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Strong noise limit for population dynamics in incompressible advection
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Genetic diversity is at the basis of the evolution process of populations and it is responsible for the populations’
degree of fitness to a particular ecosystem. In marine environments many factors play a role in determining the
dynamics of a population, including the amount of nutrients, the temperature, and many other stressing factors.
An important and yet rather unexplored challenge is to figure out the role of individuals’ dispersion, due to flow
advection, on population genetics. In this paper we focus on two populations, one of which has a slight selective
advantage, advanced by an incompressible two-dimensional flow. In particular, we want to understand how this
advective flow can modify the dynamics of the advantageous allele. We generalize, through a theoretical analysis,
previous evidence according to which the fixation probability is independent of diffusivity, showing that this is
also independent of fluid advection. These findings may have important implications in the understanding of
the dynamics of a population of microorganism, such as plankton or bacteria, in marine environments under the
influence of (turbulent) currents.
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I. INTRODUCTION

Quantitative descriptions of evolutionary dynamics and
population genetics are fundamental issues in understanding
genetic diversity in the real world. Focusing on the simplest
case of two competing populations, the pioneering works of
Kimura et al. [1–3] provide a clear-cut answer in the well-
mixed (zero-dimensional) case.

To establish the notation and explain in some detail both
the model and the problem we discuss in this paper, we con-
sider two populations, say, A and B, which can reproduce and
die according to one of the many possible models. Here we
choose the framework reviewed by Korolev et al. [4]. Ignoring
spatial effects, let us denote by NA and NB the numbers of
individuals in the system. In the neutral case, we consider both
species with the same dynamics, i.e., individuals reproduce at
a rate μ and die at a rate μ(NA + NB). Notice that, in general,
the value of μ may be different for the rates of reproduction
and death. Here we choose the same rate to simplify the nota-
tion and the algebra (see [5] for a more general description).
We also assume that both individuals cannot grow more than
some limiting value. We can introduce a selective advantage
for one of the two species, say, A, in several ways. Following
[4,5], we assume that the selective advantage s is induced by a
faster birth rate μ(1 + s) for the individual A. Since the model
is defined in terms of the rates of reproduction and death, the
basic mathematical formulation should be defined in terms
of a master equation for the different transition probabilities
from one state NA or NB to a different one. Then using the
Kramers-Moyal expansion, we can obtain a Fokker-Planck
equation for the probability P(NA, NB, t ) to observe a number
of NA and NB individuals at time t (a detailed derivation
is provided in Appendix A of [5]). From the Fokker-Plank
equation, we can obtain the associated stochastic differential

equations. Finally, upon introducing the population fraction
f = NA/(NA + NB) and assuming s to be small, we can derive
the stochastic differential equation

∂t f = μs f (1 − f ) +
[

2μ

N
f (1 − f )

]1/2

η(t ), (1)

where N is the whole population size and η(t ) is a Gaus-
sian random variable, δ correlated in time with zero mean
and unit variance. Equation (1) is a stochastic differential
equation with multiplicative noise, to be interpreted with the
Itô prescription, and there exist two absorbing boundaries
f = 1 and f = 0. We remark that, since the noise variance
is proportional to μ, the timescale 1/μ becomes irrelevant,
i.e., the statistical properties of (1) depend on time through
the dimensionless combination tμ. Assuming that at time
t = 0 the initial population fraction is f0, we are interested in
computing the fixation probability Pfix for the species A with
selective advantage s to overcome the whole population size
(fixation) and average time Tfix for the fixation to occur. This
computation can be exactly done by solving the backward
Kolmogorov equation of the stochastic differential equation,
as it was shown for the first time by Kimura et al. [1]. Upon
denoting by f0 the initial relative fraction of a population with
a small selective advantage s, the fixation probability Pfix for
advantageous population and the average time Tfix to reach
fixation, for small s, are given by

Pfix = 1 − exp(− f0sN )

1 − exp(−sN )
, (2)

Tfix = N f0

μ(1 − f0)
ln

(
1

f0

)
. (3)
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More complex and therefore interesting features arise if
one considers the effect of spatial structure. Following Ko-
rolev et al. [4], we consider a system in a bounded domain
Ld of dimension d = 1, 2. Next we divide the system into
small boxes (demes) of size ad . In each deme, the maximum
population size is denoted by N0. Diffusion effects can be
easily introduced by assuming a rate of migration from one
deme to the nearest neighborhood. The continuous limit is
achieved for L/a � 1. Then Eq. (1) is formulated in terms
of f (�x, t ), which is the local relative fraction of A with re-
spect to the local population size. Using the same approach
shortly reviewed above, we can derive the celebrated Fisher-
Kolmogorov-Petrovsky-Piscounov (FKPP) equation

∂t f = D� f + μs f (1 − f ) +
[

2μ f (1 − f )

N0

]1/2

w(�x, t ),

(4)
where w(�x, t ) is a white noise δ correlated in space and time
and D is the diffusion [see [5] for a detailed derivation of
Eq. (4)].

A rather nontrivial result was obtained by Doering et al.
[6], who showed that the probability of fixation Pfix for
the stochastic FKPP equation in d = 1 does not depend
on the diffusivity (in the limit of small D and large total
population size). The same outcome seems to hold for the
two-dimensional case d = 2, according to the investigations
presented by [5,7]. For the one-dimensional problem, in the
strong noise limit that is characterized by small values of D
and population density NR, it has been proved that an ini-
tially localized population f (�x, t ) propagates in space with
a velocity vs ∼ DNRs/a � vF ≡ √

Ds/μ, where vF is the
Fisher velocity [6,8]. We want to show that the slowdown of
front propagation and the segregation effects induced by the
fluctuations due to the noise (see [4]) are able to explain why
Pfix is independent of D.

