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Controlling solvent quality by time: Self-avoiding sprints in nonequilibrium polymerization
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A fundamental paradigm in polymer physics is that macromolecular conformations in equilibrium can be
described by universal scaling laws, being key for structure, dynamics, and function of soft (biological) matter
and in the materials sciences. Here we reveal that during diffusion-influenced, nonequilibrium chain-growth
polymerization, scaling laws change qualitatively, in particular, the growing polymers exhibit a surprising
self-avoiding walk behavior in poor and θ solvents. Our analysis, based on monomer-resolved, off-lattice
reaction-diffusion computer simulations, demonstrates that this phenomenon is a result of (i) nonequilibrium
monomer density depletion correlations around the active polymerization site, leading to a locally directed
and self-avoiding growth, in conjunction with (ii) chain (Rouse) relaxation times larger than the competing
polymerization reaction time. These intrinsic nonequilibrium mechanisms are facilitated by fast and persistent
reaction-driven diffusion (“sprints”) of the active site, with analogies to pseudochemotactic active Brownian
particles. Our findings have implications for time-controlled structure formation in polymer processing, as in,
e.g., reactive self-assembly, photocrosslinking, and three-dimensional printing.
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I. INTRODUCTION

Polymer physics provides universal scaling concepts [1–5]
which have strongly shaped the research in the natural and life
sciences as well as engineering over the past decades [6–12].
Paradigmatic are simple scaling concepts in equilibrium, e.g.,
for the end-to-end distance of a chainlike polymer, Ree ∝ Nν ,
where the conformational scaling exponent ν depends on the
solvent quality. For a purely random walk (ideal or θ solvent),
ν � 1/2, while for poor solvents the polymer collapses and
1/3 < ν � 1/2, and for athermal solvents ν � 3/5, consti-
tuting the well-known self-avoiding walk (SAW) or “Flory”
scaling [1] for swollen conformations. Most polymers exhibit
a universal scaling behavior of various structural and dynamic
properties, such as coil dimensions and relaxation, despite a
different chemical composition. This universality (in equilib-
rium) across length and timescales formed the basis for the
extraordinary historical success of polymer physics in a wide
range of fields.

However, functional materials are typically synthesized,
processed, and functioning under nonequilibrium conditions.
Hence, growing attention has been drawn to investigate
nonequilibrium polymer properties, how to conserve and con-
trol them, and their consequences on material design. In
particular, the possibility of generating stored, “extra” free en-
ergy, stresses, and memory emerges, which can be potentially
harvested for the design of highly responsive, interactive, or
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even adaptive materials [13–16]. The anticipated wide range
of new structural, dynamical, and mechanical properties arises
from the nonequilibrium competition between the timescales
of (reaction) synthesis, processing, polymer relaxation, and
observation (function) [17–24]. However, such a complex
competition of timescales, often also involving spatial mod-
ulation and spatiotemporal correlations, has hampered our
understanding of nonequilibrium polymer properties up to
date.

For synthesizing strongly “out-of-equilibrium polymers,”
the type of kinetics and in particular the speed of the poly-
merization reaction play a key role. Most of the common
and commercially used polymer architectures are produced by
chain polymerization techniques [1,25] such as radical poly-
merization. Controlling (fast) photopolymerization reactions
is crucial for mastering high-resolution three-dimensional
(3D) and 4D printing techniques [12,26,27]. Polymerization
is also possible on colloidal scales by guided, diffusion-
controlled self-assembly of supracolloidal polymer chains
[28,29]. However, structural insights are sparse and quanti-
tative kinetic rate laws still absent. Importantly, experiments
observe large macroscopic changes during and after synthe-
sis, e.g., retarded material shrinkages associated with the fast
polymerization during the autoacceleration phase [30] (also
Trommsdorff-Norrish or gel effect [31,32]), whose micro-
scopic mechanisms remain unexplained.

On the fundamental level, magnetic-tweezer experiments
of the real-time dynamics of a growing polymer indeed
demonstrated a competition between reaction and confor-
mational relaxation times [33]. Studies on chain walk-
ing catalysis of dendritic polymers [34] also reported a
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dependence of the emerging structure on the reaction rate:
High rates lead to linear structures, while lower ones formed
hyperbranched structures, hinting to a nonequilibrium con-
formational behavior tunable by the rate. While molecular
computer simulations of growing polymer chains have been
performed [35–39], they either a priori assumed good solvent
conditions in their models or did not systematically investigate
nonequilibrium behavior in varying solvent qualities. How-
ever, classical theoretical concepts for diffusion-influenced
polymerization kinetics [17,31,32,40] shall strongly benefit
from studies with a spatiotemporal, particle-level resolution
including memory or proximity effects.

In particular, lattice models such as the growing-SAW
(GSAW) have been applied to study the polymer growth in a
good solvent by means of a weighted choice of the next bond
formation [41,42], and which have been used by Taniya et al.
[43] in combination with Monte Carlo simulations to study
conformational differences in nonequilibrium polymerization.
Due to the a priori definition of weighted growth probabilities,
the GSAW approach already implies good solvent conditions
and a SAW behavior. No localized monomer-depletion around
the growing end as well as heterogeneous (in time and space)
chain relaxation effect are considered there, in contrast to the
present work.

Here, using off-lattice, monomer-resolved reaction-
diffusion computer simulations of chain-growth
polymerization of a single polymer, we demonstrate
that solvent quality can be controlled by timescales
in nonequilibrium and also depends on the time of
of observation. In other words, we observe substantial
nonequilibrium effects on the conformational properties of the
growing chain: For fast polymerization, the time-dependent
size of the polymer exhibits an unexpected SAW scaling in
ideal and θ -solvent conditions, and also enhanced scaling
exponents in poor solvents, before they relax back into
equilibrium. Our surprising findings can be explained by
intrinsic nonequilibrium spatiotemporal correlations leading
to local structural depletion and directed growth of monomers,
related to pseudochemotactic active Brownian particles
(ABPs) [44] steered by nutrition concentration gradients
[45,46]. The key for understanding is the competition of
the various important timescales (diffusion, reaction, chain
relaxation, observation) in the system, realizable only in a
certain parameter window of intrinsic reaction propensities
and monomer densities, which we discuss in detail. Our
results will be useful for various materials applications
where structure formation in nonequilibrium synthesis and
processing can be controlled by time.

