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Nonlinear stress relaxation of transiently crosslinked biopolymer networks
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A long-standing puzzle in the rheology of living cells is the origin of the experimentally observed long-
time stress relaxation. The mechanics of the cell is largely dictated by the cytoskeleton, which is a biopolymer
network consisting of transient crosslinkers, allowing for stress relaxation over time. Moreover, these networks
are internally stressed due to the presence of molecular motors. In this work we propose a theoretical model
that uses a mode-dependent mobility to describe the stress relaxation of such prestressed transient networks. Our
theoretical predictions agree favorably with experimental data of reconstituted cytoskeletal networks and may
provide an explanation for the slow stress relaxation observed in cells.
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I. INTRODUCTION

Living cells are known to exhibit unusual mechanical prop-
erties including an internal nonlinear stiffening under external
stress, in which their stiffness can increase by orders of
magnitudes [1], reversible softening under compression [2],
viscoplasticity [3], and poroelasticity [4]. A long-standing
puzzle is related to the surprisingly slow stress relaxation that
has been measured in living cells [5–10]. This stress relaxation
reveals more than just a long relaxation time but also a broad
spectrum of relaxation times, with a dynamic modulus that
varies with frequency as a power law with exponent β in
the range of ∼0.1–0.3 [5]. It has been argued that this may
be related to the soft glassy rheology (SGR) model [5,8,11],
although the relevance and validity of this in cell mechanics
remains unclear.

Most of the mechanical properties of living cells origi-
nate in the cytoskeleton, a dynamic network composed of
crosslinked biopolymers, which gives the cell its shape and
rigidity [12]. One reason for its dynamic nature is that many
of the crosslinking proteins, for example α-actinin, form tran-
sient bonds with both finite binding and unbinding rates [13].
Such crosslinking proteins, denoted as transient crosslinkers,
introduce a distinct type of stress relaxation in semiflexible
polymer networks, since the unbinding of crosslinkers allows
the networks to flow at long time [14–19]. Previous theory
and experiments involving reconstituted biopolymer networks
have revealed a characteristic scaling exponent of β = 1/2
for the frequency-dependent linear shear modulus [17–19].
Unlike the Rouse model, in which the same exponent appears
in the high-frequency regime [20–22], transient networks
only exhibit the 1/2 exponent in the low-frequency regime,

indicating a different mechanism of stress relaxation from the
Rouse model. Moreover, the Rouse model applies to flexi-
ble polymers, while the analogous high-frequency regime for
semiflexible polymers such as actin is known theoretically and
experimentally to exhibit a 3/4 exponent [23–29].

Within the cytoskeleton there are also molecular motors
that generate internal stresses [30–32], which may alter the
rheological properties of living cells [6,33,34]. Recently, it has
been shown experimentally that the apparent scaling exponent
of the linear shear modulus in reconstituted actin networks
with transient crosslinks can be further reduced and system-
atically varied over the range of 0.1 � β � 0.5 by an applied
external stress [35]. It is well known that applying external
or internal stress on a permanent biopolymer networks can
cause nonlinear stiffening [36–39] and a reduction in the
high-frequency exponent from 3/4 to 1/2 [38,40–43]. When
applied to transient networks, aside from the stress-stiffening
response, external stress solidifies the network [18], suppress-
ing both stress relaxation and reducing the apparent exponent
of the frequency-dependent nonlinear shear modulus [35].
This provides a possible explanation for the weak scaling
exponent observed in living cells, as living cells are intrin-
sically under internal stress generated by molecular motors
or other active processes [30,44–46], although a microscopic
model for how stress qualitatively changes the dynamics is
still lacking.

In this paper, we develop such microscopic theory for
the mechanical response of transient-crosslinked semiflex-
ible networks under applied stress. Based on equilibrium
thermodynamics, we show that the dynamics of transiently
crosslinked semiflexible polymer networks can be described
by a mode-dependent mobility. We analytically derive the
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FIG. 1. (a) Schematic figure of a transient network, in which
polymers (lines) are connected by transient crosslinkers (circles).
The unbinding and rebinding of a single crosslinker (purple
circle) relaxes its adjacent segments. (b) The relaxation of a
long-wavelength mode requires successive unbinding events (green
circle -> blue circle -> brown circle in sequence).

form of this mobility in transient networks and calculate the
nonlinear modulus under external stress. Our theoretical pre-
diction of the nonlinear modulus quantitatively agrees with
experiment data of reconstituted cytoskeletal networks. We
also show that external stress naturally leads to a weak fre-
quency dependence by suppressing fluctuations of bending
modes.

II. OVERVIEW

Transient crosslinkers introduce a distinct type of stress
relaxation: When a crosslinker unbinds, it relaxes the stress
on adjacent polymer segments (the crosslinker later bind on a
different position), see Fig. 1(a). In order for a long polymer
to relax, multiple successive unbinding events are required
[Fig. 1(b)], resulting in a relaxation time much longer than
the timescale of a single unbinding event [17,28].

We propose a microscopic model that accounts for the
effect of unbinding and rebinding of transient crosslinkers.
In our model, that is described in detail below, we show
that the relaxation of semiflexible polymer networks can be
decomposed into the relaxation of the independent bending
modes (see Sec. III). The relaxation of each mode follows a
mode-dependent mobility, Mqq (q being the wave number),
which leads to nontrivial dependencies on the frequency of the
linear and nonlinear viscoelastic moduli. In Fig. 2(a) we show
a schematic diagram of the various regimes for a transient-
crosslinked biopolymer network in the (ω, σ ) phase space,
where ω is the frequency and σ is the applied shear stress.
With only transient crosslinkers in the system, reptation of
finite molecular weight polymers is expected to lead to liquid-
like behavior on the longest timescales. In the present model
we have focused on stress relaxation that is entirely due to
transient-crosslinking, and we therefore consider the limit of
high molecular weight and timescales less than the reptation
time. On these timescales, we find that the stress relaxation
can be devided into two regimes: In the low-frequency regime
the stress relaxation is governed by the transient behavior
of the crosslinkers, while in the high-frequency regime the
network behaves as if the crosslinkers were permanent [17].
The two regimes are separated by a characteristic frequency,
ωc(σ ), which depends on σ [see Sec. V, Eq. (30)]. These

FIG. 2. (a) Schematic regime diagram of a transient network
as function of frequency ω and prestress σ . The extremely low-
frequency regime is dominated by reptation, which is not considered
in our model. The rest of the diagram consists of a transient and
permanent regimes, separated by ωc(σ ), which is the characteristic
frequency, see Eq. (30). σc and σp are the characteristic stresses
for the nonlinear stiffening in the transient and permanent regimes,
respectively. (b) Schematic curves of the differential elastic modulus
K ′ versus ω, for small prestress (linear transient and linear
permanent), intermediate prestress (nonlinear transient and lin-
ear permanent), and large prestress (nonlinear permanent). The
corresponding power-law regimes are indicated. With stress, the low-
frequency regime is not predicted to be a strict power law, although
we show that it may appear to be so.

two different regimes appear as a result of the different q
dependence of the mode-dependent mobility Mqq, for q >

π/�c and q < π/�c, where �c is the average spacing be-
tween crosslinkers in the network. The relaxation of bending
modes with q > π/�c is dominated by the solvent viscosity,
as in permanent networks [24,25]. However, the relaxation
of bending modes with q < π/�c is limited by the tran-
sient nature of the crosslinkers, leading to Mqq ∼ q2 (see
Sec. IV). This quadratic dependence in Mqq results in a linear
modulus G(ω) ∼ ω1/2. Moreover, when external stress is
applied, the network may stiffen nonlinearly, where the
characteristic stress, σc(ω) ∼ ω1/3, governs the transition
from the linear to the nonlinear stiffening regimes [see
Sec. V, Eq. (29)]. When the network stiffens nonlinearly,
the differential shear modulus K = K ′ + iK ′′ = dσ/ dγ is
used to characterize the viscoelastic behavior, where γ is
the shear deformation. As we show below (see Sec. VI)
and is sketched in Fig. 2(b), the apparent exponent with
which K depends on ω is reduced with applied stress
and can become arbitrarily small at high stress. This is
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consistent with recent experiments [35] and may provide
an explanation for the week dependence seen in living
cells [5–10].