Much less is known when a populations is subject to the
advection of an incompressible velocity field �v, when the total
concentration c is uniform over the domain (c = 1). In this
case, the describing equation becomes

∂t f + �v · �∇ f = D� f + μs f (1 − f )

+
[

2μ f (1 − f )

N0

]1/2

w(�x, t ), (5)

where �v is assumed to be a two-dimensional incompress-
ible flow, with div(�v) = 0. In this paper we are interested in
discussing whether the advection of an incompressible two-
dimensional flow can modify the Darwinian dynamics of an
advantageous allele and in particular we study how Pfix and
Tfix may change. For our purpose, we consider f (�x, 0) ≡ f0

uniform in space and we assume periodic boundary conditions
in a two-dimensional domain of size L2. Because advection,
stationary or not, can always increase the effective dispersion
(diffusivity) of individuals, we do not expect Pfix to change
with respect to the results previously discussed. The situation
may be different for the fixation timescale of the system, i.e.,
Tfix.

In this section we summarize some of the key findings
obtained in the paper. In the case without advection, the strong
noise limit is shown to occur when the following inequality

holds:

a2

N0D
� 1

μ
. (6)

The physical interpretation of Eq. (6) is rather clear: tD ≡
a2/D is the diffusive characteristic time needed for a particle
to spread, on average, over a distance of order a, 1/μ is the
generation time, and N0/μ is proportional to the inverse of
the noise variance in Eq. (4). When the multiplicative noise
is large (small N0 or large μ), the effect of the noise (due to
the random processes of death and birth in the population)
is large and the diffusion becomes relevant on a timescale
corresponding to several generation times in the population
dynamics. Then competition in space occurs at a much slower
rate when the inequality (6) is satisfied and, as shown in
Sec. II, the relevant timescale in the system becomes N0D/a2.
It follows that the fixation time Tfix is given by

Tfix = L2

D

f0

1 − f0
ln

(
1

f0

)
, (7)

which can be compared to Eq. (3), with L2/D replacing N/μ.
When advection is present, the proper analysis can be done

by considering the effective (or eddy) diffusivity Deff due to
the flow and its related characteristic spatial scale lu. Knowing
the advection field, it is difficult to compute exactly Deff and
lu. In a few cases, as we discuss in this paper, it is possible
to obtain an analytical estimate for both quantities (see [9] for
details). In this study we will provide theoretical and numer-
ical evidence that there may exist a strong noise scenario for
the dynamics if the following inequality is fulfilled:

l2
u

DeffN0
� 1

μ
. (8)

The physical motivation behind Eq. (8) can be obtained by
considering the case s = 0 in Eq. (5). Then the effect of a
nonuniform advection introduces a characteristic timescale tu
for the effective diffusion of a particle in the system. Equa-
tion (8) states that if tu ≡ l2

u /Deff is much longer than the
generation timescale 1/μ and N0 is relatively small, the effect
of advection occurs on a timescale corresponding to several
generation times in the population dynamics. As already no-
ticed, N0/μ is proportional to the inverse of the variance due
to multiplicative noise in Eq. (5). Then we can physically
argue that (8) is equivalent to the strong noise condition in
the system, similarly to our previous analysis of Eq. (6). Note
that we expect the relation a2/D = tD > tu = l2

u /Deff . The
physical interpretation of (8) suggests, by analogy, that, in the
presence of advection, a proper estimate for the fixation time
Tfix,v , for small s, is given by

Tfix,v = NT l2
u

DeffN0

f0

1 − f0
ln

(
1

f0

)
. (9)

Because tD > tu, we expect Tfix,v to be shorter than the Tfix

given by (7) but still much longer than the fixation time for
the well-mixed population given by Eq. (3).

In general, the theoretical computation of Deff is not a
simple task (see [9]). For the relatively simple case of chaotic
flows one usually finds that Deff ∼ u0lu, with u0 being some
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typical velocity. Then Eq. (8) can be written as

Da ≡ μlu
u0

� N0, (10)

where Da is the so-called Damköhler number representing
the ratio between the rate of growing with respect to the
characteristic rate of population spreading (see also [10,11]
for studies of thin front propagation in steady and unsteady
cellular flow and no genetic fluctuations, i.e., N0 → ∞). For
finite Da � N0 strong noise effects characterize the dynamics
in the presence of chaotic advection.

Using Deff ∼ u0lu, one can think of lu/u0 as the so-called
eddy turnover time at scale lu of the flow. If the flow is
characterized by a single spatial scale lu, Eq. (10) becomes
a condition on the velocity scale u0. However, for turbulent
flows, the eddy turnover time increases with l: Whereas at
small l the system behaves as in the well-mixed case (tur-
bulence increases mixing and no strong noise effects can
arise), there may exist some critical scale above which strong
noise effects become relevant. We will discuss this interesting
possibility in some detail in Sec. V, although a systematic and
quantitative investigation of this point is definitively outside
the aim of this paper.

In the next section we present a theoretical framework
to support our findings, i.e., Eqs. (6) and (8)–(10). This
framework is validated by numerical simulations in Sec. III.
In Sec. IV we summarize our results and we discuss their
relevance in the case of population dynamics of oceanic phy-
toplankton subjected to marine turbulence. All the numerical
simulations are based on the method discussed by [12]. As
already noted, 1/μ is the only timescale for the population
dynamics and we can set μ = 1 without loss of generality.