II. REACTION RATES OF GROWING CHAINS

A. Macroscopic rate laws

In our reactive Brownian dynamics simulation framework,
the chain polymerization propagates as

PN−1 − AC + M
k(λ)−−→ PN − AC, (1)

where PN−1 − AC is a polymer chain consisting of N − 1
nonreactive monomers and with a terminal active center (AC),
which reacts with a free monomer M in the surrounding solu-

tion with monomer density ρ(t ) irreversibly with a reaction
rate constant k(λ) to form a chain with one additional bonded
monomer PN − AC. Figure 1(a) illustrates a propagation step:
If free monomers are found within the reactive volume of the
AC, then a new bond is formed between the AC and the closest
free monomer with a reaction frequency or “propensity” λ.
The latter interpolates between reaction-control and diffusion-
control [32,47]. The quality of the (implicit) solvent in our
simulations is tuned by the interaction parameter ε in the
Lennard-Jones interaction between the monomers: ε = 0 is a
perfectly ideal chain and εθ describes real-chain θ conditions,
such that ε < εθ are good solvent conditions and ε > εθ are
poor solvent conditions in equilibrium (see Appendix A).

Typically such reaction kinetics would be described as
pseudo–first order [48], since the concentration of the AC,
ρac = V −1, remains constant in the total volume V . The
concentration of free monomers is initially ρ0 = ρ(t = 0) =
Nm,0/V with Nm,0 as the initial monomer concentration. The
elementary rate law and its integrated form for the time-
dependent concentration ρ(t ) of free momomers then is
written as follows:

dρ(t )

dt
= −k(λ)ρ(t ) ρac and ρ(t ) = ρ0e−tk(λ)ρac , (2)

where the degree of polymerization is N (t ) = −V dρ(t )/dt .
This simple first-order kinetics says that the concentration of
monomers should decay exponentially with a timescale set by
V/k(λ) and the polymer grows with a timescale (inverse rate)
τreact = [k(λ)ρ(t )]−1.

Reactions are fast (i.e., diffusion-influenced or controlled)
if the propensity λ is large and/or the free monomer density
ρ is large. Simulation results for the polymerization are ex-
emplified in Fig. 1(b) for three selected reaction propensities
λ and initial monomer bulk density ρ0σ

3 = 0.3, (σ is the
size of a monomer and sets our length scale). The snapshots
taken from growing chains at high and low λ [red and blue
in Fig. 1(c)] already indicate that they exhibit differences in
the topological growth behavior: A fast growth leads to more
extended chains, whereas slower reaction propensities yield
a more compact, sometimes even globular chain structure.
Importantly, in Fig. 1(b) we find that the elementary law (2),
fitted to the data for initial times cannot quantitatively describe
the overall polymerization rate for the faster reactions, that
is, at the higher propensities clear deviations are observed for
increasing polymerization time.

B. Microscopic description of reaction rate coefficients

One dominant reason for the failure of first-order kinetics is
the coupling between the reaction itself and a reaction-driven
jump-diffusion of the active end-monomer [32,40], which was
introduced already in the seminal work by Schulz [31] as
“reaction-diffusion” and verified experimentally [49]. The-
ories for diffusion-influenced bimolecular reactions require
these diffusion coefficients, e.g., as in the here relevant Doi
scheme [47,50],

k(λ) = 4πDR

⎡
⎢⎣1 −

tanh
(

R
√

λ
D

)

R
√

λ
D

⎤
⎥⎦, (3)
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(a) (b)

(c) (e)

(d)

FIG. 1. Simulation and kinetics of a growing polymer chain. (a) Schematic representation of the growth step of a polymer chain (blue) with
an active center (AC, yellow) with reactive radius R and reaction propensity λ. During a reaction a bond is formed between a free monomer
of size σ (green) and the AC to propagate the chain. The newly added monomer spans up an angle φ by the terminal two bond vectors �bn−1

and �bn during bond formation. The newly attached monomer becomes the new active center. (b) Concentration of free monomers ρ(t )/ρ0

scaled by its initial value ρ0σ
3 = 0.3 for fast (red; λ = 105 τ−1

B ), intermediate (magenta;102 τ−1
B ), and slow (blue; λ = 101 τ−1

B ) reactions
versus time t (scaled by the Brownian timescale τB = σ 2/D0) at θ conditions, ε = εθ . Symbols represent simulated data, the lines show the
corresponding fits to initial times according to the first order rate equation (2). (c) Snapshots of fast (red) and slowly (blue) growing chains.
(d) Total diffusion coefficient D(λ, ρ ) versus reaction propensity λ for perfectly ideal (ε = 0) and real chain θ conditions, ε = εθ (simulation:
symbols; dash-dotted gray and orange line: Numerical solutions from the set of coupled Eqs. (3) and (4) for Dtb = Dm/N with α = 1.0
and Dtb = Dm with α = 1.41, respectively). (e) Scaled reaction rate k(λ, ρ ) for the same parameters [simulation: Symbols; dash-dotted gray
and orange line: Numerical solutions from the set of coupled Eqs. (3) and (4) for Dtb = Dm/N with α = 1.0 and Dtb = Dm with α = 1.41,
respectively]; horizontal dashed black line: Smoluchowski bimolecular reaction rate kS = 8πD0R.

where R = 6
√

2σ represents the reaction radius around the
active center. The Doi rate approaches the classical Smolu-
chowski rate [32,47] for complete diffusion control, k =
4πDR, for infinitely fast propensities, λ → ∞.

C. Coupling between active center diffusion and reaction rates

The mutual diffusion coefficient D between particles A and
B is D = DA + DB. In the case of a growing polymer chain,
thus [32]

D(k, ρ) = Dm + Dac(k, ρ) = Dm + Dtb + Djump(k, ρ), (4)

consisting of the contribution by the free monomers Dm

and the reaction-rate-dependent diffusion of the chain’s ac-
tive center Dac(k, ρ). The latter is the sum of the thermal,
fluctuation-induced diffusion of the terminal bead Dtb and
a jump (reaction-)diffusion Djump(k, ρ). Dtb depends on the
relaxation timescales of a polymer chain consisting of N
monomers, which are described by the Rouse model [4,5,51]:
A chain segment of length N/p =: s relaxes with a timescale
τp ≈ b2/(6π2Dm)s2. The Rouse time τRouse is the (longest)
relaxation time of the whole chain (s = N), while τm ≈

b2/(6π2Dm) represents the Kuhn monomer relaxation time
for the highest mode, s = 1. Let us compare the reac-
tion timescales τreact = (kρ)−1 with τm and τRouse. For short
times τreact � τm, the fastest diffusive behavior with Dtb � Dm

should apply. At long reaction timescales (τreact 	 τRouse),
the slowest diffusive behavior following the chain center-
of-mass with Dtb � Dm/N is recovered [5,51]. It should be
noted that for intermediate reaction timescales τm > τreact >

τRouse subdiffusive behavior for the AC is reported [5], which
corresponds to a diffusion coefficient Dtb = Dm(τm/τreact )1/2.
Hence, depending on the reaction timescale, different diffu-
sion scales are relevant for the AC motion and the growth
process.