III. MODEL

To predict the mechanical response of a biopolymer
network under stress, we begin by describing a single semi-
flexible polymer under tension. For simplicity we first discuss
a polymer moving on a two-dimensional (2D) plain where the
transverse deformation is limited in one direction and then
extend the result to polymers in 3D. The Hamiltonian for such
polymers with length � under tension F is [24,25,28]

H = κ

2

∫
dx

(
∂2u

∂x2

)2

+ F

2

∫
dx

(
∂u

∂x

)2

. (1)

Here κ is the bending rigidity and u(x) is the transverse
displacement at position x. The first term in Eq. (1) is the
bending energy of the chain, while the second term is the work
done by the external force, where �� = ∫

dx(∂u/∂x)2/2 is
the contraction of the end-to-end distance due to bending
fluctuations. This transverse displacement can be decomposed
using Fourier series to a series of bending modes, {uq}, with q
being the wave number:

u(x) =
√

2

�

∑
q

uqsin(qx)
(

q = nπ

�

)
, (2)

where the dimension of u(x) is set to be [L]1/2 to sim-
plify the expression of the Hamiltonian. Using Eq. (2), the
Hamiltonian in Eq. (1) is diagonalized and assumes a simple
quadratic form:

H = 1

2

∑
q

(
κq4 + Fq2

)
u2

q. (3)

The dynamics of the amplitudes of all bending modes follow a
standard Langevin equation with {uq} as variables (this model
is usually referred to as Model A) [47],

duq

dt
= −

∑
p

Mqp({us})
∂H

∂up
+ ηq

= −
∑

p

Mqp({us})(κ p4 + F p2)up + ηq, (4)

where Mqp({us}) is the generalized mobility matrix, {us} de-
notes the set of amplitudes of all bending modes, {uπ/�,
u2π/�,...}, and ηq is a thermal Gaussian white noise with zero
mean and variance 〈ηp(t )ηq(t ′)〉 = 2kBT Mpqδ(t − t ′), where
kB is Boltzmann constant and T is the temperature.

In general, Mpq is a function of all {us}, and Eq. (4) is
nonlinear. However, the transverse displacement of semiflex-
ible polymers is small [u(x) � �], and as we shall see below,
when applying an external stress these displacements are even
smaller. Therefore, within our framework, Eq. (4) should be
linearized, leading to a constant mobility matrix Mpq. The
evolution of the correlation function of mode q, 〈uq(0)uq(t )〉,

is then

d

dt
〈uq(0)uq(t )〉 =

〈
uq(0)

duq(t )

dt

〉

= −
∑

p

Mpq(κ p4 + F p2)〈uq(0)up(t )〉

= −Mqq(κq4 + Fq2)〈uq(0)uq(t )〉, (5)

where 〈...〉 denotes average over thermal noise realizations.
In the last equation we use the fact that H ({uq}) is diago-
nal, implying that there are no correlations between different
bending modes, i.e., 〈up(0)uq(t )〉 ∼ δpq. Thus, the correlation
function follows a simple exponential decay, where the vari-
ance at t = 0 is obtained from Eq. (3) using the equipartition
theorem (assuming the system is in equilibrium at t = 0) [24],
such that

〈uq(0)uq(t )〉 = kBT

κq4 + Fq2
e−Mqq (κq4+Fq2 )t . (6)

For every bending mode q, there is only one parameter asso-
ciated with its relaxation process, Mqq, which is the mobility
for mode q. This mode-dependent mobility naturally emerges
from the linearization of the Langevin equation and can thus
be generally applied to any semiflexible polymer networks.
Once the mode-dependent mobility is known, the dynamics
of the network is determined.

Notice that Eq. (6) shows that the variance of uq decreases
with increasing F , thus tension reduces bending fluctuations.
This is consistent with our assumption that linearizing Eq. (4)
is always valid for semiflexible polymers. For flexible poly-
mers, although their Hamiltonian can also be diagonalized to
a quadratic form (Rouse model [20]), the amplitude of the
transverse fluctuations is large and the linearization of Eq. (4)
is not generally valid.

Next, we use the correlation function of Eq. (6) to calcu-
late the correlation function of the end-to-end distance under
tension F , CF (t ) ≡ 〈δ�(0)δ�(t )〉. Here δ� = 〈��〉 − �� is the
projected end-to-end extension of the polymer with respect to
its rest length for small u and �� = ∫

dx(∂u/∂x)2/2. This
relation leads to a simple formula for CF (t ) [24]:

CF (t ) =
∑

q

q4〈uq(0)uq(t )〉2

=
∑

q

(kBT )2 q4

(κq4 + F q2)2
exp [−2Mqq(κq4 + Fq2)t]. (7)

The Fourier transform of the correlation function is then
used to compute the end-to-end power spectrum, PF (ω) ≡
|δ�(ω)|2,

PF (ω) =
∑

q

(kBT )2 q4

(κq4 + F q2)

4Mqq

ω2 + 4M2
qq(κq4 + Fq2)2 . (8)

Using the fluctuation-dissipation theorem, we can relate
this power spectrum to the response function χ (ω; F ):
�χ ′′(ω; F ) = ωPF (ω)/2kBT , which together with the
Kramers-Kronig relations gives

χ (ω; F ) =
∑

q

2kBT Mqq(κq4 + Fq2)

�(κq2 + F )2[2Mqq(κq4 + Fq2) − iω]
. (9)
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This response function describes the mechanical response of
the chain, given that the tension is slightly perturbed around
F . For polymers in 3D, one should add a factor of two
to the right-hand side of Eq. (9) in order to account for
the transverse displacement in two directions. In the rest
of the paper we will use the 3D result. As we will show later,
the macroscopic modulus of the entire network can be derived
using the response function of a single polymer, Eq. (9).

IV. MODE-DEPENDENT MOBILITY

A. Mode-dependent mobility for transiently-crosslinked
networks

In the previous section we have shown that the dynamics of
a single polymer in any biopolymer network is well described
by a mode-dependent mobility Mqq, while its specific form
depends on the network structure. In this section we first
derive Mqq for transient networks in the small-q limit in a
simple and intuitive way and then detail a general method that
can be used to derive Mqq for any q.

Lets us consider a transient network in the hydrodynamic
limit (i.e., long-wavelength limit). For small q, we can Taylor
expand Mqq,

Mqq = a0 + a2q2 + a4q4 . . . , (10)

where an denotes the coefficient of the n-degree term. The
form of Mqq is constrained by polymer symmetries. There-
fore, since the polymer does not have a preferred transverse
direction (it can have a preferred longitudinal direction though
due to the polarity [30]) Mqq must be an even function of
q. The term a0 stands for the mobility for the q = 0 mode
(infinite wavelength). For transient networks, the value of a0

must be 0. The reason for this can be seen from Fig. 1(b),
where we sketch the relaxation process of a long-wavelength
mode. In order to relax such a mode, multiple succes-
sive unbinding events are required, indicating that transient
crosslinkers impose stronger limitations to long-wavelength
modes, leading to smaller mobilities. In order to relax the
infinite-wavelength mode there should be infinite successive
binding events, each of them takes finite time, therefore lead-
ing to zero mobility. Hence, the leading term in Eq. (10) is the
quadratic term, and for small q we have Mqq = a2q2.

So far we have shown that the transient nature of the net-
work results in a quadratic dependence of Mqq. However, this
quadratic dependence should only be valid for q � qc, where
qc = π/�c is the characteristic wave number with wavelength
�c. Bending modes with q � qc are not limited by transient
crosslinking, and their relaxation is determined by the sub-
strate mode-independent viscosity (rather than the networks
itself), which corresponds to a constant mobility M0. Together,
we can approximate Mqq for all wavelengths:

Mqq =
{

a2q2 (q � qc)
M0 (q > qc)

. (11)

This mobility is discontinuous at q = qc, because we sim-
ply separate the bending modes into a crosslink-limited and
viscous-dominated parts. In fact, for bending modes with
q ∼ qc, both the transient crosslinkers and the substrate vis-
cosity contribute to the stress relaxation, and we anticipate

a transition in Mqq from the quadratic dependence to the
constant mobility. We determine the dependence of Mqq for
q ∼ qc in Sec. IV B.