II. THEORY

We consider two populations A and B in a two-dimensional
closed system of size L × L endowed with periodic bound-
ary conditions. Let CA and CB, with CA + CB = 1, denote
the relative time- and space-dependent concentrations. The
two populations are advected by an incompressible velocity
field. The dynamics of a population is well described by the
continuum stochastic Fisher equation in terms of diffusion
D, logistic growth μ, selective advantage s, and advection �v.
Upon denoting by f the fraction of the concentration of a
species over the total concentration, f ≡ CA/(CA + CB), the
discretized form of the equation governing the dynamics of
the two populations reads

∂ f

∂t
+ �v · �∇ f = D� f + μs f (1 − f )

+
[

2μ

N0
f (1 − f )

]1/2

w(�x, t ), (11)

where N0 is the total number of organisms per deme and
w(�x, t ) is a Gaussian random process δ correlated both in
space and in time. Given the deme size a, Eq. (11) can be
discretized on a regular grid of n points, where n = L/a, with
L the domain size (see Appendix A for an extensive expla-
nation). For a two-dimensional case, there exist N = n × n
demes in the domain. In the following we will use the notation

fi, with i = 1, 2, . . . , N , to indicate the value of f (x, y, t ) in
the deme i and consequently �∇ fi, � fi denoting values of �∇ f
and � f in the same deme. The divergence of the velocity
field is assumed to be zero. Then, upon averaging Eq. (11)
in space and denoting by f (m) the space average of f (x, y, t ),
we obtain

∂ f (m)

∂t
= μs〈H〉 +

[
2μ

NT
〈H〉

]1/2

w(t ), (12)

where NT = N0N , w(t ) is a Gaussian random process δ corre-
lated in time, and

H ≡ f (x, y, t )[1 − f (x, y, t )], (13)

〈· · · 〉 ≡ 1

L2

∫
· · · dx dy. (14)

In order to obtain the noise variance on the right-hand side of
Eq. (12), we define the noise term acting on f (m) as

1

N

∑
i

[
2μ

N0
fi(1 − fi )

]1/2

wi ≡ 1

N

∑
i

σiwi, (15)

where σi is equivalent to [ 2μ

N0
fi(1 − fi )]1/2 and wi is shorthand

for the noise acting on deme i. Since 〈wiw j〉 = δi j , the vari-
ance of the noise term (15) is given by〈

1

N2
�i, jσiσ jwiw j

〉
= 2μ

N0N2
�i fi(1 − fi ) = 2μ

N0N
〈H〉. (16)

The space averaged 〈H〉 can also be written as

〈H〉 = H ( f (m)) − 〈(δ f )2〉, (17)

where H ( f (m)) = f (m)[1 − f (m)] and δ f ≡ f (x, y, t ) −
f (m). Following the results discussed in Refs. [8,13], for
small values of the selective advantage s, we can obtain useful
insight into the dynamics of the system by considering the
equation for H at s = 0, namely,

∂H

∂t
+ �v · �∇H = D� f − 2D f � f − 2μ

N0
f (1 − f ) + · · · ,

(18)
where the third term on the right-hand side of Eq. (18) is
derived from the application of Itô’s calculus and the ellip-
sis represents all the terms due to noise. Next we perform
a space averaging. Because of the periodic boundary con-
ditions and the incompressibility of the advection field, we
can use the identities 〈� f 〉 = 0, 〈�v · �∇H〉 = 〈div(�vH )〉 = 0,
and −〈 f � f 〉 = 〈( �∇ f )2〉. The final result is achieved by (i)
averaging Eq. (18) over the noise realizations, which allows
us to neglect the noise, and (ii) neglecting the time derivative
∂t 〈H〉, which rapidly goes to zero both in one and in two
dimensions (see [4] for details).

Then the final result reads

D〈( �∇ f )2〉 = μ

N0
〈H〉. (19)

This equation, for �v = 0, has been also derived in Refs. [4,14].
Let us also remark that Eq. (19) is formally independent of
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�v. The effect of velocity advection (if any) shows up in the
following steps.

Now we introduce the timescale t∗, which is defined by the
relation

D〈( �∇ f )2〉 ≡ 1

t∗
〈(δ f )2〉. (20)

Using Eq. (20) in Eq. (17), we can compute 〈H〉 as a function
of H ( f (m)) and we obtain

〈H〉 = H ( f (m)) − μt∗
N0

〈H〉. (21)

Solving Eq. (21) for 〈H〉, it turns out that

〈H〉 = AH ( f (m)), (22)

where

A = 1

1 + μt∗
N0

. (23)

Using Eq. (22), we now can express 〈H〉 as H ( f (m) =
f (m)[1 − f (m)]). We insert it in Eq. (12), obtaining

∂ f (m)

∂t
= sAμ f (m)[1 − f (m)] +

[
2μA

NT
H ( f (m))

]1/2

. (24)

The key quantity to consider in the following is the ra-
tio G ≡ μt∗/N0. For G � 1 and Eq. (23), we obtain A ∼ 1.
Equation (24) reduces to the case of a well-mixed population
with selective advantage s. In contrast, for G � 1 we get
Aμ ∼ N0/t∗ and the characteristic time of the system dynam-
ics depends explicitly on both N0 and t∗; this is the case
referred to as the strong noise limit where the genetic drift
(i.e., space-dependent number fluctuations in the population
size) becomes important.