The second contribution, Djump(k, ρ) = αb2ρk(λ)/6, cov-
ers a “jump” process, since after the formation of a new bond
in the chain, the AC moves discretely by one bond length b to
be the new terminal chain element. This maps to diffusive,
random-walk behavior in 3D with step length b and jump
rate ρk(λ) [17,31,32,40]. Importantly, the jump diffusion is
determined by the reaction rate itself, thus requiring a self-
consistent solution of Eqs. (3) and (4), which we explicitly
perform below. Moreover, in this work we uncover that fast
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growth leads to a locally directed, less random motion of the
AC. We consider this effect by introducing the coefficient
α = τrot/τreact = τrotρk(λ). The rotational reorientation time
τrot describes in analogy to active Brownian particles (ABPs)
[44] the direction memory, or persistence, of translational mo-
tion. Here the lower limit α = 1.0, where τrot = τreact (that is,
completely random attachment of a new monomer) represents
no persistence, while α > 1.0 and thus τrot > τreact covers a di-
rected growth behavior. The latter leads to enhanced long-time
diffusion as for ABPs [44], since between multiple growth
events the chain does not loose its directional memory.

These considerations lead to lower and upper limits for the
mutual diffusion D(λ, ρ) and the rate k(λ) to describe our
simulation data. The slow limit is obtained by assuming the
longest Rouse relaxation and α = 1, involving no fit parame-
ter. The fast limit assumes the fastest, short-time diffusion for
the terminal bead and uses α as a fit parameter to describe our
fastest data. For ρ0σ

3 = 0.3, a value of α = 1.41 is found.
Figure 1(d) displays the mutual diffusion constant D(λ, ρ0)
from simulations (symbols) compared with the self-consistent
numerical solution of Eqs. (3) and (4) for the fast and slow
diffusion limits, where we used ρ = ρ0 for simplicity in our
qualitative discussion. In Fig. 1(e) we show a comparison of
the corresponding rates. Note that the simulated rate can be
one order of magnitude faster than the classical Smoluchowski
limit, because the jump diffusion leads to fast “sprints” of the
AC. The figure thus shows that for propensities λ > 10 τ−1

B ,
not only the diffusion contribution of the terminal bead Dtb,
but also the inclusion of Djump is required to describe the
simulated reaction rate coefficients (symbols). Our analysis
demonstrates that our improved diffusion rate theory serves
as a very reasonable orientation for the accessible range
of diffusion coefficients for growing polymer chains, while
quantitative rate descriptions are still very challenging due
to the complex competition of timescales, and because of
nonequilibrium structural effects as we will explore deeper
below.

We note that in the diffusion-controlled (dc) limit λ → ∞
(and assuming α = 1 for simplicity), we derived an analytical
expression for the total (self-consistent) rate, yielding

kdc(ρ) = 4π (Dm + Dtb)R

1 − 2
3πRb2ρ

. (5)

The result is remarkable for two reasons: (i) during the reac-
tion ρ(t ) decreases and the rate slows down beyond first order
kinetics, which explains our observations in Fig. 1(b). And
(ii) the denominator of Eq. (5) diverges at a critical monomer
density of ρcrit = (2/3πRb2)−1 ≈ 0.43 σ−3. The physics be-
hind this behavior is that for higher densities of the free
monomers, the jump diffusion of the active center becomes
so fast that after every jump a new reacting monomer will be
found with high probability. Very fast cascade reactions (very
fast “sprints”) become possible where segments grow almost
instantaneously and the rate diverges. The critical density
ρcrit can thus be viewed as a dynamical percolation threshold
for fast growth reactions. We indeed observe indications of
such a cascading behavior for fast reactions at higher densi-
ties as discussed further below. In radical polymerization of
dense, many-chain systems with hindered termination this is

probably related to the autoacceleration which can lead to a
polymerization “explosion” [30,32].

III. EMERGING PROPERTIES FROM SIMULATED
CHAIN GROWTH

A. Polymer size scaling for different reaction rates

The fast propagation of the chain leads to unexpected
structural and conformational effects, in particular for how
the polymer size changes with the degree of polymerization
N (“size scaling”). Figures 2(a) and 2(b) show end-to-end
distances Ree(N ) of growing chains at densities ρ0 = 0.125
and 0.3 σ−3, respectively, in ideal and θ -solvent conditions.
The simulated data has been fitted with the typical power law
Ree = bNν to obtain the scaling exponents ν. In stark con-
trast to the equilibrium case, nonequilibrium growing chains
in fast reaction conditions (λ = 105) yield size scaling ex-
ponents representing a SAW scaling, that is, ν � 3/5. For
lower propensities (λ = 100), equilibrium scaling, ν � 1/2,
is recovered. The end-to-end distances Ree(N ) are calculated
in our simulations immediately after the formation of a new
bond, and for each N (t ) all Ree of a system are averaged.
These averaged Ree[N (t )] are functions of time t and thus the
underlying chain conformations contain the information from
the nonequilibrium processing in comparison to the relaxed
equilibrium counterpart.

The dependence of ν with propensity λ for the two den-
sities is summarized in Fig. 2(c): Clearly, low propensities
λ yield smaller exponents ν(λ, ρ0), and for both cases (fully
noninteracting and εθ ) the random-walk value of 1/2 is fully
recovered. For larger propensites, λ � 102, a transition to
SAW scaling is observed for both ideal and θ conditions and
both densities. Note that the scaling exponent is lower for
the higher density, ρ0σ

3 = 0.3, although the total propagation
rate is higher. This trend must be assigned to the existence
of the dynamic percolation limit as predicted by equation (5),
which is approached here. Hence, the scaling exponents are
depending nonmonotonically on density. We will discuss this
fact below again when we discuss the structural mechanisms
and more generally a “state” diagram of polymerization be-
havior versus λ and ρ0.

B. Structural properties of the growing chain and the free
monomers around the active center

The observed SAW-behavior indicates that for fast growth
the chain is spatially self-avoiding, i.e., polymer beads do
not overlap. In Fig. 3(a), we compare the average number
of overlapping nonbonded chain beads Noverlap(N ) from the
growth simulations with their equilibrium counterparts for
θ conditions and good solvent conditions (represented by
ε = 0.1 kBT ). This measure counts the number of overlaps
within a threshold distance of 1.5 σ , and higher counts in-
dicate more collapsed chain topologies. We indeed observe a
lower degree of overlap and thus more extended chains for
faster reaction conditions. This confirms the observations of
Fig. 2 that fast growing chains are more swollen than they
would be at equilibrium conditions. The nonequilibrium data
for ideal and θ conditions is very well accommodated between
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(a) (b) (c)

FIG. 2. Scaling behavior of growing polymer chains. [(a) and (b)] End-to-end distances for growing chains Ree(N ) in perfectly ideal
(ε = 0) and real-chain θ (εθ ) solvents for slow (λτB = 1) and fast (λτB = 105) rates and for densities ρ0 = 0.125 and 0.3 σ−3, compared
with the expected equilibrium behavior for good solvents ν = 3/5 (black dashed), θ solvents ν = 1/2 (black dash-dotted), and poor solvents
ν = 1/3 (black dotted). (c) Summary of scaling exponent ν(λ, ρ0) in dependence of the reaction propensity λ for the two densities and the two
solvent qualities as in (a) and (b).

