

Recent lattice model studies have investigated the effects
of a wide range of conditions on the adsorption transition,
including chain stiffness [12], range of the attractive interac-
tion [13], and solvent conditions [18-21]. Due to the larger
computational effort required for off-lattice models, simu-
lations of continuum chains have been restricted to shorter
chain lengths, which makes the determination of the crossover
exponent more difficult. Studying a bead-spring model with
Monte Carlo simulations, Metzger et al. [5] found a value
of ¢ = 0.50 £ 0.02, which is consistent with the best lattice
model results. Bhattacharya et al. [22,23] derived limits on the
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crossover exponent, 0.34 < ¢ < 0.59, from a theory for the
desorption transition under pulling and confirmed their find-
ings with Monte Carlo simulations. More recently, Milchev
and Binder [24,25] investigated the effect of chain stiffness
on the adsorption transition with molecular dynamics simula-
tions of a bead-spring model and find results consistent with
¢ = 0.48 for chains that are not too stiff, in agreement with
lattice model results for semiflexible chains [12]. Off-lattice
insight into the adsorption of stiffer polymers (filaments) has
also been gained through theory and simulations of wormlike
chains [26-28]. These studies confirm that the adsorption
transition of semiflexible chains is continuous [26,27] and that
the transition temperature increases with chain stiffness and
the range of the attractive surface interaction [26-28].

In the present work, we study the adsorption transition
with a continuum model for a flexible chain in good solvent
tethered to an attractive surface. The polymer is represented
by a hard-sphere chain with bond length equal to the chain
diameter o and the attractive interaction is described by a
square well of fixed depth € and variable range Ao. This is a
coarse-grained model, where each bead of the chain represents
several monomers of a typical polymer, which implies that
interaction ranges of common surface systems are smaller
than a bead diameter. To cover this physically relevant range,
we simulate square wells with 0.01 < A < 2.0.

Since the development of the Yang-Lee theory of phase
transitions in the grand-canonical ensemble [29,30], its exten-
sion to the canonical ensemble by Fisher [31], and detailed
examination of finite systems by Itzykson et al. [32], partition
function zeros have been analyzed to study phase transitions
in a wide range of systems [33] including a number of studies
on the collapse and adsorption transitions for chain molecules
[15,17,34—41]. In our previous work, we used the zeros of
the canonical partition function (Fisher zeros) to investigate
the polymer adsorption transition in good solvent for a bond-
fluctuation (BF) lattice model [15]. The Fisher zeros for this
lattice model are concentrated in an annular region centered
on the origin of the complex plane. With increasing chain
length, the leading zeros approach the critical point on the
positive real axis, following an asymptotic scaling law that
involves the crossover exponent ¢. Our finite-size-scaling
analysis for this model, which did not systematically include
corrections to scaling, led to inconclusive results regarding
the value of ¢ relative to 1/2 with our best estimate being
¢ = 0.515(25). In the present work we present a more ro-
bust finite-size-scaling analysis of the partition function zeros
that does systematically include corrections to scaling (whose
importance has been pointed out by both Plascak et al. [18]
and Bradly et al. [19]). We apply this approach to the con-
tinuum hard-sphere-chain model (and also use it to reanalyze
the BF-lattice model) and find results that are both internally
consistent and in agreement with the most recent lattice model
studies.

In summary, the goals of the present work are threefold.
First, presentation of a new method (partition-function-zero
analysis including systematic corrections to scaling) to study
the polymer adsorption transition. Second, analysis of a
continuum model in order to compare with the existing
high precision lattice model studies of polymer adsorption.
And third, analysis of chain adsorption as a function of a

continuously variable interaction range XA (including A < o,
which is not possible with a lattice model).

II. THEORY AND METHODS
A. HS chain model

The model studied here is a flexible continuum chain com-
posed of N tangent hard spheres of diameter o, tethered at one
end to a flat wall with an attractive square-well (SW) potential
of range Ao. The chain is confined to the positive half-space
z > 0 and the interaction between chain-monomer i and the
wall is given by

_J-e 0<z< Ao
MI(Z)— {0 Z>)\,U ’ (1)
where z is the minimum vertical distance between the bead
surface and the wall. The chain energy is given by E,, = —ne,

where n is the number of adsorbed sites (i.e., the number of
sites with z < Ao, including the tethered site for which z = 0)
such that [A + 1] < n < N where [ ] denotes integer part.