To make progress, we start analyzing the case �v = 0, i.e.,
the case where t∗ = tD. In this case, the effect of random
perturbations, caused by the growth and death processes of
a population, within each single deme, implies that the con-
centration gradients must be of order 1/a.

A reasonable guess on tD may be derived by considering, as
a guideline, the two-dimensional stochastic differential equa-
tion

∂tφ = D�φ + √
εw(�x, t ). (25)

Assuming that there exists an “ultraviolet” cutoff kM , it is pos-
sible to exactly compute the ratio 〈( �∇φ)2〉/〈(φ)2〉, obtaining

〈( �∇φ)2〉
〈φ2〉 ∼ k2

M . (26)

(Mathematical details for the kM introduction will be treated
in Appendix B.) From the above insight, using kM ∼ 1/a, we
have

t∗(�v = 0) ≡ tD ∼ a2

D
. (27)

Through the use of Eqs. (27), (23), and (24) we are led to the
result

∂ f (m)

∂t
= μ

1 + μ

NRD

s f (m)[1 − f (m)]

+
[

2

NT

μ

1 + μ

NRD

f (m)[1 − f (m)]

]1/2

, (28)

where NR = N0/a2 ≡ NT /L2 is the population density.

The strong noise limit for Eq. (28) is expressed by the
condition μa2/N0D = μ/NRD � 1, which corresponds to
Eq. (6). In the strong noise limit, Eq. (28) becomes

∂ f (m)

∂t
= NRDs f (m)[1 − f (m)]

+
[

2NRD

NT
f (m)[1 − f (m)]

]1/2

. (29)

Using Eq. (28) or (29), we can immediately deduce that the
fixation probability Pfix can be derived from the Kimura theory
[1] for well-mixed population, through Eq. (2) to derive Pfix in
our space-dependent dynamics. Remarkably, a simple compu-
tation shows that Pfix is independent of the diffusivity D. This
is a rather remarkable result, first predicted by Doering et al.
[13] for the one-dimensional problem in the strong noise limit
and observed in Refs. [7,15] in both one and two dimensions.
Here we get a clear-cut explanation for this result.

Due to Eq. (28) or (29), we derive that for both cases,
strong and weak noise, the probability of fixation Pfix can
be computed from knowing NT and the space average of
the initial population fraction, hereafter denoted by f (m, 0).
Using (2) we get

Pfix = 1 − e−sNT f (m,0)

1 − e−sNT
. (30)

Next we can rewrite NT f (m, 0) = NR
∫

dx dy f (x, y, 0). Per-
forming the limits L → ∞ and NT → ∞ with NR = const,
we obtain

Pfix = 1 − exp

(
−sNR

∫
dx dy f (x, y, 0)

)
, (31)

which is the generalization, in two dimensions, of the result
proved in Ref. [13] for the one-dimensional case.

In the strong noise limit, taking as a reference Eq. (29),
the space average population f (m) behaves as in the case of
a well-mixed population of size NT growing (or decaying)
with a characteristic timescale 1/NRD and a selective advan-
tage s. Then the average fixation time should be of the order
NT /NRD ∼ L2/D, which is the expected timescale for fixation
at �v = 0, in the continuous limit of Eq. (11). In contrast, in
the weak noise limit the average fixation timescale is of order
NT and it is independent of the diffusivity D. In summary, for
�v = 0 our theoretical approach nicely agrees with both theo-
retical and numerical findings in both one and two dimensions
and supports our estimate given in Eq. (27), i.e., t∗ = a2/D.

We now turn our attention to the case �v �= 0. In this case
the estimate of t∗, referred to as tu in the following, can be
done in terms of the effective or eddy diffusivity Deff and its
corresponding space scale lu:

t∗(�v �= 0) ≡ tu ∼ l2
u

Deff
. (32)

It is possible to show that tu < tD. This inequality can
be understood as follows. Let us define D̃eff as the effective
diffusivity acting at the deme scale a over the time tu, i.e.,
D̃efftu = a2. It follows that D̃eff = Deff a2/l2

u and we expect the
advection to be relevant in the dynamics provided D̃eff � D.
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Then

D̃eff = Deff
a2

l2
u

� D → tD ≡ a2

D
� l2

u

Deff
≡ tu. (33)

The inequality tu < tD implies that the strong noise limit for
�v �= 0 may be observed only if, for �v = 0, the system is in the
strong noise regime.

In the presence of an advection velocity field, Eq. (24) now
becomes

∂ f (m)

∂t
= μ

1 + μl2
u

N0Deff

s f (m)[1 − f (m)]

+
[

2

NT

μ

1 + μl2
u

N0Deff

f (m)[1 − f (m)]

]1/2

. (34)

As already noted, to understand whether or not the strong
noise limit is achieved, the relevant quantity is

Gu ≡ μl2
u

N0Deff
. (35)

For Gu � 1, the system should be considered in the strong
noise limit and Eq. (34) becomes

∂ f (m)

∂t
= N0Deff

l2
u

s f (m)[1 − f (m)]

+
[

2

NT

N0Deff

l2
u

f (m)[1 − f (m)]

]1/2

. (36)

There is no simple analytical way to estimate Deff and lu
for a prescribed velocity field �v. In some cases, such as the
one considered in this paper, an explicit computation of Deff

and lu can be done (see [9,10] for further details). In general,
one can introduce a characteristic velocity field u0 such that
Deff = u0lu. This is, for instance, the case for a turbulent flow
where u0 is the characteristic scale of the turbulent kinetic
fluctuations, on scale lu, and Deff is obtained by the Richard-
son diffusion [16]. Using Deff = u0lu, the condition Gu � 1
becomes μlu/N0u0 � 1, which is the same condition given
by Eq. (10) in the Introduction.