(a) (b)

(c)
(d)

(deg)

FIG. 3. Structural nonequilibrium properties of growing polymer chains for ρ0σ
3 = 0.125. (a) Number of nonbonded chain beads within

a distance of 1.5 σ as measure for the overlap Noverlap(N ). The nonequilibrium results for fast and slow growth are compared with the degree of
overlap for equilibrium ideal chains (black, dash-dotted line) and equilibrium chains with essentially repulsive, SAW-like, pairwise interactions
of ε = 0.1 kBT (black, dotted line). (b) Normalized radial densities profiles ρ(r, t )/ρ(t ) around the active center for different reaction conditions
compared with the low-density equilibrium approximation of g(r) for εθ (black, dashed line) and the theoretical profile in the steady-state
diffusion-controlled (“Smoluchowski”) limit ρ(r, t ) = ρ(t )(1 − R/r) (black, dash-dotted line). (c) Schematic representation of directed growth
of the (yellow) AC of a polymer chain away from the monomer-depleted zones (dashed-line circles) around the reacted blue polymer beads.
The green spheres represent free monomers. (d) Probability distribution of bond angles P(φ)/ sin φ between the new �bn and the previously
formed bond vectors �bn−1. The distribution is normalized by sin φ to account for the isotropic azimuthal distributions of vectors in 3D space.
The black, dash-dotted line represents a homogeneous distribution among all possible angles.
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the equilibrium ideal (upper) and equilibrium SAW (lower)
bounds in Fig. 3(a).

The self-avoidance can be explained by the nonequilibrium
density profiles of free monomers around the ACs ρ(r, t )/ρ(t )
plotted in Fig. 3(b): They show a monomer-depleted zone
at small distances r even for a completely ideal system at
high reaction rates. All monomers in that zone typically
react before they approach closer, and thus an excluded
volume (nonequilibrium correlation hole) around the active
center is created. For the fast reactions, the density profile
around the classical Smoluchowski sink with ρ(r) = 0 for
r < R and ρ(r)/ρ∞ = 1 − R/r for all r � R and with ρ∞ =
ρ(r → ∞, t ) as the density of the surrounding bulk liquid
serves as a good orientation in the plot. For the slow reactions,
no such correlation hole is observed, because the monomers
have time to relax between reaction events. The profiles are
then near equilibrium, as seen by comparing to the equilib-
rium radial distribution function in the low-density limit being
ρ(r)/ρ∞ = g(r) = exp[−βuLJ(r)] for the θ solvent. The pres-
ence of interactions leads to an excluded volume around each
particle, which manifests at slower reaction in a lower degree
of overlap in Fig. 3(a) and ρ(r, t ) = 0 for r � σ in Fig. 3(b).
Only in the ideal case for slow reactions, free monomers are
found in very close proximity to the active center (r < σ ), as
expected for Doi type of reactions [47].

The depletion and local self-avoidance leads to a directed
growth of the polymer chain, which rationalizes the ABP-like
behavior and the “persistence factor” α (and persistence time
τrot) introduced in the jump diffusion theory above. The rea-
son, illustrated in Fig. 3(c), is that a newly attached monomer,
becoming the AC, has the density depletion hole in the region
“behind” it, i.e., at the location of the previous AC. This
fact is evidenced by the probability distribution of growth
angles P(φ) in Fig. 3(d): A growth angle, defined by the angle
between the previous and the newly formed AC bond as in
Fig. 3(c), of φ = π = 180◦ means that the growth is perfectly
“forward,” whereas φ = 0 means that the vector points exactly
in opposite direction. A flat distribution, i.e., all angles are
equally likely and the chain grows randomly, is found in good
agreement for the slow, ideal growth of a chain. However, for
fast growth, angles larger than φ ≈ 0.65π = 116.5◦ are much
more unlikely than for slow growth. This exclusion confirms
the concept of depleted zones in the wake of the moving active
center.

The observed effect of persistent self-avoiding motion is
comparable to a clever worm which eats its way through an
apple and which will always move in a direction where there is
food, no voids. An ABP analogy has been reported by Merlitz
et al. [46], where the orientation of the active particles without
sensing the concentration gradient is driven by translational or
directional memory, leading to pseudochemotaxis [45]. How-
ever, in the polymerization case the food (free monomers)
can move and diffuse. We actually observe that the deple-
tion holes [cf. Fig. 3(b)] for higher densities become much
smaller (see Appendix C) since the percolating pathways and
cascadelike reactions (very fast “sprints”) are so fast that the
monomers do not generate a stationary Smoluchowski density
profile. This loss of depletion holes is the structural rea-
son why scaling exponents decrease again for high densities
[cf. Fig. 2(d)].

C. Rate and density dependence of the scaling exponents

The nonequilibrium scaling behavior is not limited to ideal
or θ conditions. Figure 4(a) shows that the nonequilibrium
effect on the scaling exponent ν(ε) is observed for all in-
teractions ε, and thus fast growing polymer chains are more
extended with respect to their equilibrium counterparts in all
solvent conditions (see Appendix B). However, the effect is
most substantial in ideal, θ , and poor solvent conditions. As
expected, for slow reactions the behavior transits back to
the equilibrium situations. For discussing the conditions at
which nonequilibrium effects occur more systematically, we
screened the growth behavior for the ideal case for various
densities ranging from ρ0σ

3 = 0.01 to 1.0 and different λ

(see Appendix C). The resulting nonequilibrium “state” di-
agram is depicted in Fig. 4(b), representing random walk,
intermediate, and SAW scaling behavior: Slow reactions (low
ρ0 and λ) yield the equilibrium result of ν ≈ 0.5 (circles)
for θ solvents; increasing ρ0 and λ causes faster reactions
which results in rising values of the scaling exponent closer
to a good solvent behavior (squares). For very large densities,
roughly beyond the critical Smoluchowski percolation density
ρ � ρcrit ≈ 0.43 σ−3 [see Eq. (5)], the exponents decrease
again, as argued above.

