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Fisher-Kolmogorov-Petrovsky-Piskunov dynamics mediated by a parent field with a delay

Steffanie Stanley and Oleg Kogan*

California Polytechnic State University, San Luis Obispo, California 93407, USA

(Received 30 November 2020; revised 16 August 2021; accepted 18 August 2021; published 24 September 2021)

We examine a modification of the Fisher-Kolmogorov-Petrovsky-Piskunov (FKPP) process in which the
diffusing substance requires a parent density field for reproduction. A biological example would be the density
of diffusing spores (propagules) and the density of a stationary fungus (parent). The parent produces propagules
at a certain rate, and the propagules turn into the parent substance at another rate. We model this evolution by
the FKPP process with delay, which reflects a finite time typically required for a new parent to mature before it
begins to produce propagules. Although the FKPP process with other types of delays have been considered in the
past as a pure mathematical construct, in our paper a delay in the FKPP model arises in a natural science setting.
The speed of the resulting density fronts is shown to decrease with increasing delay time and has a nontrivial
dependence on the rate of conversion of propagules into the parent substance. Remarkably, the fronts in this
model are always slower than Fisher waves of the classical FKPP model. The largest speed is half the classical
value, and it is achieved at zero delay and when the two rates are matched.
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I. INTRODUCTION

Many microorganisms reproduce by means of spores.
Spores are produced by a parent organism [1] and have a prob-
ability to produce a new parent organism. Consider, for exam-
ple, Puccinia graminis—the pathogen that causes wheat stem
rust plant disease [2]. After a urediniospore of P. graminis
has successfully infected a host plant, a fungus (i.e., a parent
organism) will establish and mature inside the plant for 10–15
days after which it will form postules on the surface, and
they will release new spores [3]. The process repeats when
the spores disperse and find another host to infect, leading to
formation of new fungi (parent organisms) there, and so on.
A time between the colonization of a host and production of
spores by the new fungus is called latent period [4]. This type
of life cycle that involves spores and a parent organism with
a latent period is shared by many fungal plant pathogens [3,4]
(see, for instance, Chap. 11), and it is a feature of fungi, in
general [5].

More broadly, reproduction by means of spores is common
in biology—for example, among algae and plants [1]. Slime
molds also employ spores in their life cycle [6]. The spores
are an example of what is called “propagules” in ecology [7].

The population dynamics of reproducing microorgan-
isms often gives rise to propagating density fronts [8,9].
The dynamics of fronts of organisms that reproduce by
direct division can be described by the Fisher-Kolomogorov-
Petrovskiy-Piscunov (FKPP) model . This well-known model
originated in the context of population genetics [10,11] but has
found applications in fields as diverse as biochemical waves
during development to nuclear physics [9,12–16].

*okogan@calpoly.edu

The FKPP model is a simple reaction-diffusion equation
that reads

φ̇ = f (φ) + Dφ′′, (1)

where f (φ) is a growth model—for instance, logistic growth
f (φ) = δφ(1 − φ). In the context of population dynamics,
the density field φ represents the density (per unit length)
of diffusing microorganisms—such as bacteria—which also
reproduce themselves with rate δ. An isolated region of space
inoculated at initial moment leads to the development of prop-
agating density fronts, known as Fisher waves.

Recently, the role of delay in FKPP model has been ex-
amined [17–21]. However, in these papers the delay has been
introduced by modifying the growth function to have the form
δφ(t )[1 − φ(t − τ )]. Although the study of the dynamics of
fronts that result from this is an interesting mathematical
exercise, this is not necessarily the most natural way in which
delay would arise physically.

On the other hand, delay occurs naturally in scenarios that
involves propagules and parent organisms. In these situations,
the particles do not reproduce themselves, and it would be
unrealistic to apply the FKPP model with a single density
field to such biological settings. Instead, propagules produce
parent organisms, which, after a latent period produce new
propagules, so this requires two separate density fields—for
propagules and parents, respectively. Thus, a more appropriate
basic model for this scenario would be as follows [22]:

φ̇ = δθ (t − τ ) + Dφ′′ − γφ, (2)

θ̇ = γφ

(
1 − θ

θmax

)
, (3)

where we explicitly remind the reader that the function θ

in Eq. (2) is evaluated at time t − τ ; all the other terms are
evaluated at time t . Here φ is the usual density of the propag-
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FIG. 1. (a) Density wave φ vs x at t = 1.98, t = 5.94, t =
11.88, t = 15.84, and t = 19.8. The parameters are � = 10,T = 1.
The δ-function initial condition at t = 0 is not shown.

ules, whereas θ represents the density of a parent organism,
such as fungi. The parent is immobile—it grows on some
substrate, such as soil. However, the propagules can diffuse—
again, reflecting the typical biological scenario in which this
dynamics arises. The rate γ is the probability per unit time
that a propagule turns into a parent—for example, a spore
giving rise to a new fungus, and δ is the rate at which the
parent substance produces propagules—for example, the rate
at which fungi spew out spores. Thus, the mobile propagules
produce the immobile parent (with rate γ ), which, in turn,
produces new propagules.