Finally, using Eq. (36) and the inequality tu < tD, we ob-
tain, for the average fixation time,

NT l2
u

N0Deff
= NT

N0
tu � NT

N0
tD = L2

D
. (37)

The effect of the velocity advection, for large Gu, is to speed
up the characteristic time for the system to reach fixation. This
is also another way to understand the inequality tu < tD.

In the next two sections we provide numerical evidence
which supports our theoretical discussion and the above con-
clusions.

III. NUMERICAL APPROACH

For our numerical investigation, we consider a two-
dimensional domain of size L = 2π with a deme size a =
L/128. The numerical method used in the following is based

on the one introduced in Ref. [12] and shortly revised in the
Appendix. The velocity field �v is given by

vx = u0 sin

[
k

(
y − L

2

)
+ φ(t )

]
cos

[
k

(
x − L

2

)
+ φ(t )

]
,

(38)

vy = −u0 sin

[
k

(
x − L

2

)
+ φ(t )

]
cos

[
k

(
y − L

2

)
+ φ(t )

]
,

(39)

φ(t ) = δ sin(ωt ). (40)

Using the above choice of �v, we can consider three different
cases: (i) no flow, u0 = 0; (ii) nonchaotic flow, u0 > 0 and
δ = 0; and (iii) chaotic flow, u0 > 0 and δ = δ0. The no-flow
case refers to the “standard” FKPP equations already inves-
tigated in many papers (see, for instance, [4,5]). The second
case corresponds to a nonchaotic cellular flow [17], while the
third one corresponds, for a proper choice of δ0, to a chaotic
cellular flow. For all cases we set k = 8 and for the chaotic
flow case we choose δ0 = 2 and ω = 2, which ensure the
condition for chaotic flow to occur. Finally, throughout our nu-
merical investigation, we consider f (x, y, 0) = 0.0625 to be
uniformly distributed in the domain. We study the dynamics
of the system as a function of N0, u0, and D.

For cellular flow we can employ the analytical approach
developed in Refs. [9,10] to compute Deff as a function of
lu ≡ 2π/k and u0. We find that for the nonchaotic flow, Deff ∼√

Du0lu, whereas for the chaotic flow, Deff ∼ u0lu.
Based on the theoretical analysis done in the preceding

section, we are interested in computing the quantity A defined
in Eq. (22) and, in particular, we are interested in studying the
quantity G ≡ A−1 − 1 for the three different cases. Next, us-
ing Eq. (27) for �v = 0 and (32) for �v �= 0, we obtain Gno flow ∼
μa2

N0D , Gnonchaotic flow ∼ μl2
u

N0
√

Dluu0
, and Gchaotic flow ∼ μl2

u
N0u0lu

. By re-
lying on these expressions of G for the cases of no flow,
nonchaotic flow, and chaotic flow, we predict three different
scaling properties to be observed, namely, (i) different scaling
laws as a function of D, i.e., Gno flow ∼ D−1, Gnonchaotic flow ∼
D−1/2, and Gchaotic flow independent of D; (ii) the same scaling
properties for all cases as a function of N0, i.e., N−1

0 ; and
(iii) diversity in the scaling behavior of Gnonchaotic flow and
Gchaotic flow as a function of u0: Gnonchaotic flow ∼ u−1/2

0 and
Gchaotic flow ∼ u−1

0 .
In addition to the scaling predictions listed above, our

theoretical analysis shows that the fixation probability Pfix

[Eq. (2)] depends neither on D nor on u0 and it is given by
the Kimura formula or by the Doering relation in the limit
L → ∞, as already shown for u0 = 0 in Ref. [5]. In Fig. 1
we support our conclusion by showing Pfix for u0 = 1 in the
chaotic flow case with D = 10−3 and N0 = 2. The black line
in the figure represents the trend of the Kimura formula, which
agrees extremely well with the numerical results, sketched by
purple closed circles.

Next we discuss how we can numerically compute A.
Equation (22) has been derived assuming an average of differ-
ent realizations. Let us define 〈H〉α as the value of 〈H〉 for the
α realization and f (m)α as the corresponding value of f (m)
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FIG. 1. Fixation probability (purple circles) as a function of the
selective advantage s obtained from a chaotic flow. Simulations were
performed with N0 = 2, diffusion coefficient D = 10−3, and u0 = 1.
The black solid line corresponds to the Kimura formula (2). The
error bar is calculated as

√
Pfix(1 − Pfix)/m, where m is the number

of simulations. For the results shown in the figure, m = 500.

for the same realization. Both 〈H〉α and f (m)α are functions
of time. Then Eq. (22) states that

¯〈H〉 = AH ( f̄ (m)), (41)

where the overbar is the average over different realizations,
i.e., M−1 ∑

α · · · , with M the number of realizations. In Fig. 2
we show the quality of the results we obtain for cases of
no flow and chaotic flow with D = 10−3 and N0 = 2, im-
posing for the latter case u0 = 1: ¯〈H〉 is plotted for u0 = 1
[Fig. 2(a)] and u0 = 0 [Fig. 2(c)], while the behavior of ¯〈H〉
is plotted as a function of f̄ (m) for u0 = 1 [Fig. 2(b)] and
u0 = 0 [Fig. 2(d)]. We also compute the quantity Aα for each
realization, i.e., we calculate Aα as the best fit of the relation
〈H〉α = AαH ( f (m)α ). The error bars in Fig. 2 refer to three
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FIG. 2. (a) and (c) Graphs representing the average heterozygos-
ity versus the heterozygosity of the mean value of f and (b) and
(d) plots of the average heterozygosity as a function of the aver-
age value of f . (a) and (b) differ from (c) and (d) because of the
presence of the chaotic flow (yellow diamonds). (c) and (d) show
the cases with no flow (purple circles). We performed simulations
for D = 10−3 and N0 = 2. The error bars are 3 times the variance
computed over 100 realizations.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  0.05  0.1  0.15  0.2  0.25  0.3