IV. CRITERIA FOR TIME-CONTROLLED SOLVENT
QUALITY: COMPETITION OF TIMESCALES

To understand the topology of the λ-ρ0 state diagram
theoretically, let us more deeply inspect the timescales in
these systems: We have the “process” timescale of reaction,
τreact = [ρk(λ, ρ)]−1, the intrinsic timescales of free monomer
diffusion, τB = σ 2/D0 (equivalent to b2/D0 in our model),
and, finally, the timescales of polymer segment relaxation,
τp = b2/(6π2D0)s2, for segment size N/p = s. As argued
before, depletion correlations and persistent directed growth
should be visible if the reaction timescale is faster than other
relevant relaxation timescales. For Smoluchowski-type de-
pletion holes to be present [recall Fig. 3(b)], the reaction
rate should be not slower than the diffusion timescale, i.e.,
τreact � τB. Comparing τB and Rouse segment relaxation, τp,
for this condition, we find that segments of the lengths s � 8
cannot relax within two reaction events. Hence, we see that if
condition τreact � τB is fulfilled, then, according to Rouse, also
τreact � τp for a sizable segment length of a minimum of n = 8
is satisfied. Hence, very universally a growing segment of a
few monomers remains persistent during the (fast) reaction
timescale, as indeed observed in our structural analysis.

From these arguments we can estimate a theoretical thresh-
old where nonequilibrium effects should start to play a role:
The coloring of the background contours in Fig. 4(b) repre-
sents a comparison between the relaxation time τrelax = τp∗

of a Rouse segment with N/p∗ = s∗ = 5 and the reaction
scale τreact, using the ratio τrelax/(τrelax + τreact ). The fit of
the segment size of five beads provides the best agreement
with the observations from simulations. It is indeed close
to the analytical estimate made above. The larger this ratio
τrelax/(τrelax + τreact ) is, e.g., approaching unity, the faster the
reaction is compared to the segment relaxation and we ob-
serve nonequilibrium behavior. If the ratio is � 1, then the
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FIG. 4. Summary of conformational scaling and state diagram. (a) Scaling exponent ν as a function of the solvent quality (expressed
by interaction paramer ε) for fast growing (red square), slowly growing (blue diamond), and nongrowing polymer chains in equilibrium
(gray circle), all at ρ0σ

3 = 0.125. The black dash-dotted, dashed, and dotted lines serve as orientation for reference exponents ν = 3/5, 1/2,
and 1/3, respectively. (b) State diagram for growing ideal polymer chains (ε = 0). The circles, crosses, and squares represent exponents
ν < 0.525 (θ solvent), 0.525 � ν < 0.55 (intermediate), and ν � 0.55 (good solvent), respectively. The smooth contours in the back represent
the ratio between reaction timescale τreact and the segmental relaxation τrelax time of a segment with N/p∗ = s∗ = 5. Red regions illustrate
chain relaxation times τrelax 	 τreact , while blue regions depict τrelax � τreact . The bright-white thin region in between, together with the black
dashed line corresponds to the boundary τrelax = τreact . The horizontal black dotted line represents the critical Smoluchowski percolation density
ρcrit = 0.43 σ−3, as predicted from the self-consistent Smoluchowski approach, Eq. (5).

segments relax much quicker than new elements are added
and the growing chain exhibits equilibrium random walk
behavior. The black dashed line in Fig. 4(b), which repre-
sents the combinations of λ and ρ0, where τrelax = τreact, that
is, τrelax/(τrelax + τreact ) = 0.5, represents in good agreement
with the simulation data the topology of the boundary between
equilibrium and nonequilibrium behavior.

Finally, it is also important to briefly note on an-
other timescale in the problem: the observation (simulation)
timescale τsim, often considered the “Deborah number” in
polymer rheology [52]. If this observation window is long
and thus the polymer can relax entirely, then also equilibrium
scaling of the total chain size should be approached. The
simulation timescale can be expressed by the mean num-
ber of added monomers N as τsim = Nτreact. Comparing this
polymerization time to the polymer segment relaxation of
a segment of length s, Nτreact = b2/(6π2D0)s2 with a fast
τreact � τB = b2/D0 set by the diffusive timescale, we find that
segments of size s � 8

√
N have maximally relaxed within

the time simulated. Hence, for fast reactions, the full chain
will never relax in the observation window but only segments
with a relative amount of the chain decreasing as ∝ 1/

√
N .

In other words, the longer the polymerization observation, the
shorter the relative amount of polymer which has relaxed back
to equilibrium. This nonequilibrium relaxation of polymer
chains has analogies to the relaxation of chains after releasing
them from an applied force f [3,53], only that in the case of
polymerization this relaxation will propagate spatially from
the beginning (initially polymerized segments) to the growing
end, i.e., exhibits strong spatiotemporal heterogeneity.

V. CONCLUDING REMARKS

Our simulations provide molecular-level insight into the
nonequilibrium structuring of polymers during chain-growth
polymerization in the presence of freely diffusing monomers.

In particular, a directed single-chain polymerization appears
with increased size scaling exponents at faster reaction con-
ditions. These effects originate from the nonequilibrium
density depletion of reacting monomers and the competi-
tion of reaction, diffusion and chain relaxation timescales,
even in the ideal, fully noninteracting case. Our results
complement known concepts of polymerization kinetics for
termination rates of many-chain systems, where the chain
growth is characterized by “reaction diffusion” jumps and the
Trommsdorff-Norrish-effect [17,31,32,40], by novel struc-
tural insights. Our insights apply to polymerization on all
scales, for example, self-assembly of patchy, colloidal poly-
mers [28,29].

The growth of rather stretched chain morphologies at fast,
nonequilibrium conditions compared to collapsed structures
in equilibrium at θ or poor solvent conditions might open
pathways toward the design and creation of novel adaptive
materials [15,16] for industrial applications, potentially using
fast 3D and 4D (photo)polymerization techniques [12,26,27].
During nonequilibrium processing, tensely stretched chain
segments may contain anisotropic stress and stored energy
over their equilibrium counterparts, and controlled storage
and delayed energy release back to equilibrium will constitute
fascinating aspects for future studies [20,21].

In future studies, our simulation and data analysis frame-
work can also provide insight in the emerging size distri-
butions and nonequilibrium effects of systems containing
many growing chains to study the consequences of different
processing pathways in more realistic solutions and melts.
Experimental evidence of uncontrolled release of stretching
energy can be found, for example, in material shrinkage of
polymer melts during and after autoacceleration [30]. Fur-
thermore, the experiments conducted by Ramezani et al. [54]
on the thermodynamic work performed by stressed polymer
melts represent a promising direction for future applications
of our herein presented simulation framework.
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Interestingly, the active centers in fast chain polymeriza-
tions behave analogously to ABPs in search of food [45,46],
but in contrast to ABPs this originates from the synergistic
physics of the growing chain and diffusive monomer motion
rather than the properties of the single particles. Due to the
analogy, it will be interesting to investigate if polymerization
in dense, many-chain systems shows collective behavior sim-
ilarly rich as for ABPs, such as “swarming,” microclustering,
ratchet effects, activity-induced phase transitions, or novel
interfacial phenomena [44]. Such spatiotemporal pattern for-
mation is very typical in reaction-diffusion processes and, if
controllable, can lead to novel hierarchical material structures
on various length and timescales.