B. Simulation methods

We construct the density of states g(E,) for the tethered
HS-chain model using the Wang-Landau algorithm [42,43]. In
this iterative approach, one samples configuration space using
a set of Monte Carlo moves with an acceptance probability
based on the current estimate of the density of states given by

P, — b) =min | 1 g(Ea)>. 2

accept(a b) ( ’ g(Eb) ( )
After each move attempt the density of states estimate for
the current state (call it E.) is modified by a factor f; >
1 [Ing(E;) — fiIlng(E.)] and the entry in a state visita-
tion histogram H (E) for that state is incremented [H(E.) —
H(E;) + 1]. The H(E) histogram is periodically checked for
“flatness” which indicates a uniform sampling of all accessi-
ble energy states. When flatness is achieved, simulation level
k ends, the modification factor is reduced (fis1 = +/f¢), the
visitation histogram is zeroed [H(E) =0 V E], and simula-
tion level k + 1 begins. Our move set consists of single-bead
axial rotations, standard pivots and pivots about the z axis,
segment reflection, cut and permute, and end-bridging (which
requires additional weight factors in Pyccept) [44—47]. We start
the simulations with fy = ¢! assuming a uniform density of
states [g(E,) = 1 V n], use a flatness criterion in the range
1% — 20% depending on chain length, and run the simu-
lations for k = 30 levels of iteration. To assess simulation
uncertainty, we typically run 10 or more independent versions
of each simulation.

C. Partition function zeros

The canonical partition function for a system with a dis-
crete energy spectrum, with energy states £, = —ne (1 < n <
N) is given by

N N—1
Zu(T) =) gE)e ™™ =gy (gu/)y"s ()
n=1 n=0
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where g, = g(E,) is the density of states for energy level E,
and y = ¢*/%T (where kg is the Boltzmann constant and 7 is
the temperature). The above expression is a polynomial in y
which can be rewritten in product form in terms of its N — 1
roots Or Zeros as

N-1
Zn(T) =gy [ [& = wo). )

k=1

where the complex zeros (known as Fisher zeros) come in
conjugate pairs wy = a =£ ib such that any real roots w; = a;
lie on the negative axis (since the g, are all positive).

In the Yang-Lee theory of phase transitions [29,30] some
partition function zeros approach the positive real axis with
increasing system size, moving onto the real axis at a point y,
in the thermodynamic limit (N — o0). This results in nonana-
lytic behavior in the thermodynamic functions at the transition
point y =y.. While the Yang-Lee theory was developed
within the grand-canonical ensemble, the same description
holds for the canonical ensemble Fisher zeros [31]. Thus, the
Helmbholtz free energy, given by

N-1
Fy(T)/ksT = —InZy(T) = —In(g1y) — Y _ In(y — wy),

k=1

)
will become nonanalytic for N — oo as some zeros move
onto the real axis (i.e., some w; — y.). Here we focus on the
leading zero which we denote w; and define as the Fisher
zero in the first quadrant with the smallest imaginary part.
For polymer adsorption, the order parameter for the transition
is given by the fraction of adsorbed monomers My = n,/N
where n, = (n) = |(E,)|/€. This order parameter can be writ-
ten as a temperature derivative of Fy (T') as follows:

3(FN//<BT)
=y ‘ ‘ [+Z<~y wk)} ©

and thus also becomes nonanalytic for w; — y. = e</*% (as
N — o0). For large N, My(T) will be governed at T = T, by
the leading zero, resulting in the asymptotic behavior

1
My(To) ~ 5 1ve = wi| ™ (7)

D. Finite-size scaling

The scaling of the polymer adsorption order parame-
ter with system size defines the crossover exponent ¢ via
My(T.) ~ N~ [2] and thus, Eq. (7) implies an asymptotic
scaling behavior for the leading partition function zero of [32]

ye—w; ~ N2 8)

Here we will assume a finite-size scaling expression [48-50]
for the leading zero, valid in the complex plane, given by

w1 (N) =y. +DN~?(1 +dN~%). 9)

where D = D, + iD; and d = d, + id; are complex constants
and the exponent A describes the lowest-order correction-
to-scaling contribution. Exploiting the fact that Eq. (9) is
complex, we can eliminate the N~ dependence by an ap-
propriate combination of real and imaginary parts which,

retaining terms to first order in N~2, yields the relation

Re[w; (N)] = y. + m Im[w;(N)](1 + cN™2), (10)

where m = D, /D; and ¢ = —di(m* + 1)/m are real constants.
In the absence of any correction to scaling (i.e.,d = 0, ¢ = 0),
a plot of Im[w;] vs Re[w;] will yield a straight line with the
leading zeros approaching the critical point y. at an angle of
6. = tan~'(1/m). (This approach angle, which derives from
an amplitude ratio, is expected to exhibit universal behavior
[32,49,51]). Alternatively, any curvature in such a plot indi-
cates corrections to scaling are needed. We also note that, to
first order in N~2, Eq. (10) can be rewritten as

Re[w;] =y, + aiIm[w] + ax(Im[w)*N?~4 (1)

and thus if ¢ = A, Re[w;] will be quadratic in Im[w]. Such
behavior has been noted for lattice polymers [15,17] and is
consistent with the value ¢ ~ 0.5 and the general assumption
that A = 0.5 [8,13,18].