<
H

>

H(f(m))

s = 1×10-4

s = 10×10-4

s = 16×10-4

FIG. 3. Average heterozygosity vs heterozygosity of the average
value of f for three different values of the selective advantage s under
a chaotic flow. The parameters are N0 = 2 and D = 10−3.

times the variance of Aα . The same result holds for different
values of s and D: Overall, from the numerical simulations we
can obtain a measure of A with an accuracy of about 1%.

Next we consider how the computation of A may even-
tually depend on s. In Fig. 3 we show ¯〈H〉 as a function of
H ( f̄m) for the chaotic flow case with D = 10−3 and s = 10−4,
10−3, and 1.6 × 10−3; there is no observable difference in A
for the three different cases. Based on the results of Fig. 3,
we can reasonably reach the conclusion that our numerical
computation of A is independent of s. From the knowledge
of A we can extract the value of G = A−1 − 1 for the three
different cases of no flow, nonchaotic flow, and chaotic flow.

IV. COMPARISON WITH ANALYTICAL ESTIMATE

As stated in the preceding section, we have three different
predictions for the scaling G = A−1 − 1 for the three cases
considered: no flow, nonchaotic flow, and chaotic flow. Pre-
diction (i) refers to the behavior of G with respect to the
diffusivity D, namely, we expect

Gno flow ∼ 1

D
,

Gnonchaotic flow ∼ 1√
D

, (42)

Gchaotic flow ∼ const.

As discussed in Sec. II, the scaling of Gnonchaotic flow and
Gchaotic flow depends on how the effective or eddy diffusivity
Deff depends on D. For both chaotic and nonchaotic flow
cases, the effective diffusivity can be computed [10] and we
obtain for the nonchaotic case Deff ∼ √

D, whereas for the
chaotic case we find Deff to be independent of D. To check
the scaling (42) we consider D ∈ [0.0002, 0.016] for all cases
and we set N0 = 2. The results are shown in Fig. 4, where we
plot Gno flow, Gnonchaotic flow, and Gchaotic flow as a function of D.
The two straight lines refer to the scalings D−1 and D−1/2. For
the nonchaotic flow case we show the computation performed
at u0 = 1, while for chaotic flow case we show two different
values of u0, namely, u0 = 1 and u0 = 0.2. At a relatively
small value of D the three different scaling behaviors (42) are
clearly satisfied. At a relatively large value of D, the value of
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FIG. 4. Values of G as a function of the diffusion parameter
D. Circles, triangles, squares, and diamonds represent the results
of our simulation for different velocity cases: no velocity (u0 = 0),
nonchaotic velocity field for the value u0 = 1, and chaotic velocity
field for the values u0 = 0.2 and 1, respectively. The solid and dashed
lines refer to the linear fit of the simulation results whose slopes are
−1 in one case and − 1

2 in the other case. The horizontal dot-dashed
line shows the constant value achieved for the chaotic flow with
u0 = 1 at very small D. The error bar is estimated from the error
of the best fit; it is smaller than the size of the system, which is why
it cannot be seen on the graph.

G decreases and approaches order 1; this should be expected
since we know that for D large enough we enter the so-called
weak noise regime and the spatial effects can be neglected. In
addition, we can observe that Gnonchaotic flow and Gchaotic flow are
both smaller compared to Gno flow, independently of D. This
observation agrees with our theoretical discussion in Sec. II
and implies the relation tu < tD.

Next we consider the behavior of G as a function of
NT = N0n2. For all cases we should observe that G ∼ N−1

T .
To check this prediction, we consider the two cases of no
flow and chaotic flow and in Fig. 5 we show Gno flow and
Gchaotic flow as a function of N0. Again, the behavior of G as

10-2
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100
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10
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100 101 102

slope -1

G

N0

u0=0

10-2

10-1

100

101

102

100 101 102

slope -1

G
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FIG. 5. Values of G as a function of the number of individuals
N0 per deme for (a) the case of no velocity (purple circles) and
(b) the results in the presence of a chaotic flow with u0 = 1 (yellow
diamonds). Both curves follow a slope of −1. In both cases we use
D = 10−3 and N0 ∈ [4, 64].

 1
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 0.1  1

slope -1

G
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 1

 10

 100

 0.1  1

slope -1/2
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u0=1 no chaos

(a) (b)

FIG. 6. Values of G as a function of the velocity intensity u0 for
(a) the results under a chaotic velocity field (yellow diamonds) and
(b) the findings in the presence of a nonchaotic velocity field (green
triangles). Two different behaviors are shown: (a) The chaotic results
follow a slope of −1 whereas (b) the nonchaotic results follow a
slope of − 1

2 . The numerical parameters used in the simulations are
N0 = 2 and D = 10−3.

a function of N0 is rather well satisfied. Combining the results
shown in Figs. 4 and 5, we can argue, as already noted in
Sec. II, that the continuous limit of Eq. (11) can be achieved
by sending NT → ∞ while keeping NT D small and constant.
In other words, the continuous limit of Eq. (11) is achieved by
increasing the domain size at constant density and vanishing
diffusivity.