VI. METHODS

A. Brownian dynamics

We performed all simulations in the LAMMPS software
package [55] using the formalism for numerically integrating
overdamped Langevin dynamics, that is, Brownian dynamics
(BD) simulations. The equation of motion for a particle i is
written as

ξiṙi = −∇U (ri ) + R(t ), (6)

where ṙi and ri denote velocity and position of the ith particle,
the drag coefficient ξi and the diffusion coefficient Di are
related through the Einstein relation Di = kBT/ξi, and R(t )
is the random force vector. All diffusion coefficients Di are
set to D0 = σ 2/τB with σ = 1.0 as the van der Waals radius
of the particles as well as our unit for length. The components
of the random force vector fulfill the properties 〈Rα (t )〉 = 0
and 〈Rα (t )Rβ (t ′)〉 = 2ξ 2

i Diδαβδ(t − t ′) with α and β denoting
the spatial dimensions and δ being the Dirac δ function. The
pairwise nonbonded interactions are described through a 12-
6-Lennard-Jones potential, which is written as

uLJ
ij (ri j ) = 4ε

[(
σ

ri j

)12

−
(

σ

ri j

)6]
, (7)

where ri j is the distance between the particles i and j, and ε as
the depth of the potential well determines the strength of the
interactions as well defines our solvent quality (see Appendix
A). Between bonded neighbors i and j in the polymer chain,
we only apply a harmonic bond potential with ubond

i j (bi j ) =
Kbond(bi j − b0)2, where bi j is magnitude of the bond vector,
Kbond = 20εσ−2 is the spring constant, and b0 = σ is the equi-
librium bond length. For a free monomer i, the corresponding
force acting on it is written as

Fi = −∇U (ri ) = −
Nm,0+1∑

i �= j

∇uLJ
i j (ri j ), (8)

where Nm,0 + 1 is the total number of particles in the system
and for the nth (nonterminal) chain bead

Fn = −∇ubond
n−1,n(bn−1,n) + ∇ubond

n,n+1(bn,n+1)

−
Nm,0+1∑

j �∈{n−1,n,n+1}
∇uLJ

n j (rn j ), (9)

where for the terminal beads n = 1 and N , the first or second
bonded contribution are omitted, respectively. The positions
of all Ntot particles are updated using the Euler-Maruyama
propagation scheme [56], which is written as

ri(t + �t ) = ri(t ) + �t

ξi
Fi +

√
2D0�tζi, (10)

where �t is the integration time step, which is 10−5τB for all
systems investigated, and ζi is a vector consisting of random
values following a standard normal distribution.

B. Bond formation

Every (λ�t )−1 integration time steps, the algorithm checks
if a bond formation is possible with a probability preact = 1.0.
In the simulations, reaction checks are performed between
the nearest free monomer and the active center using the
cut-off protocol method [35,37,38] following the Doi scheme
[47,50,57] using the LAMMPS implementation [38] for cre-
ating new bonds within a spherical reactive volume with
a reactive radius R = 6

√
2σ ≈ 1.122σ around the AC [see

Fig. 1(a)]. Once a new bond is formed, the properties of
the AC are transferred to the newly added monomer and the
previous active center is deactivated.

C. Simulation details

The cubic simulation box with periodic boundary con-
ditions initially contains 1000 nonreacted (free) monomers
and a single AC particle as seed for the growing polymer
chain. Different number densities ρ0 = Nm,0/V are studied
by varying the simulation cell’s volume V and keeping the
total initial amount of particles Nm,0 constant. We conducted
simulations for observation time windows up to 2 × 103 τB

for densities ρ0σ
3 = {0.01, 0.025, 0.05, 0.075, 0.125, 0.3,

0.4, 0.5, 1.0} for ε = 0. Systems with pairwise interactions of
strength ε/(kBT ) = {0.1, 0.3, 0.44, 0.5, 0.54, 0.6, 0.66, 0.71,
1.0, 2.0} have been simulated for the density ρ0 = 0.125. For
ρ0σ

3 = 0.3, systems with ε/(kBT ) = {0.44, 0.54, 0.71, 0.8,
0.9} were studied. All simulations with reaction propensities
ranging from slow λ = 100 to fast λ = 105 τ−1

B have been
conducted with a self-written wrapper around the LAMMPS
software package [55]. The amount of different simulated
trajectories for a combination of ε, λ, and ρ0 ranges from 101

to 103 independent runs. For comparison with the equilibrium
state and for determining a suitable value for εθ , simulations
of nongrowing polymer chains of lengths N = {10, 20, 50,
100, 150} have been performed with monomers present at
densities ρ0σ

3 = 0.125 and 0.3 (see Appendix A).
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APPENDIX A: DETERMINATION OF εθ FROM
CHAINS IN EQUILIBRIUM

This Appendix contains a justification for the choice of
the interaction parameter for θ conditions εθ/(kBT ) = 0.6 and
0.8 for densities ρ0σ

3 = 0.125 and 0.3, respectively, used
throughout our work for the Lennard-Jones pairwise inter-
actions in a BD framework. To represent θ conditions in
our simulations, we needed to find a value for ε, where the
excluded volume v of the chain beads and the surrounding sol-
vent vanishes with v = 0 [5]. It is not sufficient to chose ε such
that the second virial coefficient B2 = 0 describing the nature
of the pairwise interactions, since a correction considering
three-body effects needs to be considered for polymer chains
[3,58]. There are many definitions of the θ point [59], but liter-
ature reports generally values between ε/kBT = 0.25 and 0.5
for MD simulations [60], for the Langevin framework [58],
and for MC simulations [61–63] in the absence of monomers
or cosolvents. It has been reported that chain-length dependent
size effects appear, which require an increased value of εθ

for longer chains N [62–64]. Zhang et al. [59] present four
different special temperatures in the θ regime, which all differ
for noninfinite chain lengths N .

However, except for the work by Heyda et al. [58], the
influence of explicit solvent molecules in form of cosolutes
on the determination of the interactions describing the θ point
has not been reported to our knowledge. Therefore, we de-
cided to determine εθ for two densities ρ0σ

3 = 0.125 and
0.3 from equilibrium simulation without chain growth steps
including free monomers as cosolutes. The total amount of
particles Ntot = N + Nm with Nm as the amount of monomers
remained constant, while the volume was changed to obtain
the two different densities. All pairwise interactions between
all nonbonded pairs of all species were described by a single
radius σ and a single ε.