Although this form of the mobility is sufficient for pre-
dicting the macroscopic modulus (see Sec. V), a microscopic
understanding of the parameter a2 is important for under-
standing the physics of the model we use. In general, the
mobility (and thus also a2) can depend on F , for example due
to catch and slip bond. For simplicity we neglect this effect
hereafter (see Sec. VI for further discussion). We can then
consider the dynamics of a polymer for F = 0 and calculate
a2. The relaxation time of bending mode q, τq, can be read
from Eq. (6). When F = 0, it is τq = 1/(κq4Mqq). For small
q, we have τq = 1/(a2 κq6). On the other hand, the relaxation
process for small q is limited by binding and unbinding of
crosslinkers, which is characterized by a single timescale τoff

(the unbinding time, as appropriate for strong crosslinkers that
spend most of their time in the bound state [17]), therefore, we
also have τq ∼ τoff . From dimensional analysis, the coefficient
a2 can be written in terms of microscopic parameters:

a2 = c
�6

c

κτoff
, (12)

where c is a dimensionless constant. Here �c is the average
spacing between crosslinkers which appears as it is the only
lengthscale associated with transient crosslinkers.

In order to find the value of c, we use the (mean-field)
result of Ref. [17] for the response function χ for F = 0
(see Appendix A for a complete derivation). In this case,
the relaxation rate of each bending mode, ωr (q), can be
written as [24]

ωr (q) = 2κq4

ξ (q)
, (13)

where ξ (q) = 1/Mqq is the mode-dependent friction. Since
a mode with longer wavelength must have longer relaxation
time, ωr (q) must increase monotonically, suggesting the ex-
istence of the inverse function q(ωr ). The slowest relaxation
rate is ωr (q = π/�) (� being the polymer length), correspond-
ing to the longest wavelength mode, which must vanish as
� → ∞. Therefore, in the long-chain limit we always have
ω � ωr (q = π/�). This allows us to approximate the sum-
mation in Eq. (9) with an integral (as will be done in the rest
of the paper), leading to:

χ (ω; F = 0) � 2kBT

πκ

∫ ∞

0
dq

2a2q2

ωr (q) − iω

= a1/2
2 kBT

3κ3/2
ω−1/2(1 + i), (14)

where the −1/2 exponent is consistent with Ref. [17]. In
Ref. [17], the linear response function χ (ω; F = 0) is derived
using a mean-field theory (see Appendix A for details–note
the factor of two for a polymer in 3D):

χ (ω; F = 0) = 0.0036
2kBT �3

c

πκ2

∫ ∞

−∞

dq

q2 − 2iωτoff

= 0.0036
kBT �3

c

τ
1/2
off κ2

ω−1/2(1 + i). (15)
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Comparing this response function with our result [Eq. (14)]
gives the analytical expression of the coefficient a2

a2 = 0.00012
�6

c

κτoff
. (16)

Although �c and κ can be measured experimentally, the
unbinding time τoff of the crosslinker is usually unknown.
Therefore, replacing a2 with Eq. (16) does not reduce the
number of fitting parameters. However, Eq. (16) gives a
microscopic understanding of the coefficient a2 and can be
further used to calculate τoff (see Sec. V).

B. Mode-dependent mobility for generic networks

Heretofore we have derived the mode-dependent mobility
for transient networks. We find that a quadratic dependence
in the small-q-limit naturally emerges as a result of the tran-
sient nature of the network. However, the mobility for q ∼
qc remains unclear, and the same derivation does not apply
to other networks, despite the fact that the mode-dependent
mobility can be applied to any semiflexible polymer net-
works. In this subsection we provide a general method
for deriving the mode-dependent mobility for any network,
provided that the correlation function of the end-to-end dis-
tance is known. The latter can be found analytically, using
numerical simulations, or measured experimentally. We then
use this method to derive the mode-dependent mobility of
transient networks for q ∼ qc. The correlation function,
CF (t ), is related to the mode-dependent mobility, Mqq, via
Eq. (7). Once CF (t ) of a given polymer is obtained, Mqq can
be calculated by inverting Eq. (7). For simplicity, and as the
mobility is assumed to be independent of F , we only con-
sider F = 0. Following the same reasoning as in the previous
section [see paragraph before Eq. (14)] we approximate the
summation in Eq. (7) with an integral:

C0(t ) ≡ CF=0(t ) = 2�(kBT )2

πκ2

∫
dq

q4
exp [−ωr (q)t]

= 2�(kBT )2

πκ2

∫
dωr

q4

dq

dωr
exp [−ωrt]. (17)

Surprisingly, we find that the correlation function at van-
ishing force is proportional to the Laplace transform of
q−4 dq/ dωr . The inverse Laplace transform of Eq. (17) gives
a differential equation for q(ωr ),

L−1{C0}(ωr ) = 2�(kBT )2

πκ2q4

dq

dωr
, (18)

where

L−1{C0}(ωr ) = 1

2π i
lim

T →∞

∫ γ+iT

γ−iT
esωrC0(s) ds. (19)

Here γ is any real number greater than the real part of all
singularities of C0(s). Using Eq. (18) and the correlation func-
tion C0(t ), one can derive the relaxation rate ωr (q). Then the
mode-dependent friction is easily found using Eq. (13).

We now use this method to derive the mode-dependent mo-
bility of transient networks for all q’s. As discussed above, the
stress relaxation of transient networks is governed by two dif-
ferent mechanisms: a slow relaxation relying on the transient

crosslinkers and a fast relaxation dominated by the substrate
viscosity. We assume the timescales for the two processes to
be separated, i.e., τoff � τper or a2 � 2M0q4

c , where τper =
1/(2κM0q4

c ) is the longest relaxation time governed by the
substrate viscosity. Under this assumption, the contribution to
the correlation function from the two relaxation processes is
additive [17]:

C0(t ) = 2(kBT )2�

πκ2

∫ ∞

0

dq

q4
exp (−2a2κq6t )

+ 2(kBT )2�

πκ2

∫ ∞

qc

dq

q4
exp (−2M0κq4t ), (20)

where the first term is the contribution due to the transient
nature of the crosslinkers. The second term is the classic result
of the correlation function of a semiflexible polymer with
mobility M0 where the average crosslinking distance is �c

[24]. The inverse Laplace transform of Eq. (20) is as follows:

L−1{C0}(ωr ) = 2(kBT )2�

πκ2

∫ ∞

0

dq

q4
δ(ωr − 2a2κq6)

+ 2(kBT )2�

πκ2

∫ ∞

qc

dq

q4
δ(ωr − 2M0κq4)

= (2a2)1/2(kBT )2�

3πκ3/2
ω−3/2

r

+ (2M0)3/4(kBT )2�

2πκ5/4
ω−7/4

r �(ωr − 2M0κq4
c ),

(21)

where �(x) is the heaviside function. Substituting Eq. (21)
into Eq. (18) and integrating from q to infinity, with the
boundary condition ωr (q → ∞) = ∞ gives:

(2a2κ )1/2ω−1/2
r + (2M0κ )3/4ω−3/4

r �
(
ωr − 2M0κq4

c

)
= q−3 − q−3

c �
( − ωr + 2M0κq4

c

)
. (22)

Because we assume a2 � (2M0κq4
c ), the solution of

Eq. (22) is

ωr (q) =
{

2a2κq6
[
1 − ( q

qc

)3]−2
(q � qc − �q)

2M0κq4 (q > qc − �q),
(23)

where �q = a2
1/2q2

c/(3M1/2
0 ). The mobility Mqq can then be

found using Eq. (13),

Mqq =
{

a2q2
[
1 − ( q

qc

)3]−2
(q � qc − �q)

M0 (q > qc − �q).
(24)

In Fig. 3 we plot the mobility Mqq as a function of q. For
q � qc, Mqq shows a quadratic dependence on q, in agreement
with our previous analysis for the small q limit. When q
approaches qc, Mqq increases dramatically until it reaches M0.
Although this cusp in Mqq near q = qc appears unphysical, it
is essential within our model with a single lengthscale �c for
the appearance of the plateau in the linear modulus [17] (see
Appendix B for a mathematical proof).
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FIG. 3. Mode-dependent mobility, Mqq, as a function of q, calcu-
lated from Eq. (24) with M0 = 100a2κq4

c . The form of the mobility
(including the cusp) is further discussed in Appendix B.