The last prediction discussed in Sec. III applies only to the
cases of no flow and chaotic flow and refers to the scaling
behavior of G with respect to the velocity u0:

Gnonchaotic flow ∼ 1

u1/2
0

, Gchaotic flow ∼ 1

u0
. (43)

In Fig. 6 we show Gnonchaotic flow and Gchaotic flow for N0 = 2,
D = 10−3, and u0 ∈ [0.1, 1]. The scaling (43) is verified in
both cases.

The results shown in Figs. 4–6 validate the theoretical
analysis performed in Sec. II. Without any advection field,
the timescale of the dynamics is controlled by the ratio GD =
μ/NRD, where NR = NT /L2 is the population density and
the diffusivity plays a relevant role only for GD � 1. When
advection is present, the relevant parameter depends on the
effective diffusivity Deff and its corresponding length scale lu
through the combination Gu = μl2

u /N0Deff � GD. In general,
the functional form of Deff depends on the flow properties (as
shown in Figs. 4 and 6). For large values of Gu, the timescale
of the dynamics is controlled by the effective diffusivity and
by lu. In all cases, the fixation probability depends neither on
the diffusivity nor on the advection, assumed to be incom-
pressible.

V. CONCLUSION

In this paper we focused our investigation on the fixation
probability between two populations, one of which has a slight
selective advantage. In particular, we considered the case
of two populations whose dynamics is confined in a closed
system and eventually advected by a two-dimensional incom-
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pressible flow. We restricted our consideration to the case
where initially the two populations are uniformly distributed
in space and the one with the selective advantage presents a
space density f (0) � 1. For the well-mixed case, when both
diffusion and advection are irrelevant, the fixation probability
is given by the Kimura theory. For one-dimensional system
and without advection, it was shown that the fixation prob-
ability does not depend on the value of diffusivity acting in
the system [6]. This result was proved by Maruyama [7] and
by Pigolotti et al. [5] on the basis of numerical simulations
arguing that Doering’s findings should be true also for the
two-dimensional case, yet without advection.

Our paper generalized this previous evidence in several
ways. First, we provided a theoretical analysis showing that
the fixation probability should be independent of the diffu-
sivity and the effect of the velocity field (if present). We
also showed that, without advection, the results in Ref. [6]
are recovered for small diffusivity or equivalently for a large
system size. Concerning the latter case, we argued theoreti-
cally and checked numerically that the dimensionless relevant
parameter in the system is the ratio μ/NRD, where 1/μ is the
generation time for the population growth, NR is the popu-
lation density, and D is the diffusivity. In the strong noise
regime, corresponding to μ/NRD � 1, the timescale for fix-
ation to occur depends on NR, D, and s and we expect fixation
to occur on a timescale L2/D. Our analysis was generalized
to take into account the effect of advection. The relevant
dimensionless parameter is now μl2

u /N0Deff , where N0 is the
number of individuals per deme, Deff is the effective or eddy
diffusivity induced by the flow, and lu is its corresponding
length scale. The equivalence of the strong noise regime is
given by the condition μl2

u /N0Deff � 1. In this regime, the
timescale for fixation is controlled by the flow dynamics.
We remarked that the quantity μl2

u /N0Deff plays the same
role as the Damköler number Da = μlu/u0 for the contin-
uous equation (with no number fluctuations), where u0 is
the characteristic velocity of the flow field. It is known that,
without number fluctuations, the front speed of a population
advected by an incompressible velocity field depends on the
Damköler and the Péclet number u0lu/D [10]. When number
fluctuations are taken into account, previous theoretical and
numerical findings for the continuous case are valid provided
μl2

u /N0Deff � 1.
Besides the above results, which nicely generalize many

previous findings, one may wonder whether the effect of the
advection of an incompressible flow may be relevant for some
realistic cases. In particular, we wanted to consider the case
of phytoplankton dynamics subject to ocean circulation and
turbulence. We assumed that, without advection, the phyto-
plankton dynamics can be considered to be in the strong
noise regime where diffusivity effects control the timescale
for a slightly advantageous population to eventually dominate
(fixation). This is true, for instance, for a population density
of order 107–109 individuals for m3 with a generation time
order of 1 day and size of order 1 μm corresponding to diffu-
sivity order 10−13 m2/s. Depending on the population density,
these parameters correspond to μ/NRD ∈ [50, 1000]. Next we
considered the effect of turbulence where we know that the
effective diffusivity becomes scale dependent and it can be
estimated using the Richardson theory and the Kolmogorov

scaling. Upon defining ε as the energy dissipation per unit
mass of the turbulence flow, l as the scale where we con-
sider the effect of the effective viscosity Deff ∼ ε1/3l4/3, and
N0 ∼ 1, the relevant dimensionless quantity becomes Gt ≡
μl2/N0Deff . An estimate of ε can be obtained by using the
recent analysis performed in Ref. [18], where it was shown
that for l ∼ 10 km the probability distribution of ε is close
to a log-normal distribution with a most probable value near
the surface close to ε ∼ 10−10 m2/s. With these numbers,
we obtain Gu ∼ 10 and the timescale for fixation to occur
becomes order of 10 days. This estimate is clearly very rough
since all the variables we considered show strong and even
intermittent fluctuations both in space and in time. At any
rate, our evaluation of Gu was just done to illustrate that the
advection of a relatively weak compressible flow, for instance,
due to a moderate upwelling, may become an important effect
on the population dynamics located in the upwelling region,
as discussed, e.g., in Ref. [19]. This effect is different for
different population sizes, densities, and characteristics of
the population (motile versus nonmotile) for different flow
characteristics, thus contributing, directly or indirectly, to the
well-known complex dynamics of oceanic biomass.
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APPENDIX A: NUMERICAL ALGORITHM