In the calculations presented below we use Eq. (10),
assuming A = 0.5, to determine the critical point y. and
approach angle 6.. We then return to Eq. (9) and determine
the crossover exponent through the scaling of the absolute
distance of the leading zeros from the critical point which can
be written, to first order in N~ 2, as

|lwi — yo| = AN~?(1 + BN™2). (12)

where A = ,/D% +D,~2 and B = d, are real constants and

the distance is given by |w; —y.| = {(Re[w;] —yc)2 +
(Im[w;1)*}'/2. The four fit parameters m, ¢, A, and B allow
determination of the parameter set D,, D;, d,, and d;. The
above analysis for the complex w plane can be mapped onto
the complex inverse temperature plane given by

In(w) = In(a + ib) = B + it, (13)

where 8 = €/kgT = In(a®> + b*)'/? and T = tan~!(b/a). The
scaling relations given in Egs. (8)—(12) hold in the Bt-
complex plane with the substitutions of w; — B; +ity, y. —
B, and A — A/y.. Since this is a conformal mapping the
approach angle 6, is expected to be preserved.

It is also possible to determine the crossover exponent
¢ without first locating the critical point, by either simply
carrying out a curve fit to the imaginary part of Eq. (9) (or its
Bt plane analog) or to use the imaginary part of the leading
zeros to construct a sequence of finite-size approximates to ¢
via the ratio [13]

1

Geif(N) = — {

— Im([z(N/2)] } (14)

Im[z(2N)]

for either the z = w; or z = B + ity zeros. With the lowest-
order correction to scaling, retaining terms to first order in
N2, these ¢.s(N) estimates approach the asymptotic value
¢ according to

Pett(N) = ¢~I- NA’ 15)

where A| = (d, +md;)(2** — 1)/(2* In4).
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III. RESULTS

Here we present results for the adsorption transition of HS
chains up to length N = 1280 tethered to an attractive surface
with SW interaction ranges A = 0.01, 0.1, 0.5, 1.0, and 2.0.
For comparison, we also present a reanalysis of results for
the bond-fluctuation lattice model studied previously [15].
The partition function zeros are computed from the density
of states using Mathematica. For N > 512 we run the WL
simulations across a reduced energy range (with ny.x => N/2
surface contacts). For long chains the adsorption transition
occurs at (n) << N/2, and we find that this truncated energy
range gives accurate estimates of the leading partition function
zero [15].

In Fig. 1 we show the partition function zeros for the
case of N =512, A = 0.5 in the complex w plane (noting
that some zeros fall outside the bounds of this figure). The
zeros are seen to be concentrated in an annular region cen-
tered on the origin and open about the positive real axis

u
—_ *
B *
€ 0.5 . ‘i P
= leading m® u”
zero w,
\\‘<J
| critical
1 point ycx (b)
0.0 x
2.0 2.5 3.0
Re[w]

FIG. 1. Partition function zeros in the complex w plane for an
N = 512 HS chain tethered to an attractive wall with A = 0.5. Four
data sets, obtained from four separate simulations, are shown with
different symbols and colors. Although the individual zeros are not
reproduced between simulations, the boundaries defining the dis-
tribution of the zeros and the leading zeros are well reproduced.
Panel (b) shows an enlargement of the boxed region in (a) detailing
the neighborhood of the leading zero w; and illustrating its repro-
ducibility. The location of the critical point y., as determined by our
finite-size-scaling analysis, is also indicated.

1] (@) A=050 . J(b) =050
[04 -
1 y.=23368(11) 4 ] Bo=0.8483(5)
1 ~ 1 T.=1.1788(7)
T =1.1782(6 o
081 e ©) LTI r
Im[w,] 1 ]
1 L 0.2] -
0.4 F
b r 1 1280 # i
0.07 T T T T T O T
23 24 25 26 08 09 _ 1.0 1.1
Re[w,] B
1.0
IZ_ch
0.14

20 100 N

FIG. 2. Finite-size scaling analysis of the leading partition func-
tion zeros for a HS chain tethered to an attractive wall with A = 0.5.
[(a) and (b)] The leading zeros for 32 < N < 1280 in the z = w,
and z = B + ity complex planes, respectively. Values for the critical
point y. and B, and the approach angle 6., obtained by fitting to
Eq. (10), are shown. (c) Absolute distance from the critical point
vs chain length N for the leading zeros shown above. Values of the
crossover exponent ¢, obtained by fitting to Eq. (12), are shown.

with the leading zero pinching down toward the real axis.
On this plot we show, using different colors and symbols, the
zeros obtained from four independent simulations. As seen
here and previously noted [15,40], the exact locations in the
complex plane of the individual zeros are not reproducible
between simulations, however, both the boundaries separat-
ing regions with and without zeros and the leading zero are
well reproduced. In Fig. 1(b) we show an enlargement of the
partition function zero map that highlights the reproducibility
of the leading zero. In our full data set for N = 512, A = 0.5
we have 17 independent estimates of w,; leading to a final
value of w; = 2.4755(15) +i0.2621(22) where the numbers
in parentheses are the standard error in the last digits shown. In
Fig. 1(b) we also include our result for the N — oo adsorption
critical point y. (in part to illustrate that there is no simple
extrapolation of the zero-map boundaries to y.). The partition
function zero maps for all the cases studied here have the same
general appearance as Fig. 1 and this same structure is also
seen for simple lattice models of an absorbing chain [17] and
for the bond fluctuation lattice model [15].