V. DYNAMIC MODULUS

In this section we derive the dynamic modulus of the tran-
sient network using the mode-dependent mobility calculated
above. We focus on the transient nature of the network and
neglect the detailed network structure by assuming all the
polymers are aligned in the same direction, i.e., an effective
1D network. A more complete discussion of the 3D case is
deferred to future publication [48]. When an external prestress
σ is applied on an aligned network, all the polymers feel the
same tension, F = σ/ρ, where ρ is the polymer length per
unit volume [28]. When σ is perturbed by dσ , the tension is
also perturbed, dF = dσ/ρ, leading to an extension, d� =
�χ dF . Therefore, the perturbation in stress causes a pertur-
bation in strain, dγ = d�/� = dσχ/ρ, and the differential
modulus is

K (ω; σ ) ≡ dσ

dγ
= ρ

χ
(
ω; F = σ

ρ

) . (25)

We start by calculating K in the low-frequency regime,
which is governed by the transient crosslinkers, ω � ωc(σ ),
where ωc(σ ) is the characteristic frequency separating the
transient regime and the permanent regime (see Fig. 2).
The mathematical definition of ωc(σ ) will be given later
in this section. In this regime the contribution from long-
wavelength modes dominates, allowing us to only use the
long-wavelength part of Mqq, i.e., Mqq = a2q2. Substituting
this into Eq. (9), we have:

χ (ω; F ) = 2kBT (2a2)1/2

πκ3/2ω1/2

×
∫ ∞

0

r4 dr(
r2 + F

Fc (ω)

)[
r6 + F

Fc (ω) r
4 − i

] , (26)

where r = (2κa2/ω)1/6q and Fc(ω) = (κ2ω/2a2)1/3 is a
frequency-dependent characteristic tension. Using the expres-
sion in Eq. (26), the differential modulus is calculated using
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FIG. 4. (a) A plot of K ′ as function of the external stress σ for
different frequencies using experimental data of reconstituted actin
networks (taken from Ref. [35]). In (b) we plot the rescaled K ′,
vs the rescaled prestress for the various frequencies. The purple
curve is the theoretical prediction of Eq. (27). The best fit values
are γ1 = 1.71 Pa s1/3, γ2 = 35.9 Pa s1/2 (fit was done using only the
K ′ data).

Eq. (25). We separate the dynamic modulus into the storage
modulus, K ′, and the loss modulus K ′′, using K = K ′ + iK ′′.
The dynamic modulus can be expressed in a simple form:

K ′(ω; σ ) = Kc(ω)Re{g[σ/σc(ω)]}
K ′′(ω; σ ) = Kc(ω)Im{g[σ/σc(ω)]}, (27)

where

[g(x)]−1 =
∫

(q6 + xq4) dq

(q2 + x)2[(q6 + xq4) − i]
, (28)

is a function describing the stress-stiffening behavior of semi-
flexible polymers, and

σc(ω) = γ1ω
1
3 ; Kc(ω) = γ2ω

1
2 , (29)

are the characteristic stress and modulus, with γ1 =
ρ(κ2/2a2)1/3 and γ2 = πρκ3/2/(23/2a1/2

2 kBT ). These charac-
teristic stress and modulus agree with what has been observed
in reconstituted actin networks crosslinked by α-actinin-4
and was explained using a phenomenological theory [35]. By
rescaling the experimental data using Kc and σc, we collapse
the data of the storage modulus onto a single curve, which is
fitted with our theoretical prediction of Eq. (27), see Fig. 4.
Here we fit the data using only two fitting parameters, γ1 and
γ2, for all curves (i.e., after fitting one line we predict all the
rest) [49].

We continue with calculating the differential modulus in
the entire frequency regime. To do so, we substitute Eq. (24)
into Eq. (9) and Eq. (25), leading to the differential modulus,
which is the central result of this paper:

K (ω; σ ) = [χ̃t (ω; σ ) + χ̃p(ω; σ )]−1, (30)

where χ̃t and χ̃p are contributions from the transient and
permanent modes, respectively. The two terms are

χ̃t (ω, σ ) = Dt

∫ 1−�r

0
dr

{
r4[1 − r3]−2

ωt r2 + ωtσ

× 1

r4[1 − r3]−2(ωt r2 + ωtσ ) − iω

}
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χ̃p(ω, σ ) = Dp

∫ ∞

1−�r
dr

(
r2

ωpr2 + ωpσ

× 1

ωpr2 + ωpσ − iω

)
, (31)

where r = q/qc, �r = �q/qc, Dt = 0.11γ −1
2 τ

−3/2
off , ωt =

0.23/τoff , ωtσ = 0.38γ −1
1 τ

−2/3
off σ , Dp = 2.09γ −1

2 τ
1/2
off τ−2

per ,

ωp = 1/τper, and ωpσ = 1.63γ −1
1 τ−1

per τ
1/3
off σ . Here �q =

a2
1/2q2

c/(3M1/2
0 ) as defined after Eq. (23). The nonlinear

modulus for any given ω and σ is then determined by four
parameters: γ1, γ2, τoff , and τper.

The transient and permanent regimes are determined by the
dominant term in Eq. (30) (when χ̃t dominates the network
is in the transient regime and when χ̃p dominates it is in
the permanent regime). We then define the characteristic fre-
quency ωc to be the one satisfying |χ̃t (ωc, σ )| = |χ̃p(ωc, σ )|.
For small stress, numerical analysis suggests ωc(σ = 0) =
1.26ωt = 0.29/τoff , indicating that the unbinding time is the
timescale separating the transient regime from the permanent
regime. For larger stress ωc is decreasing and it vanishes as
the stress exceeds a threshold (see Fig. 2). This suggests that
for very large stress the transient behavior vanishes, and the
permanent-regime plateau expands and covers the entire low-
frequency regime. However, such a shift is only obvious when
σ > σp, where σp is the characteristic stress for the permanent
regime, and ωc can be regarded as a constant in the linear
regime (see Fig. 2).

In the transient regime, i.e., ω � ωc(σ ), χ̃t dominates
Eq. (30), and the dynamic moduli are well described by
Eq. (27). For small prestress we have K ∼ ω1/2, same as
the linear modulus. When the prestress increases the term
r4(ωt r2 + ωtσ ) is comparable to ω, and the network stiffens
nonlinearly. The characteristic stress for this stiffening is σc,
see Eq. (29). Since σc ∼ ω1/3, the characteristic stress is larger
for higher frequency, and the frequency dependence of K is
also weakened by the prestress. In fact, the apparent scaling
exponent of K can be written as a function of σ/σc, see
Sec. VI for further discussion.