εθ is determined from equilibrium BD simulations of non-
growing polymer chains of lengths N = 10, 20, 50, 100, 150
and a corresponding amount of interacting monomer particles
Nm = 990, 980, 950, 900, 850 in the presence of pairwise
nonbonded interactions with ε/(kBT ) = 0.1, 0.3, 0.5, 0.6,
0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 1.0, 2.0. The increasing value
of ε corresponds to a decreasing temperature with ε ∝ T −1,
and larger values of ε lead to more attractive interactions and a
globular chain. The smaller ε is, the more extended the chains
are. For each combination of N , ρ0, and ε, up to 30 different
trajectories have been simulated and analyzed. Data were col-
lected after equilibrating for at least 5 τRouse with the Rouse
time τRouse ∝ N2 to ensure a sufficient relaxation of the chain
structures. The obtained results for the end-to-end distance
Ree and the radius of gyration Rgyr are depicted in Figs. 5(a)
and 5(c) for densities ρ0σ

3 = 0.125 and 0.3, respectively. For
determining the universal scaling exponent ν of the polymer
size with R ∝ Nν [1,3–5], both Ree and Rgyr, have been fitted
[lines in Figs. 5(a) and 5(c)] based on

R2
ee = b2

0N2ν = 6R2
gyr, (A1)

where b0 is the equilibrium bond length. Figures 5(b) and
5(d) show the scaling behavior of polymer chains for various
ε for ρ0σ

3 = 0.125 and 0.3. Interactions of repulsive nature

(a)

(b)

(c)

(d)

FIG. 5. Determination of the θ point for different ε for different
densities ρ0. Panels (a) and (c) show the mean simulated end-to-end
distances Ree(N ) ∝ Nν and the squared radius gyration R2

gyr (N ) ∝
N2ν for ρ0σ

3 = 0.125 and 0.3, respectively. Symbols represent sim-
ulation results for a given chain length N and interaction parameter
ε. Lines represent the corresponding fits following Eq. (A1), re-
spectively. Dotted, dashed, and dash-dotted line represent theoretical
scaling behavior for bad (ν = 1/3), θ (ν = 1/2), and good solvent
conditions (ν = 3/5), respectively. Panels (b) and (d) show the ε

dependency of the scaling exponent. Circles, squares, and crosses
represent fitted scaling exponents ν(ε) [Eq. (A1)] from simulated
data for Ree (red), R2

gyr (gray), and the mean of the two (blue),
respectively. The lines represent the corresponding sigmoidal fits
using Eq. (A2). Values for εθ are represented by the brown dashed
lines. Black dotted, dashed, and dash-dotted line represent theoretical
scaling behavior for bad (ν = 1/3), θ (ν = 1/2), and good solvent
conditions (ν = 3/5), respectively.
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with ε/(kBT ) = 0.1 − 0.3 yield good solvent behavior with
ν ≈ 3/5 independent of the surrounding monomer concen-
tration. Poor solvent behavior is observed for more attractive
values of ε/(kBT ) � 0.7 for ρ0σ

3 = 0.125. At higher densi-
ties [ρ0σ

3 = 0.3; Fig. 5(d)], free monomers stabilize the more
extended chain configurations and therefore higher scaling
exponents are found for the same values of ε compared to the
lower densities. Only for the lower density, the characteristic
bad solvent scaling behavior for higher ε is observed and the
chain collapses to a globular state.

All fitted νee and νgyr from Figs. 5(a) and 5(c) are shown
together with the mean νmean = 1/2(νee + νgyr ) in Figs. 5(b)
and 5(d), respectively. The scaling exponents ν(ε) are fitted
with a sigmoidal fit [lines in Figs. 5(b) and 5(c)] of the form

νfit (ε) = A + B

C + exp(−Dε)
, (A2)

where A, B, C, and D represent fitting parameter to interpolate
between the simulated data points in good agreement. Solving
Eq. (A2) for νfit = 0.5 then yields εθ/(kBT ) ≈ 0.6 and 0.8 for
ρ0σ

3 = 0.125 and 0.3, respectively. For ν(Ree ) at high and
low densities, εθ/(kBT ) = 0.5 and 0.7 are obtained, respec-
tively, and for ν(Rgyr ) 0.6 and 0.9 kBT are found with respect
to the corresponding fits.

Figure 3(a) addresses the degree of overlap with respect to
the chain length, and we compared the number of nonbonded
neighbors around the chain beads for selected nonequilibrium
simulations in comparison with ideal chains and ε/(kBT ) =
0.1. Simulations with this value always yield scaling expo-
nents ν ≈ 3/5 representing the good solvent limit.

APPENDIX B: NONEQUILIBRIUM GROWTH BEHAVIOR
FOR GOOD AND POOR SOLVENT ε

Figure 4(a) of the article shows that enhanced scaling ex-
ponents ν are also found for other values of the interaction
strength ε. Especially for ε > εθ , Fig. 4(a) demonstrates a
drastic shift from poor solvent size scaling ν ≈ 1/3 and col-
lapsed coils which would be expected for this ε in equilibrium
(see Appendix A) to a θ -solvent chain conformation with
ν ≈ 0.5. Fig. 6 therefore shows selected results from nonequi-
librium simulations for ε = 0.1 kBT (good solvent conditions)
and 1.0 kBT (poor solvent conditions). Figures 6(a) and 6(b)
show that the more attractive ε = 1.0 kBT leads to a similar
diffusion D compared to the more repulsive good solvent
counterpart, but the emerging reaction rate constants k are
increased in the diffusion-controlled limit. Higher values of
ε cause faster reactions due to the more attractive nature.