In Figs. 2(a) and 2(b) we show the leading partition func-
tion zeros for chain lengths in the range 32 < N < 1280 for
the case of A =0.5 in the z =w and z = B 4 it complex
planes, respectively. With increasing chain length N these
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TABLE I. Adsorption transition properties as obtained from the leading partition function zeros for a HS chain tethered to an attractive
surface with range Ao and for a BF lattice chain. Included are the transition temperature 7., approach angle 6., and crossover exponent ¢, all

computed using a correction-to-scaling exponent A = 0.5.

w plane Bt plane
T. (¢/kp) O () T. (¢/kp) 0 () ¢
A =0.01 0.2228(1) 55.8(3) 0.491(6) 0.2229(1) 54.4(3) 0.473(5)
A=0.10 0.4467(2) 56.3(2) 0.489(4) 0.4471(2) 55.1(2) 0.472(3)
A =0.50 1.1782(6) 56.6(2) 0.482(4) 1.1788(7) 56.1(2) 0471(4)
A =1.00 2.410(2) 57.7(2) 0.491(3) 2.408(2) 57.8(2) 0.481(3)
A =2.00 5.834(7) 58.6(2) 0.469(4) 5.825(8) 58.8(2) 0.464(4)
BF-lattice 1.0291(6) 57.6(2) 0.489(3) 1.0291(6) 57.3(2) 0.480(3)

leading zeros are seen to approach the positive real axis along
a curving arc, consistent with the Yang-Lee picture of a phase
transition. In the asymptotic limit this approach toward the
real axis is expected to be linear, and thus the curvature seen
here indicates that corrections to scaling are required in our
analysis. The solid lines in Figs. 2(a) and 2(b) are weighted
fits to the Eq. (10) scaling relation assuming A = 0.5. From
these three-parameter fits we obtain the critical point location
¥ or B, and the approach angle 6, of the leading zeros to the
critical point as shown in the plots and given in Table I. The
two different complex planes give results for 7, and 6. in good
agreement despite the fact that the corrections to scaling are
seen to be much stronger in the complex w plane. Results for
the other interaction ranges A (using 32 < N < 1024 for A =
0.01,0.1, 1.0 and 64 < N < 1024 for A = 2.0) as well as for
the bond-fluctuation lattice model (using 32 < N < 1536) are
also given in Table I. We use weighted fits in the determination
of T and 6., except for the cases of A = 1.0 and 2.0 where we
require unweighted fits for agreement between the w plane
and Br-plane constructions. For the HS chains a larger inter-
action range A gives a higher transition temperature 7, while
the approach angle 6, is approximately constant across all
A (although this angle does show a systematic increase with
increasing A). The BF lattice results are quite similar to the
A = 0.5 continuum results, consistent with the structure of this
lattice model [15].

Having located the critical point, we now use the Eq. (12)
scaling relation to obtain the crossover exponent ¢ as shown
in Fig. 2(c). Although not as evident as in Figs. 2(a) and
2(b), corrections to scaling are essential to accurately fit these
data. Results for ¢ from these three-parameter fits, shown in
the plot and given in Table I, are close but do not overlap
within uncertainty. Similar results are obtained for the other
A values as shown in Table I. We systematically find the ¢
estimates from the w-plane analysis to be slightly larger than
the estimates from the inverse temperature plane. Averaging
the results over the different A values (including the BF lattice
result) gives ¢ = 0.485(8) for the w plane and ¢ = 0.474(6)
for the inverse temperature plane. The uncertainties given
are the standard deviations between the values in each data
set which are seen to be comparable to the individual error
estimates. These average results for the two complex planes
do agree within uncertainty and an average over the full set of
values gives ¢ = 0.479(9).

For the fits shown in Fig. 2 and for the corresponding
analysis used to compute the data given in Table I we have

assumed a correction-to-scaling exponent of A = 0.5. To in-
vestigate the validity of this assumption, we have also treated
A as an adjustable parameter. The results, presented and dis-
cussed in the Appendix, lead us to conclude that A = 0.5is a
reasonable value that will be adopted throughout this work.
In Fig. 3(a) we provide another view of the leading parti-
tion function zeros in the complex inverse temperature plane,
plotting 7;(N) vs B1(N) — B. for the full set of interaction
ranges A and for the BF lattice model (using our 8. = 1/T.
values from Table I). The lines are fits to the Eq. (10) scal-
ing relation (adapted to the Sr-complex plane). This plot

0.4
(a) BFL 02
0.3 1.0 o L
T
! 0.01
0.21 -
A=2.0
0.1 increasing N
6, =57°
0.0 ‘ ‘
0.0 0.1 0.2
B1 - Bc
b A =0.01
10] ) z=p, +iT, 0.10 [