When ω � ωc(σ ), χ̃p dominates Eq. (31) and the network
is in its permanent regime. In this case the network behaves
as the well-studied permanent network [24,25]. There is a
noteworthy frequency in Eq. (30) associated with the perma-
nent regime, ωp + ωpσ , which is the relaxation rate for the
bending modes with q slightly larger than qc. As we assume
τoff � τper, we have ωc(σ ) � ωp + ωpσ , and we expect a
plateau in K ′ between the two frequencies (see Ref. [24] and
f6 Appendix B). In fact, when ωc(σ ) � ω � ωp + ωpσ in
Eq. (30), we have K ≈ C1 + (C2/ω)i, where C1 and C2 do
not depend on ω. The different scaling for K ′ and K ′′ in this
plateau regime results in different behavior in the transition
between the transient and permanent regimes, see discussion
on Fig. 5 below. For ω � ωp + ωpσ , we have K ∼ ω3/4,
in agreement with analytical results for permanent networks
[24,25]. The network in the permanent regime nonlinearly
stiffens when the prestress reaches the characteristic stress,
σp, which is defined as the prestress satisfying ωp = ωpσ .
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FIG. 5. Differential storage modulus K ′ (a) and differential loss
modulus K ′′ (b) as measured in the experiments of Ref. [35]
(x symbols), together with the theoretical fitted curves of Eq. (30).
The best-fit values of the parameters are γ1 = 1.71 Pa s 1/3, γ2 =
35.9 Pa s1/2, τoff = 0.0085 s, and τper = 2.0 × 10−14 s. In the in-
set of (b) we plot the ratio K ′′/K ′ measured experimentally as
function of σ .

We then determine the four parameters (γ1, γ2, τoff , τper)
by fitting the experiment data of Ref. [35]. We find γ1 and
γ2 by fitting the K ′ data with Eq. (27) [Fig. 4 (b)], then fix
these values and fit the K ′′ data to find τoff and τper [Fig. 5(b)],
where we minimize the sum of the squared deviation of the
theoretical prediction [Eq. (30)] from the experimental data
for all curves simultaneously (each curve with different σ ).
The same values of γ1, γ2, τoff , and τper are used for the entire
family of curves. Using the best-fit values of the parameters,
we find that τoff = 0.0085 s, in agreement with previous result
[35]. The value of τper may be inaccurate, since the experi-
mental data are only in the transient and intermediate regimes.
Changing the value of τper only slightly affects the predicted
moduli, as long as τper � τoff .

As shown in Fig. 5(a), the fitting for the K ′ data is excel-
lent. Our theory predicts that increasing the prestress results
in an increase of K ′ together with a weakening of its fre-
quency dependence, as is also observed experimentally. For
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K ′′ the theory does not agree well with the experimental
data. Although our theory shows the same qualitative features
as the experiments, including the strengthened loss modulus
and decreased scaling exponent for K ′′(ω), our predicted K ′′
is always smaller than experimentally observed in the low-
frequency regime [see Fig. 5(b)]. We believe that one reason
for this is the faster increase of K ′ with prestress (compared
to K ′′). Then, for high prestress, the ratio K ′′/K ′ can be
close to 0.1, making it experimentally hard to get accurate
measurement of K ′′ [see inset of Fig. 5(b)]. This is a known
issue that was discussed in Ref. [50]. The other reason for
the disagreement is that the mobility we used for q ∼ qc can
be inaccurate: the mobility for q � qc and q � qc is well
understood, but the transition between the two parts was not
explored in this work. The prediction for K ′′ is more affected
by this transition because the two regimes are well separated
for K ′′: K ′′ increases with frequency in the transient regime
but decreases ∼ω−1 in the permanent regime. On the contrary,
K ′ undergoes an insignificant change because after increasing
with frequency in the transient regime it reaches a plateau
in the permanent regime, and is thus less affected by the
transition itself.

VI. DISCUSSION AND CONCLUSION

We have proposed a general theory for the nonlinear mod-
ulus of biopolymer networks, which describes the dynamics
of the networks using a mode-dependent mobility, Mqq. In
transient-crosslinked networks, we find that Mqq ∼ q2 for the
long-wavelength modes, indicating that the relaxation of these
modes is slowed down by transient crosslinkers. This explains
both the 1/2 scaling exponent of the frequency-dependent
linear modulus reported in Ref. [17], and the glassylike relax-
ation in the presence of prestress [35]. Our theory suggests
that the transient nature of crosslinkers in biopolymer net-
works is the cause of the apparent weak exponent of the
frequency-dependent modulus found in living cells [5].

To further analyze how the prestress affects the frequency
dependence of the nonlinear modulus, we calculate the ap-
parent scaling exponent β(ω, σ ) around a given frequency ω

when the network is subjected to a prestress σ :

β(ω; σ ) = ∂ ln K ′(ω; σ )

∂ ln ω
. (32)

In the transient regime where Eq. (27) is valid, β is only a
function of σ/σc(ω). In Fig. 6 we plot β for varying σ/σc(ω)
and fixed ω = 0.31 Hz, and find that the apparent scaling
exponent β decreases with increasing prestress. Further, β

can be tuned to any value between 0 and 1/2, depending on
the prestress strength. This might explain the weak scaling
exponent found in living cells. The cytoskeleton, which gives
the cell its rigidity, is formed by many transient crosslinking
proteins, and is effectively a prestressed transient biopoly-
mer network, where molecular motors are responsible for
the prestress [13]. Moreover, if the crosslinkers binding and
unbinding process is out of equilibrium, then an internal stress
can be created even in the absence of molecular motors [46].
Experiments on living cells have also observed reduced scal-
ing exponent for increasing internal motor stress [6,51].
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FIG. 6. Apparent scaling exponent β as function of stress
measured in experiment, together with our theoretical prediction
of Eq. (32). Experimental data are taken from Ref. [35], with
ω = 0.31 Hz.

The weak scaling exponent of the frequency-dependent
shear modulus in living cells has been discussed repeatedly
during the past two decades [5–9]. Most of the previous works
try to explain this weak exponent using the SGR model, which
describes the dynamics of soft materials that have structural
disorder and metastability [5,8]. These materials are out of
equilibrium, as thermal energy is insufficient to drive the
systems across the energy barrier to reach equilibrium [11,52].
Although living cells are also out of equilibrium, there is no
direct evidence that the origin of the reported weak exponent
in living cells is the same as that of soft glassy materials.
Also, the scaling exponent in the SGR model does not change
with prestress, which does not agree with most experiments
on living cells as well as the more recent experiments on
reconstituted networks [6,35,51].

In this paper, we describe the dynamics of transient-
crosslinked biopolymer networks and provide the microscopic
understanding of the nonlinear transient regime. Although our
work treats a system close to thermal equilibrium, we find
that it exhibits the same weak-scaling phenomena. Here the
weak exponent is a result of the coupling between multiple
relaxation times, which comes from the relaxation of infi-
nite bending modes that are slowed down by the transient
crosslinkers. Our theory suggests that a distribution of long
relaxation times can exist in an equilibrium system with only
short obvious timescales, where the long relaxation times
come from the collective behavior of multiple crosslinks. Un-
like glassy systems with metastability, our system does have a
single longest relaxation time. This relaxation time is not the
system intrinsic timescale τoff , which is related to the binding
and unbinding process, rather it is the relaxation time for the
longest-wavelength mode, q = π/� [Eq. (6)]: τr ∼ τoff�

6/�6
c .

When the polymers have sufficiently long contour length �,
τr can become very long such that the system is in a nearly
glassy state.

In this work we assumed that the mode-dependent mobility
and a2 for transient networks are independent of the external
stress. This simple assumption is sufficient to explain the
experimental data of Ref. [35], although in general, a2 may be
a function of the polymer tension. For example, the lifetimes
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of the bound states may depend on the mechanical force
exerted on the crosslinkers, which can lead to a change in
a2. For most protein complexes this unbinding time decreases
under external force, as they are effectively dragged off. Such
an effect is called slip bond. The opposite behavior, catch
bond, also exists in some crosslinking proteins [13], including
α-actinin-4 that is used in Ref. [35]. To account for this change
in the unbinding time, we can replace the constant a2 with
a2(σ ), where the rest of the derivation remains unaffected. For
slip bond, we expect a2 to increase with σ and the exponent to
be smaller than in Fig. 6, while for catch bond we expect the
opposite.