In this Appendix we give a brief description of a numerical
model to investigate the behavior of population dynamics and
genetics under flow, closely following the work of Guccione
et al. [12]. The model aims to describe the space-time evo-
lution of a population by solving the FKPP equation (11),
namely,

∂ f

∂t
+ �v · �∇ f = D� f + μs f (1 − f )

+
[

2μ

N0
f (1 − f )

]1/2

w(�x, t ). (A1)

The method consists of a series of steps. Let us start by
considering a uniform lattice of spacing a. Every interval
i = 1, . . . , n of size a spans a region within which there is
a number N (β )

i of individuals, where β = A, B refers to the
two possible species. In the first step the particles present in
the boxes will be displaced due to diffusion and they will
be redistributed on a domain (1 + α)ad , where α identifies
the diffusion process and d refers to the dimension of the
considered system. We execute a Markov chain with next-
neighbor hopping and periodic boundary conditions, whose
convergence is related to a diffusion process, with diffusivity
constant D. The hopping probability is defined by

p ≡ D�t

a2
, (A2)

with p � 1.
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Step 1: Diffusion. For each interval i, the position of the
particle xα (i) is calculated as

xα (i) = (
i − 1

2

)
a + a

(
η − 1

2

)
(1 + 2p), (A3)

where η is a uniformly distributed random number within
[0, 1]. If an external velocity field is present then the particles
undergo a further displacement in continuous space.

Step 2: Advection. The advection is calculated as

xα (i, t + �t ) = xα (i) + u(xα (i))�t, (A4)

where u(x, t ) is a defined advecting field.
We notice that the particles from the box we started from

will be moved to another box, thus making a change in the
number of individuals present in the new box.

Step 3: Relabeling. It is possible to determine the new index
as

j ≡
⌊

xr (i, t + �t )

�x

⌋
+ 1. (A5)

Step 4: Birth and death processes. Once the previous steps
have been completed, it is possible to calculate the birth-death
processes according to specific rates,

Ñ (A)
j = Ñ (A)

j + 1 at rate rb(A), (A6)

Ñ (A)
j = Ñ (A)

j − 1 at rate rd (A), (A7)

rb(A) = μ�t,

rd (A) = μ�t
Ñ (A)

j − 1 + Ñ (B)
j (1 − s)

N0
,

Ñ (B)
j = Ñ (B)

j + 1 at rate rb(B), (A8)

Ñ (B)
j = Ñ (B)

j − 1 at rate rd (B),

rb(B) = μ�t,

rd (B) = μ�t
Ñ (B)

j − 1 + Ñ (A)
j (1 + s)

N0
, (A9)

where s is the selective advantage, s > 0, or disadvantage, s <

0, of individuals A with respect to B. With rb and rd the birth
and the death probabilities, respectively, are identified.

If the individuals belonging to a given box are known,
it is possible to perform this procedure, whose advantage is
not tracking the position of each particle. Because of this, in
particular, it is possible to consider this method efficient; the
computational cost tends to be relatively low.

Note that for each mesh site, the probability to obtain
k new offspring or deaths is binomial and it approximates
a Poisson distribution only when the number of individuals
considered in the specific process is large enough. This can
never happen in proximity to the edge of a propagating front
and/or near extinction even for large value of N0. Once the
last step concludes, we set N (γ )

j = Ñ (γ )
j and we can start with

a new time step.
In Table I we show the values of the different parameters

(except s) used in the numerical simulations of the paper. Note
that N0 = 2 is valid for all cases except the one shown in
Fig. 5, which in fact displays the value of Gu as a function
of N0.

TABLE I. Numerical values used in the simulations.

Parameter Value

size L 2π

deme size a 2π

128
deme population N0 2
diffusivity D 10−3

APPENDIX B: MATHEMATICAL DETAILS FOR
INTRODUCING THE CUTOFF kM

In this Appendix we give an explanation regarding the
introduction of the cutoff kM in the system during the step
between Eq. (25) and the relation (26).

By combining Eq. (26) with Eq. (20), i.e.,

D
〈( �∇ f )2〉
〈(δ f )2〉 = 1

t∗
, (B1)

we get the relation

1

t∗
= Dk2

M = D

a2
. (B2)

Thus it is possible to derive the timescale t∗ as

t∗ = a2

D
. (B3)

Now, to solve Eq. (25), we calculate a Fourier transform,
obtaining

∂tφk = −k2Dφk + √
εwk, (B4)

by knowing that the Fourier transform of white noise is a
constant. The averages of φ2 and ( �∇φ)2 are, respectively,

〈φ2〉 =
∫

k dk〈φ2
k 〉, (B5)

〈( �∇φ)2〉 =
∫

k2k dk〈φ2
k 〉. (B6)

Calculating the average of φ2, we get

〈
φ2

k

〉 = ε

2k2D
, (B7)

so that

〈φ2〉 = ε

2D

∫
k dk

k2
= ε

2D
ln

(
kM

k0

)
, (B8)

and for the gradient

〈( �∇φ)2〉 = ε

2D

∫
k2k dk

k2
= ε

4D
k2

M . (B9)

Making the relationship between 〈φ2〉 and 〈( �∇φ)2〉 while
keeping apart the natural logarithmic term, we obtain the
factor kM , which is why it is necessary to introduce the cutoff.
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