FIG. 3. (a) Approach of the leading partition function zeros to-
ward the critical point S, in the z = B, + it; complex plane. Results
are shown for the tethered HS chain (open symbols) with differ-
ent surface SW interaction ranges A, as indicated, and also for the
BF-lattice model (filled symbols). Values for . = €/kgT, are from
Table I and the lines are fits to Eq. (10), adapted for the St plane.
(b) Absolute distance from the critical point vs chain length N for
the leading zeros shown above. Values of the crossover exponent ¢,
obtained by fitting to Eq. (12), are given in Table 1.
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1 1 10: N
.
My(Te)
0.14 3=2. = I
oo (ag = 0.485(8)
O
20 100 N 1000

FIG. 4. Chain-adsorption order parameter My(7.) vs length N
for a tethered HS chain (open symbols) with different surface SW
interaction ranges X and for the BF-lattice model (filled symbols) us-
ing T, values given in Table I. Shown from top to bottom are A = 2.0,
1.0, 0.5, BFL, 0.1, and 0.01. The lines are fits to the Eq. (16) scaling
relation (which includes corrections to scaling) and the resulting ¢
values are given in Table II. Inset: Transition temperature 7, vs SW
interaction range A. Symbols are from Table I while the solid line
is the simple analytic expression for the Boyle temperature for the
monomer-surface interaction.

illustrates the universality of the approach angle 6, and also
shows that corrections scaling, as assessed by the curvature
in each data set, become larger with increasing A. The sys-
tematic increase we observe in 6, with A may result from
these stronger corrections to scaling, suggesting the need for
larger N values for larger A to capture the correct asymptotic
behavior. In Fig. 3(b) we present scaling plots of the absolute
distance from the critical point |z — z.| vs N for the data in
Fig. 3(a). The lines are fits to Eq. (12) and the resulting ¢
values are given in Table I.

As a consistency check on our approach we have also
determined the crossover exponent ¢ from the scaling behav-
ior of the order parameter My (T) [Eq. (6)] at T = T, given
(including lowest-order correction to scaling) by

MN(T.) = ayN?®"'(1 + cyN™2), (16)

where ay,; and ¢y, are constants. This is a standard approach
for computing ¢ but it is known to be very sensitive to the
correct value of T;. Using the critical temperatures obtained
from our partition function zero analysis (given in Table I) we
have constructed My (T;.) vs N scaling plots shown in Fig. 4 for
the HS chain with different A and for the BF lattice model. The
resulting crossover exponents are given in Table II (where the
uncertainty is primarily due to the uncertainty in 7;) and seen
to be in reasonable agreement with values given in Table I.
The largest discrepancy is for the A = 2.0 case where we have
the largest corrections to scaling.

Finally, we examine the determination of the crossover ex-
ponent ¢ using only the imaginary part of the leading partition
function zeros. Since the imaginary part of the Eq. (9) scaling
relation does not include y, (or B.), ¢ can, in principle, be ob-
tained via the scaling of Im[w; (N)] [or 7{(N)] with N without
knowledge of the transition temperature. In practice, we find
that this approach gives reasonable results for the 7, (N) zeros
but appears to be inaccurate when working with the zeros from
the complex w plane. In Fig. 5(a) we show scaling plots of

TABLE II. Crossover exponent ¢ obtained from the scaling of
the order parameter My (7.) and leading zero 7, (V) with chain size N
[Figs. 4 and 5(a), respectively], and from extrapolation of the 7, (N)-
ratio estimates for ¢ (N ) [Fig. 5(b)]. The 7, methods do not require
knowledge of the transition temperature 7...

My (T,) scaling 71(N) scaling 71 (N) ratio
A =0.01 0.485(3) 0.474(5) 0.483(3)
A=0.10 0.473(3) 0.475(4) 0.480(3)
A =0.50 0.480(3) 0.468(5) 0.478(2)
A =1.00 0.492(4) 0.479(4) 0.479(1)
A =2.00 0.494(4) 0.459(5) 0.480(1)
BF-lattice 0.488(3) 0.481(4) 0.483(2)

71(N) vs N for the HS chain and BFL models. The resulting ¢
values, given in Table II, are seen to be in good agreement with
the values from our full leading-zero analysis given in Table I.
We note that the correction-to-scaling contribution included
in Eq. (9) is needed for accurate fitting of these data. The
analogous scaling plot for Im[w;(N)] vs N (not shown) gives
some results quite inconsistent with those we have obtained
by our other methods and thus does not appear reliable.