Our results are focused on transient networks, but the
mode-dependent mobility theory we present is applicable
for other biopolymer networks, such as entangled networks
or networks with multiple types of crosslinkers. Different
networks correspond to different mode-dependent mobility,
Mqq. Our theory suggests a one-to-one relation between Mqq

and the correlation function of a single filament. Since the
linear modulus of the network is usually related to the single-
filament correlation function [24], our theory also implies
an underlying relation between the linear and the nonlinear
modulus in biopolymer networks.
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APPENDIX A: MEAN-FIELD THEORY OF THE
COURSED-GRAINED DYNAMICS MODEL

In this Appendix we present the complete derivation of
the mean-field theory proposed in Ref. [17], with the goal of
understanding the dynamics of the end-to-end distance of a
single polymer, and deriving the end-to-end response function
χ (ω), in a transient-crosslinked network.

To analytically solve the end-to-end dynamics, we treat a
single polymer in a transient network using a coarse-grained
dynamics model (CGD) [17]. Within this model, a crosslinked
polymer of length � with average crosslinking distance �c, is
treated as N = �/�c polymer segments of length �c separated
by crosslinkers on a 2D plain, see Fig. 7. Each segment is
modeled as an entropic spring with stretching rigidity μth =
180κ2/(kBT �3

c ) [28] and the bending interactions between
adjacent segments is considered via the bending rigidity κ .
Overall, the Hamiltonian of the entire chain can be written as:

HCG = 1

�c

N∑
n=1

[μth

2
(|�rn| − �c)2 + κ

2
|θn|2

]
, (A1)

where �rn = rn − rn−1, rn being the position of the nth
crosslinker and θn is the angle between the nth segment
and the n + 1 segment (see Fig. 7). In the semiflexible limit
(κ/kBT � �c) where θn is small, we have θn = |t̂n − t̂n−1|
with t̂n = �rn/|�rn|.

FIG. 7. Illustration of the CGD model. A semiflexible polyer is
moving on a 2D plain, where x̂ is the longitudinal direction and ŷ is
the transverse direction. Each blue node represents a crosslinker and
each solid line represents a polymer segment. The green node is the
mechanical equilibrium position of node n.

We use 2D Cartesian coordinate to describe the posi-
tion of each crosslinker in the polymer, where x̂ is the
direction of the polymer backbone and ŷ denotes the trans-
verse direction (see Fig. 7), such that rn = xn x̂ + yn ŷ.
Since the transverse fluctuations of semiflexible polymers are
small, we have |yn − yn−1| � �c. Because the semiflexible
polymers are hard to stretch, the length scale of the end-to-end

fluctuations is also much smaller than �c, ||�rn| − �c| � �c,
hence, t̂n � [1, (yn − yn−1)/�c]. Using the above conditions,
we can approximate �rn and θn as:

|�rn| =
√

(xn − xn−1)2 + (yn − yn−1)2

� (xn − xn−1) + (yn − yn−1)2

2�c
,

|θn| � 1

� c
|yn+1 − 2yn + yn−1|. (A2)

Having presented the Hamiltonian of the CGD model, let
us consider the polymer stress relaxation process. The poly-
mer is connected to the rest of the network via the transient
crosslinkers, i.e., the nodes in our model. We assume these
crosslinkers have strong binding affinity such that τon � τoff ,
where τon and τoff are the average lifetimes in the unbound and
bound states, respectively. Then, it is unlikely that two nodes
will be unbound at the same time. Furthermore, since the CGD
model treats networks of semiflexible polymers, it is appro-
priate to assume that a crosslinker in the bound state cannot
change its position (i.e., it is connected to a rigid network). In
the unbound state the crosslinker is free to move and relax the
stress. Assuming that τeq � τon, where τeq is the relaxation
time of the node, after a node unbinds, it relaxes completely
according to HCG before it binds again, while all other nodes
positions remain unchanged. The entire chain can then deform
through successive unbinding and rebinding events.

We continue by considering a single unbinding and rebind-
ing event of the nth crosslinker, which changes its position
from rn (before unbinding) to r∗

n (after rebinding), while the
positions of all other nodes, {rm �=n}, remain fixed. We expect
r∗

n to fluctuate around its mechanical equilibrium position,
rmeq

n , which is determined from the force balance equation:

∂HCG

∂rn

∣∣∣∣∣
rn=rmeq

n

= 0. (A3)
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We first consider the x̂ component of Eq. (A3):

∂HCG

∂xn

∣∣∣∣∣
rn=rmeq

n

= μth

�c

[∣∣rmeq
n − rn−1

∣∣2

− ∣∣rmeq
n − rn+1

∣∣2

]
= 0. (A4)

Equation (A4) suggests that rmeq
n has the same distance to

rn−1 and rn+1, and is therefore located at the angular bisector
of rn−1 and rn+1. This means we can write rmeq

n as rmeq
n =

rmid
n + δr, where rmid

n is the midpoint of rn−1 and rn+1 and
δr = δx x̂ + δyŷ = |δr|êb is perpendicular to (rn+1 − rn−1).
We next consider the ŷ component of Eq. (A3):

∂HCG

∂yn

∣∣∣∣∣
rn=rmeq

n

= μth

�2
c

[
δy

(
dn − 2�c + |δr|2

�c

)]

+ κ

�3
c

[yn−2 − yn−1 + 6δy − yn+1 + yn+2]

= 0, (A5)

where dn = xn+1 − xn−1 + (yn+1 − yn−1)2/8�c is the dis-
tance between rn−1 and rn+1. Equation (A5) is composed
of a stretching term proportional to μth and a bending
term proportional to κ . For a semiflexible polymer, μth =
180κ2/kBT �3

c � κ/�2
c , hence, the stretching term dominates,

and the bending term can be neglected such that

|δr| =
√

2�c

√
1 − dn

2�c
�

(
1 − dn

2�c

)
, (A6)

where �(x) is the heaviside function.
In the presence of thermal fluctuations the position of

the nth crosslinker r∗
n will fluctuate around its mechanical

equilibrium position rmeq
n . We define this deviation to be ξ =

r∗
n − rmeq

n . Because μth is large, the deviation is approximately
parallel to êb, namely ξ × (rn+1 − rn−1) � 0, and ξ = ξb êb.
Assuming the deviation from mechanical equilibrium is small,
we expand the Hamiltonian of Eq. (A1) to second order in ξb:

HCG(r∗
n, {rm �=n})−HCG

(
rmeq

n , {rm �=n}
) = μth

�3
c

|δr|2ξ 2
b

+ O
(
ξ 3

b

)
. (A7)

Since node n completely relaxes before rebinding to the
substrate, r∗

n follows a Boltzmann distribution governed by
HCG(r∗

n, {rm �=n}), while the positions of other nodes remain
fixed. We denote this distribution as Pn(r∗

n|{rm �=n}), and the
average with respect to Pn(r∗

n|{rm �=n}) is denoted by 〈...〉n.
According to Eq. (A7), we have 〈ξb〉n = 0 and 〈ξ 2

b 〉n =
kBT �3

c/(2μth|δr|2), such that ξb can be considered as a thermal
noise.

Our goal is to calculate the polymer’s end-to-end response
function. To that aim, it is sufficient to calculate the parallel
component of a node displacement in one unbinding and
rebinding event. The parallel displacement of a node follows:

x∗
n = 1

2 (xn−1 + xn+1) + x̂ · (δr + ξbêb), (A8)

where r∗
n = x∗

n x̂ + y∗
n ŷ. As both δr and ξb depend explicitly

on both the x̂ and ŷ components, Eq. (A8) cannot be solved
without considering the perpendicular component of the
node displacement. To simplify the equation, we use a
mean-field approach which replaces the terms containing
êx · δr and ξbêx · êb with their long-time average values,
namely an average over many unbinding and rebinding events.
Since the polymer is in thermal equilibrium, this long-time
average is equivalent to the average with respect to a
Boltzmann distribution of all node positions governed
by Eq. (A1), Peq({ri}). We denode this average
by 〈...〉MF. Note that since Pn(r∗

n|{rm �=n}) is also a
Boltzmann distribution of r∗

n with fixed {rm �=n}, we
have Peq({ri}) = Pn(r∗

n|{rm �=n})Pm �=n({rm �=n}), where
Pm �=n({rm �=n}) = ∫

drnPeq({ri}) is the marginal Boltzmann
distribution of {rm �=n}. Therefore, we have

〈...〉MF = 〈〈...〉n〉m �=n, (A9)

where 〈...〉m �=n is the average with respect to Pm �=n. Since Pm �=n

is the marginal distribution of Peq, for any variable A that is
not a function of r∗

n , we have 〈A〉m �=n = 〈A〉MF.
Let us start with averaging the êx · δr term. Since êb is

perpendicular to (rn+1 − rn−1), êb can point in only two direc-
tions. Due to the polymer symmetry in these two directions,
we have 〈êx · δr〉MF = 0.