The size scaling in nonequilibrium for the good solvent
case with ε = 0.1 kBT is comparable to the equilibrium as
demonstrated by the Figs. 6(c), 6(d), and 6(f). There, the
choice of the reaction propensity does not affect the size
of the resulting chain structures. However, for poor sol-
vent conditions, a drastic shift toward higher values of ν is
observed with an increasing propensity. This manifests in
Fig. 6(f), where less compact coil structures appear for fast
reactions with λτB = 105. The higher ν from nonequilibrium
chain polymerization in poor solvent conditions compared
to their equilibrium equivalents originates from the search
for additional monomers and required relaxation time after

(a) (b)

(c) (d)

(e) (f)

FIG. 6. Growth at good (ε = 0.1 kBT ) and poor solvent condi-
tions (ε = 1.0 kBT ) for densities ρ0σ

3 = 0.125 and 0.4. (a) Simu-
lated diffusion coefficients D (symbols) for different reaction rates k
and initial densities ρ0. The orange line and the dash-dotted gray line
represent the fastest and slowest theoretical limit for ρ0σ

3 = 0.4 with
Dtb = Dm and α = 1.41 and for ρ0σ

3 = 0.125 with Dtb = Dm/N
and α = 1.0, respectively. (b) Simulated reaction rate constants k
(symbols) for different reaction propensities λ and initial densities
ρ0. The orange line and the dash-dotted gray line represents the
fastest and slowest theoretical limit for ρ0σ

3 = 0.4 with Dtb = Dm

and α = 1.41 and for ρ0σ
3 = 0.125 with Dtb = Dm/N and α = 1.0,

respectively, and the dashed black line the fastest Smoluchowksi
reaction rate kS = 8πD0R. (c) End-to-end distance Ree(N ) at a den-
sity ρ0σ

3 = 0.125 for good and poor solvent conditions during fast
and slow reactions. Symbols show selected simulated data points,
colored dashed lines represent corresponding fits with Ree(N ) ∝ Nν .
Black dash-dotted, dashed, and dotted lines represent theoretical
curves for ν = 3/5 (good solvent), ν = 1/2 (θ solvent), and ν = 1/3
(poor solvent). (d) Size scaling exponents ν for different propensities
λ. (e) Normalized densities profiles ρ(r, t )/ρ(t ) around the active
site for different reaction conditions compared with the theoretical
profile in the diffusion-controlled (“Smoluchowski”) limit ρ(r, t ) =
ρ(t )(1 − R/r) (black, dash-dotted line) [47,65] and the low-density
equilibrium approximation g(r) for εθ/(kBT ) = 1.0 (black, dashed
line). (f) snapshots of chains at different solvent conditions for a den-
sity ρ0σ

3 = 0.125 at fast (λτB = 105) and slow (λτB = 100) reaction
conditions with yellow-colored active sites.

addition of more monomer to the chain. The density profiles
of Fig. 6(e) demonstrate the excluded volume for both values
of ε, and also shows the more attractive nature of ε = 1.0 kBT ,
which is pronounced for slow reactions, where free monomers
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(a) (b)

(c) (d)

(e) (f)

FIG. 7. Growth in an ideal solvent at different initial densities.
(a) Diffusion coefficients D (symbols) for different reaction rates k
and initial densities ρ0. The orange line and the dash-dotted gray line
represent the fastest and slowest theoretical limit for ρ0σ

3 = 1.0 with
Dtb = Dm and α = 1.41 and for ρ0σ

3 = 0.01 with Dtb = Dm/N and
α = 1.0, respectively. (b) Simulated reaction rate constants k (sym-
bols) for different reaction propensities λ and initial densities ρ0. The
orange line and the dash-dotted gray line represents the fastest and
slowest theoretical limit for ρ0σ

3 = 1.0 with Dtb = Dm and α = 1.41
and for ρ0σ

3 = 0.01 with Dtb = Dm/N and α = 1.0, respectively,
and the dashed black line the fastest Smoluchowksi reaction rate
kS = 8πD0R. (c) End-to-end distance at different densities for an
intermediate reaction frequency λτB = 103. Symbols show selected
simulated data points, colored dashed lines represent corresponding
fits with Ree(N ) ∝ Nν . Black dash-dotted, dashed, and dotted lines
represent theoretical curves for ν = 3/5 (good solvent), ν = 1/2
(θ solvent), and ν = 1/3 (poor solvent). (d) Size scaling exponents
ν for different propensities λ. (e) Normalized densities profiles
ρ(r, t )/ρ(t ) around the active site for different reaction conditions
compared with the theoretical profile in the diffusion-controlled
(“Smoluchowski”) limit ρ(r, t ) = ρ(t )(1 − R/r) (black, dash-dotted
line) [47,65]. (f) Snapshots of fast growing chains (λτB = 105) with
yellow-colored active sites.

accumulate around the active site between two reaction
events. In the case of fast reactions, the two different solvent
conditions lead to similar density profiles relatively close to
the Smoluchowski limit for ideal, diffusion-controlled reac-
tions.

APPENDIX C: DENSITY EFFECTS ON GROWING CHAIN
FOR IDEAL SOLVENTS

Figure 4(b) contains simulated data points describing the
scaling behavior for initial densities ranging from ρ0σ

3 =
0.01 to 1.0. Both the lower and upper simulated limit for the
density show reduced scaling exponents ν for the different
reaction propensities λ. For a low density ρ0σ

3 = 0.01, this is
not surprising, since the number of reactions events and jumps
is low and reactions kinetics in the fast limit are comparable to
the Smoluchowski rate constant for bimolecular reactions of
two moving particles Figs. 7(a) and 7(b). The simulated data
points are found close to our suggested theoretical slow limit
(gray, dash-dotted line) based on Eq. (4) for Dtb � Dm/N .
High densities ρ0σ

3 = 0.4 and 1.0 lead to fast reactions, and
since the later one is above the critical percolation density
ρcritσ

3 ≈ 0.43 [Eq. (5)], extremely high reaction rates k are
reported, which are only limited by the propensity λ and the
technical constraint of allowing only two bond formations per
reaction time step. It should be noted that only ρ0σ

3 = 0.4 is
more or less still covered by theoretical data (orange line) us-
ing Eq. (4) with Dtb � Dm, but no meaningful theory is acces-
sible beyond ρcrit due to divergence of the numerical solutions.

Figures 7(c), 7(d), and 7(f) demonstrate the different
size scaling Ree ∝ Nν behavior dependent on the density.
Low densities of ρ0σ

3 = 0.01 and thus slow reactions allow
a relaxation of chains between reaction events and struc-
tures with ν ≈ 1/2 representing θ conditions for all reaction
propensities λ studied are obtained. As shown in the article,
densities between ρ0σ

3 = 0.125 and 0.3 lead to enhanced
scaling exponents close to the good solvent limit ν ≈ 3/5.
Higher densities ρ0σ

3 > 0.3 do not lead to a further in-
crease of ν, but rather show again a decreasing tendency back
toward random walk and θ -solvent behavior with increasing
density.

We explain this nonmonotonic behavior of the scaling ex-
ponent ν for an increasing density with an increased number
of monomers in each reactive volume around an active site
[Fig. 7(e)] and the increased reaction rate [Fig. 7(b)]. At high
densities close to and above the critical density ρcritσ

3 ≈ 0.43,
potentially monomer-depleted zones are filled up quickly and
orientation memory τrot represented by a few chain elements
is negligible with respect to the growth rate. Form a macro-
scopic perspective, the chain growth performs a random walk
through the dense monomer melt. The enhanced size scaling
exponent is only observed for densities below a critical perco-
lation threshold ρcrit .
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