A related approach for obtaining ¢ is based on the finite-
size approximates ¢.g(N) built from ratios of Im[w;(N)] or
71 (N) [see Eq. (14)]. In Fig. 5(b) we plot ¢eg(N) [built from

10 @) i
R 7,(N) scaling 0.10 [

= 0.473(8)

¢avg

0.10 0.15

FIG. 5. Determination of the crossover exponent ¢ from the lead-
ing zeros 7;(/N). Results are shown for the tethered HS chain (open
symbols) with surface SW interaction range A, as indicated, and for
the BF-lattice model (filled symbols). (a) 7;(N) vs chain length N,
where the lines are fits to the imaginary part of the Eq. (9) scaling
relation, adapted for the Bt plane. (b) Effective crossover exponent
¢eii(N) [given by Eq. (14) with z = B, + it;] vs N~'/2, where the
lines are weighted linear fits in N~!/2 as given by Eq. (15). Average ¢
values are shown while the individual ¢ values are given in Table II.
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71(N)] vs N~'/2 for the HS chain and BFL models. These
data display linear behavior as expected from Eq. (15) and
extrapolate to similar asymptotic ¢ values (given in Table II)
in the limit of N — oo. The slopes of the linear fits are pro-
portional to the correction-to-scaling amplitude and thus, as
expected from Fig. 3(a), we find that the corrections to scaling
increase with increasing A. The analogous plot for @eg(N)
built from Im[w, (N)] vs N~'/2 (not shown) gives results with
pronounced curvature and thus the linear fit of Eq. (15) is not
applicable. Using a quadratic fit for the N — oo extrapola-
tion gives some results quite inconsistent with those we have
obtained by other methods, so again, we do not consider this
desr(N') approach using the Im[w (V)] zeros to be reliable.

IV. DISCUSSION AND CONCLUSIONS

In this work we have studied the thermodynamics of the
adsorption of a flexible polymer chain onto an attractive flat
surface by analyzing the trajectory of the leading partition
function zeros (z; = w; or B; +it;) through the complex
plane toward the transition critical point z.. By fitting this
trajectory to a scaling relation that includes a lowest-order
correction-to-scaling contribution we are able to locate the
critical point and determine the angle of approach 6, of the
leading zeros toward this point. The latter angle is a univer-
sal quantity for this transition. Once we have identified the
critical point we analyze the variation of the absolute distance
|z1(N) — z.| with chain length N to obtain the crossover expo-
nent ¢, another universal descriptor of this transition. We have
carried out this analysis for a tangent-HS chain adsorbing onto
a hard surface with a SW potential of width Lo with 0.01 <
A < 2.0. The transition temperature increases by a factor of
26 across this range of interaction lengths while the approach
angle and crossover exponent give values of 6, = 56.7(1.5)°
and ¢ = 0.478(10). The limitation of our analysis for the
continuum chain to N < 1280 is set by our computational
resources. The computational demands of the WL simulations
depend on both N and the histogram flatness level (where the
latter controls the precision of the calculation). As previously
noted, we use a rich move set in these simulations to facilitate
the exploration of the full configurational phase space. How-
ever, since for the longer chains we do not take the simulation
all the way to the ground state, a simplified move set with
just the axial rotate and pivot moves should suffice in these
cases. This would improve the simulation efficiency and thus
potentially allow for the study of longer chains.

We have also applied the above analysis to the bond-
fluctuation lattice model which we have previously studied
[15]. In that earlier work we did not systematically implement
corrections to scaling in our determination 7, and ¢. We
assumed a quadratic leading-root trajectory in the complex
plane which underestimates the transition temperature and we
restricted our analysis to the imaginary part of the leading
zeros to find ¢. It is clear now that a systematic application of
corrections to scaling is essential to accurately model the data
for the N range assessable through our simulation methods.
Our new results for the BF lattice model are 6. = 57.5(2)°,
T. = 1.0291(6), and ¢ = 0.485(5) which are in agreement
with Hsu’s results, obtained via PERM for chains up to N =
10000, of 7, = 1.0298(3), and ¢ = 0.487(5) [52].

Our best estimate of the crossover exponent, obtained by
averaging over our HS chain results for different A and our
BFL chain results, is ¢ = 0.479(9). As a check we have also
computed ¢ from the scaling of My (7;), using the T values
from the partition function zero analysis, and obtain ¢ =
0.485(8). These results are in agreement with the several re-
cent estimates obtained by different methods for an absorbing
self-avoiding walk on a simple cubic lattice model which in-
clude ¢ = 0.484(2) (Grassberger [8]), 0.483(3) (Klushin ez al.
[13]),0.492(4) (Plascak et al. [18]), and 0.485(6) (Bradly et al.
[19]). Thus our result for ¢ is both internally self-consistent
and, more importantly, is consistent with the universality of
this exponent across both lattice and continuum models.

A second exponent called § was introduced in Luo’s anal-
ysis of the polymer adsorption transition [11]. This exponent
plays the role of the correlation length exponent v in magnetic
systems and, in finite-size scaling theory [48,50], it describes
the shift of a transition away from the true critical temperature
T, due to finite system size via the scaling relation (with
lowest-order corrections to scaling)

TN — T, =arN"°(1 + crN™2). (17)

In terms of inverse temperature Eq. (17) reads (to first order
in N~1/%)
1 1 ar —1/8 _A

If we continue Eq. (18) into the complex plane, taking the
leading zeros as finite-size estimates of the transition point
such that 1 /TC(N ) = B(N) + it(N), we obtain on compari-
son with the Bt version of Eq. (12) the exponent identity
1/8 = ¢. [Alternatively, the same result is obtained by simply
identifying Eq. (18) with the real part of the St version of
Eq. (9)]. This connection between the exponents § and ¢ for
the adsorption of a self-avoiding walk has been demonstrated
previously by both Bradly et al. [19] and by Martins et al. [20]
using different methods.