Next, we calculate the mean-field average 〈(ξbêx · êb)2〉MF

using Eq. (A9), 〈(ξbêx · êb)2〉MF = 〈〈(ξbêx · êb)2〉n〉m �=n. Be-
cause |êx · êb| = |(yn+1 − yn−1)/(2�c)| does not depend on r∗

n ,
we have〈

ξ 2
MF

〉 ≡ 〈〈
ξ 2

b

〉
n|êx · êb|2

〉
m �=n = 〈〈

ξ 2
b

〉
n|êx · êb|2

〉
MF, (A10)

where 〈ξ 2
b 〉n is determined by dn [see Eq. (A6)]. For a

semiflexible polymer, dn � |�rn| + |�rn+1| and |êx · êb|2 is
determined by |yn+1 − yn−1|, which can be calculated from
|θn| using Eq. (A2). Since the Hamiltonian of Eq. (A1) is
quadratic, {|�rn|} and {|θn|} are uncorrelated, and therefore
〈ξ 2

b 〉n and |êx · êb|2 are uncorrelated. We can then write〈
ξ 2

MF〉 = 〈〈
ξ 2

b

〉
n

〉
MF〈|êx · êb|2〉MF. (A11)

The quadratic form of the Hamiltonian [Eq. (A1)] also sug-
gests that (|�rn| − �c) is a Gaussian variable with 〈|�rn| −
�c〉MF = 0 and 〈(|�rn| − �c)2〉MF = kBT �c/μth, such that
〈dn − 2�c〉MF = 0 and 〈(dn − �c)2〉MF = 2kBT �c/μth. Ac-
cording to Eq. (A7) we have

〈〈
ξ 2

b

〉
n

〉
MF = kBT �3

c

2μth〈|δr|2〉MF
, (A12)

where the mean-field value of |δr|2 is found using Eq. (A6),
〈|δr|2〉MF = 0.5

√
kBT �3

c/μth, leading to

〈〈
ξ 2

b

〉
n

〉
MF =

√
kBT �3

c

μth
. (A13)

The mean-field value |êx · êb| = |(yn+1 − yn−1)/2�c| is most
easily calculated in the continuum limit in which the trans-
verse and parallel displacements are the continuum functions
r⊥(s) and r‖(s), respectively. Here s is the original parallel
position of the node, i.e., s = n�c for node n, while r⊥(s =
n�c) = yn and r‖(s = n�c) = xn. In this continuum limit
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|êx · êb| = |∂sr⊥(s = n�c)|, and the bending part of the
Hamiltonian of Eq. (A1) can be written as:

Hbend = κ

2

∫
ds

(
∂2r⊥
∂s2

)2

. (A14)

Equation (A14) is diagonalized using the Fourier series of
r⊥(s) [17,24,25] (assuming periodic boundary conditions):

r⊥(s) =
∑

q

[uq sin(qs) + vq cos(qs)]

(
q = 2nπ

�

)
, (A15)

where n = 1, 2, 3, . . . . All uq’s and vq’s are Gaussian
variables satisfying 〈uq〉MF = 〈vq〉MF = 0 and 〈u2

q〉MF =
〈v2

q〉MF = 2kBT/(�κq4). We then have:

〈(êx · êb)2〉MF = 〈(∂sr⊥)2〉MF = �kBT

12κ
. (A16)

Substituting Eq. (A13) and (A16) into Eq. (A10) gives

〈
ξ 2

MF

〉 = �(kBT )3/2�3/2
c

12κμ
1/2
th

. (A17)

The mean-field average of Eq. (A8) is then written as:

�x̄n = 1
2 (x̄n−1 − 2x̄n + x̄n+1) + ξMF, (A18)

where x̄n = 〈xn〉MF and �x̄n = x̄∗
n − x̄n is the parallel displace-

ment in one unbinding and rebinding event.
The continuum limit (in both time and space) of Eq. (A18)

is then written as

τoff∂t r̄‖ = �2
c

2
∂2

s r̄‖ + ηMF, (A19)

where the time interval of the unbinding and rebinding
event is τoff and the space interval is �c. Here r̄‖ = 〈r‖〉MF

and 〈ηMF(s, t )ηMF(s′, t ′)〉 = 〈ξ 2
MF〉τoff�cδ(s − s′)δ(t − t ′). To

solve Eq. (A19), we use the Fourier series: r̄‖(s, t ) =
(π/�)

∑
q w(q, t ) exp(iqs), where q = nπ/�. Following the

same reasoning of the main text [see paragraph before
Eq. (14)], in the long chain limit we can replace the summa-
tion with an integral. The Fourier series is then replaced with
r̄‖(s, t ) = ∫

dq w(q, t ) exp(iqs), leading to:

τoff∂tw(q, t ) = −�2
c

2
q2w(q, t ) + η(q, t ), (A20)

where 〈η(q, t )η(q′, t ′)〉 = π〈ξ 2
MF〉τoff�cδ(q + q′)δ(t − t ′) and

the correlation function is

〈w(q′, t )w(q, 0)〉 = π
〈
ξ 2

MF

〉
q2�c

exp

(
− q2�2

c

2τoff
t

)
δ(q + q′).

(A21)
We are interested in the end-to-end extension, δ� = r‖(s =

�/2) − r‖(s = −�/2) − �, which can be found from w:

δ�(t ) = 1

2π

∫
dq w(q, t )(e−iq�/2 − eiq�/2) − �. (A22)

The end-to-end correlation function is then:

〈δ�(t )δ�(0)〉 = 1

π

∫
dq

〈
ξ 2

MF

〉
sin2(q�/2)

q2�c
exp

(
− q2�2

c

2τoff
t

)
.

(A23)

We now use the Fourier transform of Eq. (A23) for the vari-
able t to get the end-to-end power spectrum:

〈|δ�(ω)|2〉 = 1

π

∫
dq

〈
ξ 2

MF

〉
sin2(q�/2)

q2�c

q2�2
c/τoff

ω2 + (
q2�2

c/2τoff
)2

� 2�cτoff
〈
ξ 2

MF

〉
π

dq

q4�4
c + 4τ 2

offω
2
. (A24)

In the second step we replaced sin2 (q�/2) with its average
value, 1/2. This approximation is valid when � � �c/

√
τoffω,

for which sin2 (q�/2) changes with q much faster than the
rest of the integrand. The linear response function, χ (ω), can
then be obtained using the fluctuation-dissipation theorem,
�χ ′′(ω) = ω〈|δ�(ω)|2〉/2kBT , together with the Kramers-
Kronig relation:

χ (ω) = �c
〈
ξ 2

MF

〉
2πkBT �

∫
dq

q2�2
c − 2iτoffω

= 0.0036
kBT �3

c

πκ2

∫
�c dq

q2�2
c − 2iτoffω

. (A25)

Equation (A25) is the central result of Ref. [17], which we use
in Eq. (15) of the main text.

APPENDIX B: DISCONTINUOUS MODE-DEPENDENT
MOBILITY LEAD TO A PLATEAU

In the main text we derived the mode-dependent mobility
for the transient networks, Eq. (24), in which a dramatic
increase in Mqq occurs at q ∼ qc. This jump, although seem-
ingly unphysical, is in fact essential for a plateau to appear
in the modulus K ′(ω; σ ), which is observed in experiments
of transient networks [17]. In this section we provide a math-
ematical proof that a plateau in K ′(ω; σ ) exists if and only
if there is a jump (dramatic increase) in the mode-dependent
mobility. For simplicity we only discuss the linear modulus,
G′(ω) = K ′(ω; σ = 0).