Our best estimate for the approach angle of the leading
partition function zeros toward the critical point, obtained by
averaging over our HS chain results for different A and our
BFL chain results, is 6, = 56.8(1.4)°. This values falls within
Janse van Rensburg’s estimated bounds on 6, of 54.6° —
64.0° for an absorbing self-avoiding walk on a simple cubic
lattice [17]. These bounds were obtained by fitting Re[w; (V)]
vs Im[w; (N)] to a simple parabola [i.e., Eq. (11) with ¢ = A]
with the smaller angle resulting from forcing the fit to match
the known critical point. We have a much tighter bound on this
approach angle due to our inclusion of correction-to-scaling
contributions in our analysis. Again, our results are consistent
with the universality of this angle across both lattice and con-
tinuum models. Also, we have obtained this approach angle
in both the complex w and Bt planes and find agreement
between the two constructions, consistent with the conformal
mapping relating w and B + it. Gordillo-Guerrero et al. have
carried out a related study of the Fisher zero approach angle to
the critical point for the three-dimensional (3D) Ising model
[51]. In that work finite-size estimates for the approach angle
were obtained from the first two leading zeros (working in
the u = w™* complex plane) giving an extrapolated value of
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P — 59.2(1.0)°. Thus, the polymer adsorption approach

angle is quite similar to the 3D Ising model result, although
the two systems are not in the same universality class.

The continuum model studied in this work allows us to
investigate the effects of interaction range on the polymer
adsorption transition. In particular, we are able to study a
continuous range of A values, including A < o, which is not
possible in a lattice model. With decreasing interaction range
A the adsorption transition moves to lower temperature sim-
ilar to what is observed for the polymer collapse transition
for a flexible SW chain [53]. However, unlike the polymer
collapse case, where the transition changes from continuous
to discontinuous for sufficiently small interaction range, there
is no such change in the character of the adsorption transition.
Comparing the results for A = 0.1 and 0.01 in Figs. 3-5 there
appears to be a limiting behavior for the leading partition
function zeros and My (T.) as A — 0 (and 7. — 0).

Klushin et al. [13] have studied the effects of interaction
range on the adsorption transition for a self-avoiding walk
on a simple cubic lattice. For such a lattice model the pos-
sible interaction ranges are given by integer multiples of the
lattice spacing with the minimum range being one lattice
unit (whereas in the continuum model we are able to study
interaction ranges smaller than the monomer diameter o).
For a variation in interaction range W from 1 to 10 lattice
units, Klushin et al. find a 24-fold increase in T, that is well
described by a power-law relation T, ~ (W + 1/2)!/" where
v = 3/5 is the Flory exponent. In the inset to Fig. 4 we show
the variation of 7, with interaction range A for our continuum
model. A power-law relation would give linear behavior in
this log-log plot, which is clearly not the case (at least for
A < 1). To describe the variation of 7. with A in the continuum
model we will make an analogy with the polymer collapse
transition, where in the long chain limit the collapse tem-
perature is approximately given by the monomer-monomer
Boyle temperature [53]. Thus we consider a second-virial-like
coefficient for the monomer-surface interaction

b= [ 1=

e @Bl g7 = g +ao(1—eP), (19)
a/2 2

where u(z) = oo for z < 0. B, vanishes at the Boyle temper-
ature Ty = € /kgIn[1 4+ 1/2A]. We include T3(}) in the Fig. 4
inset where it is seen to provide a rough estimate of 7, for the
continuum chain model. For larger A this 7Tz does not map onto
the lattice power-law form for 7, given above. However, for
larger X, a blob with size proportional to A will take on the role
of a monomer [13,54]. For a blob containing N, monomers,
with blob size R, ~ N, we obtain By(T') ~ Ao /2 + Ao (1 —
eVP) leading to the prediction T3 ~ A!/¥ in agreement with
the lattice model finding. The larger corrections to scaling
we observe for A = 2.0, and which are also observed for the
lattice model with increasing W [13], may be a reflection of
this changeover from a monomer to a blob controlled process.
If the basic adsorption unit is a blob, for which the adsorbed
layer will no longer be a simple monolayer, then one might
anticipate that longer chains are required to capture the same
asymptotic behavior (even when corrections to scaling are
included) than for the case of the single monomer adsorption
unit.

Finally, we comment on the range of the values for the
crossover exponent ¢ obtained in this work (collected in Ta-
bles I and II). In particular, for each A in Table I the two
¢ estimates, which come from the same leading partition
function zeros represented in two different ways, do not agree
within the estimated statistical uncertainties. For sufficiently
long chains these results must be identical, however, here we
clearly see finite-size effects despite the fact that we have
included corrections to scaling in our analysis. The mapping
between the w and Bt planes for Egs. (10) and (12) should
preserve the fit parameters m, c, A, B with A — A/y.. Our
results show the m and A parameters to be reasonably well
preserved, however, the ¢ and B parameters, which set the
amplitude of the correction-to-scaling term, are not preserved
in the mapping. The correction-to-scaling term is really an ef-
fective correction that includes all higher-order contributions
[48,49] and we find these contributions to be different in the
w and Bt representations. In all cases we find the corrections
to scaling to be smaller in the St plane. The variation be-
tween the w and Bt-plane estimates for ¢ are larger than the
estimated statistical uncertainty in the individual estimates,
despite the fact that our results for 7,. agree within uncertainty
for the two approaches. Similarly, our ¢ results obtained for
My (T,), which rely on the T, values for the partition function
zero analysis, are close to the w-plane values while, as might
be expected, the values obtained solely from the 7;(N) roots
are similar to our Bt-plane results. Thus, the scatter in all of
our ¢ results is larger than the statistical uncertainty estimated
for each individual value. This type of behavior has been stud-
ied in detail by Bradly et al. [19] for the adsorption of a lattice
polymer in both 2D and 3D systems. These authors show that
different methods for obtaining 7, lead to different estimates
for ¢ for which the statistical uncertainty can be smaller than
the variation between the ¢ values. (These results are quite
striking for the 2D square lattice where the exact value of ¢ is
known.) Thus, Bradly et al. suggest carrying out this type of
calculation using a number of approaches and then averaging
over results from all methods to both obtain a final result and
a realistic uncertainty estimate. For the results presented in
Table I we have no strong reason to prefer one complex plane
construction over the other (noting that they yield essentially
the same critical temperatures) and thus we feel that averaging
over the results from the two constructions is reasonable.

Of course, as shown in our Fig. 5 results, the partition
function zero method does allow the computation of ¢ without
knowledge of T,. However, for our range of N values, we find
that while the 7;(N) roots give consistent results for ¢ the
Im[w;(N)] roots are not reliable for this calculation. There
are two issues that likely contribute here. First, each 7 is built
from both the real and imaginary parts of w so it encodes more
w-plane information than just Im[w;(N)] alone. Second, the
Bt roots are subject to smaller corrections to scaling than
the w roots. Finally, we note that for our large N data the
Eq. (14) ratio method produces very noisy ¢.(N ) values due
to an amplification of uncertainty [see Fig. 5(b)], making it
a somewhat less attractive approach. On the other hand, the
ratio method does highlight the importance of corrections to
scaling, which are not obvious in the direct scaling plot of
Fig. 5(a). The construction used in Fig. 5(b) also allows us
to put bounds on the correction-to-scaling exponent A, since
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TABLE III. Optimal correction-to-scaling exponent A,y ob-
tained by treating A as an additional fit parameter in the Eq. (10)
analysis of the leading partition function zeros for a HS chain teth-
ered to an attractive surface with range Ao and for a BF lattice chain.

Aupl

w plane Bt plane
A =0.01 0.50(5) 0.51(12)
A =0.10 0.49(4) 0.46(9)
A =0.50 0.50(3) 0.50(5)
A =1.00 0.46(3) 0.36(5)
A =2.00 0.36(4) 0.27(5)
BF-lattice 0.53(3) 0.53(6)

the lines for different A are expected to intersect at N2 = 0.
Varying A moves the intersection location of these lines and
we find that the intersection region overlaps N=* = 0 for the
range 0.48 < A < 0.55.
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APPENDIX: CORRECTION-TO-SCALING EXPONENT

Throughout the data analysis presented in Sec. III, we
have assumed a correction-to-scaling exponent of A = 0.5.
To investigate the validity of this assumption we have carried
out curve fits to Eq. (10) (and its Br-plane analog) in which
A is treated as free parameter. The resulting best fit A values
are listed in Table Il as Aqp. In the majority of cases A = 0.5
falls within the uncertainty range of these best fit A values.
These results for Aqp are based on the minimization of the
chi-squared function Xz(yc, m, c, A) and in all cases we find
the minima in x? to be relatively insensitive to variation in A
in the neighborhood of A = 0.5 (as has been noted in lattice
studies of polymer adsorption [8,18,20,21]), with the differ-
ence between the optimal fit parameters and those obtained
using A = 0.5 being rather modest. Also, in such multiparam-
eter fits there can be strong correlation between the adjustable
parameters. For example, for the cases of A = 1.0 and 2.0,
holding the approach angle fixed to 6, = 58.0° (m = 0.625)
moves the fit results for Agy, into the range 0.47-0.51. Thus,
we consider the choice of A = (.5 to be reasonable and, both
for clarity of presentation and consistency with previous work,
we have chosen to use this value for all of our reported results.
Note that we want to fix A to allow for higher precision
estimates of the other fit parameters.
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