A plateau is defined as a region in which G′(ω)
varies slowly with ω. Since G(ω) ∼ 1/χ (ω), a plateau
in G′(ω) also corresponds to a plateau in the real part
of the response function χ ′(ω). Here we calculate χ ′(ω)
using Eq. (9),

χ ′ = C
∫ ∞

0

ωr (q)2

ωr (q)2 + ω2

dq

q4
, (B1)

where C is a prefactor and ωr (q) = 2κMqqq4 is the relaxation
rate of mode q. To quantify the variation of χ ′ for changing ω,
we introduce the function,

f (ω) = d log(χ ′)
d log(ω)

= ω

χ ′
dχ ′

dω
, (B2)

as the local scaling exponent in χ ′. The plateau is then identi-
fied as a region in which | f (ω)| � 1. To show the relation
between a jump in the mode-dependent mobility and the
plateau, in Fig. (8) we plot a discrete version of Eq. (B1),
i.e., instead of a continuous q, we have discrete bending
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FIG. 8. Schematic plot of how a jump in ωr results in a plateau
in χ ′. Dashed blue curves indicates contributions from each mode,
q1, q2, q3, . . . . Solid blue curve denotes χ ′, which is the sum of all
modes contribution. (a) If ωr for adjacent modes are close to each
other, then there is no plateau. (b) A big jump between ωr (q2) and
ωr (q3) results in a plateau.

modes q = nπ/�. When plotting contributions from all bend-
ing modes together, we find that there will be a plateau only
when there is a large difference between ωr for two adja-
cent modes, e.g., ωr (q3) � ωr (q2), and the plateau exists for
frequencies ωr (q2) < ω < ωr (q3). A physical understanding
for the appearance of this plateau is that, at the timescale
1/ωr (q3) � t � 1/ωr (q2), all bending modes with q > q3

are completely relaxed, thus contributing a constant pure elas-
tic term to χ , while bending modes with q < q2 are not at all
relaxed, and their contribution to χ can therefore be neglected.
This large difference in ωr corresponds to a jump in Mqq, since
ωr = 2κMqqq4.

Now that we have an intuitive understanding of the plateau
origin, let us provide a rigorous proof that a discontinuous
Mqq [or discontinuous ωr (q)] is necessary for its appearance.
For continuous q, we define a jump in the mode-dependent
mobility for q ∈ [q1, q2] through the mode-dependent
relaxation rate:

log[ωr (q2)/ωr (q1)]

log(q2/q1)
� 1. (B3)

To prove that a plateau in χ ′ appears if and only if
the mode-dependent mobility is discontinuous we prove two
propositions: (i) If there is a big jump in ωr (q) within a narrow
region of q, then there must be a plateau in χ ′(ω) and (ii)
if there is no jump in ωr (q), then there cannot be a plateau
in χ ′(ω).

1. Proof for proposition (i): If there is a big jump in ωr(q) within
a narrow region of q, then there must be a plateau in χ′(ω).

Let the jump take place in q ∈ [q0/(1 + a), (1 + a)q0]
such that ωr[q0/(1 + a)] = ω0/b, ωr[(1 + a)q0] = bω0. Here
a � 1, corresponding to a narrow region of q, and b � 1,
corresponding to a big jump in ωr (q). Physically, Mqq must
increase monotonically with q, leading to the following in-
equalities:

ωr (q) <
1

b

[
q

q0/(1 + a)

]4

ω0 q < q0/(1 + a)

1

b
ω0 � ωr (q) � bω0 q0/(1 + a) � q � (1 + a)q0

ωr (q) > b

[
q

(1 + a)q0

]4

ω0 q > (1 + a)q0. (B4)

Let us provide a (nonstrict) bound for the value of f (ω) at
ω = ω0. From Eq. (B1), we have

χ ′(ω0) = C
∫ ∞

0

ω2
r

ω2
r + ω2

0

dq

q4

� C
∫ ∞

(1+a)q0

1

2

dq

q4
≈ C

6q3
0

. (B5)

Taking the derivative of Eq. (B1) with respect to ω gives∣∣∣ωdχ ′

dω

∣∣∣
ω=ω0

= 2C
∫

ω2
0ω

2
r

(ω2
r + ω2

0 )2

dq

q4

� 2C
∫ q0/(1+a)

0

( ω0
b )2

[ (1+a)q
q0

]8

ω2
0

dq

q4

+ 2C
∫ (1+a)q0

q0/(1+a)

1

4

dq

q4

+ 2C
∫ ∞

(1+a)q0

ω2
0

(bω0)2
[ q

(1+a)q0

]8

dq

q4

≈ 32C

55b2q3
0

. (B6)

We then have from Eqs. (B2) and (B5)–(B6)

| f (ω0)| � 192

55b2
. (B7)

Since b � 1, Eq. (B7) proves the existence of a plateau
in χ (ω).

2. Proof for proposition (ii): If there is no jump in ωr(q), then
there cannot be a plateau in χ′(ω).

To quantify the no-jump condition, we introduce a
function,

g(q) = d log(ωr )

d log(q)
, (B8)

which is the local scaling exponent of ωr (q) (assuming it is
differentiable). Since there is no jump for any interval [q1, q2],
the value of g(q) must be bounded by some finite number α,
i.e., |g(q)| � α for any q.

If χ ′(ω) has no plateau, then | f (ω)| is not small for any ω.
Let qr (ω) be the mode with relaxation rate ω, i.e., ωr[qr (ω)] =
ω. Since Mqq must increase monotonically with q, and be-
cause |g(q)| � α, we have the following inequalities:

ω

[
q

qr (ω)

]4

� ωr (q) � ω

[
q

qr (ω)

]α

[q > qr (ω)]

ω

[
q

qr (ω)

]4

� ωr (q) � ω

[
q

qr (ω)

]α

[q � qr (ω)]. (B9)

Then, from Eq. (B1) we have

χ ′ = C
∫ qr (ω)

0

ω2
r

ω2
r + ω2

dq

q4
+ C

∫ ∞

qr (ω)

ω2
r

ω2
r + ω2

dq

q4

� C
∫ qr (ω)

0

ω2
[ q

qr (ω)

]8

ω2

dq

q4
+ C

∫ ∞

qr (ω)

dq

q4

= 8C

15qr (ω)3
, (B10)
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and∣∣∣ωdχ ′

dω

∣∣∣ =2C

[∫ qr (ω)

0

ω2ω2
r

(ω2
r + ω2)2

dq

q4

+
∫ ∞

qr (ω)

ω2ω2
r

(ω2
r + ω2)2

dq

q4

]

� 2C
∫ qr (ω)

0

ω2
[ q

qr (ω)

]2α

4ω2

dq

q4

+ 2C
∫ ∞

qr (ω)

ω2

4ω2
[ q

qr (ω)

]2α

dq

q4

= C

2(2α − 3)q3
r (ω)

+ C

2(2α + 3)q3
r (ω)

. (B11)

Finally using Eqs. (B2) and (B10)–(B11), we find the bound
for f (ω) to be∣∣∣ f (ω)

∣∣∣ = 1

χ ′

∣∣∣ωdχ ′

dω

∣∣∣ � 1

(2α + 3)
. (B12)

For finite α, Eq. (B12) shows that for any value of ω, | f (ω)| is
not small, which means there is no plateau in χ ′(ω), and the
proposition is proved. Although in the proof we assume ωr (q)
is differentiable, the proof applies to undifferentiable ωr (q),
as long as Eq. (B9) is satisfied.

In this Appendix we have proved that a discontinuous
Mqq is necessary in order for a plateau in G′(ω) to appear.
Above we have proved two propositions to demonstrate the
importance of a jump in ωr (q) or Mqq when there is a plateau
in χ ′(ω) or G′(ω).
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