However, propagule production usually happens with a
delay, because the parent needs to reach a certain stage of
maturity before producing propagules. The quantity τ is the
delay time, commonly referred to in biological literature as
the “latent time.” A time τ must pass between the moment
when a propagule has turned into a new parent substance and
the moment when this parent begins to produce new spores.
In the mean time, new propagules are deposited. Therefore,
the rate of fungal production at time t is not δθ (x, t ), but
δθ (x, t − τ ). Thus, the notation θ (t − τ ) in Eq. (2) is a re-
minder that θ in that term is evaluated at time t − τ , whereas
all the other terms are evaluated at t (the coordinate argument
x is suppressed). Finally, the parent substance typically has
a carrying capacity—a maximal density θmax at which it will
stop growing.

In our paper we will investigate the behavior of density
waves in this model, focusing, in particular, on the dependence
of the speed of density fronts upon the model parameters.

First, we rescale variables to lower the number of relevant
parameters. Note that δ sets a natural timescale for this prob-
lem, namely, 1/δ. Therefore, we define dimensionless time by
t̃ = δt . This is equivalent to measuring time not in seconds,
but in units of 1/δ. Also, the diffusion coefficient has dimen-
sions of distance2

time . Therefore, a natural distance scale is
√

D
δ

,

and we define a dimensionless coordinate x̃ = x
√

δ
D . Finally,

we define dimensionless densities by φ̃ = φ

θmax
and θ̃ = θ

θmax
.

This is equivalent to expressing densities as a fraction of the
maximal parent density. Substituting all these variables we

FIG. 2. Density wave θ vs x at t = 1.98, t = 5.94, t = 11.88,

t = 15.84, and t = 19.8. The parameters are � = 10, T = 1.

have

˙̃φ = θ̃ (t̃ − T ) + φ̃′′ − �φ̃, (4)

˙̃θ = �φ̃(1 − θ̃ ). (5)

The derivatives are with respect to new dimensionless vari-
ables. We are left with only two parameters. The first is the
dimensionless infection rate �, which is given by � = γ /δ in
terms of the physical parameters. The second is the dimen-
sionless latent time T , which is given by T = τδ in terms of
the physical parameters.

The resulting speeds of fronts would also be dimension-
less, ṽ. It will be a function of � and T . To switch back to
the original physical variables, the dimensionless speed must
be multiplied by

√
D/δ

1/δ
= √

δD. In other words, the speed in
physical units is given by

v = ṽ(γ /δ, τδ)
√

δD. (6)

In the classical case, ṽ has a value of 2. In the present model ṽ

is a function of γ /δ and τδ and represents the departure from
the classical FKPP result. We examine this difference.

II. RESULTS

A. Front examples

We will drop ∼ to lighten the notation but will switch
back where necessary when presenting results. Figures 1 and
2 show examples of propagating density waves that result out
of the initial condition φ(x, t = 0) = δ(x − x0) and θ (x, t =
0) = 0. We see that after an initial transient, a pair of uni-
formly moving fronts are launched. In the rest of the paper we
will be concerned only with these uniformly moving fronts.

B. Front speeds

We now derive theoretical predictions for front speeds and
compare them with numerical results. This is a standard anal-
ysis that follows [23].

First, we assume that a uniformly traveling front (UTF)
exists for which θ (x, t ) = θ (x − vt ) and φ(x, t ) = φ(x − vt ).
Thus, we seek a UTF solution by substituting this ansatz into
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equations of motion (4) and (5). We get

−v
dφ

dz
= θ (z + vT ) + d2φ

dz2
− �φ, (7)

−v
dθ

dz
= �φ(1 − θ ), (8)

where z = x − vt . The UTF is described by a system of ordi-
nary differential equations. The equations have a fixed point
at (θ = 0, φ = 0)—corresponding to the leading edge of the
front and a fixed point at (θ = 1, φ = 1/�)—corresponding
to the trailing edge of the front. The solution near the (0,0)
fixed point determines the shape of the leading edge.

Next, we assume that fronts are pulled [23], which means
that their speed is determined by the leading edge where the
nonlinear terms are negligible. The pulled assumption will be
validated through comparison with numerical predictions of
Eqs. (4) and (5). Thus, the leading edge is described by the
linearized equations,

−v
dφ

dz
= θ (z + vT ) + d2φ

dz2
− �φ, (9)

−v
dθ

dz
= �φ. (10)

The solution will have the form φ = φ0e−λz and θ = θ0e−λz.
Substituting this into the linearized equations produces a rela-
tionship,

�e−vλT

vλ
− (vλ) − (

� − λ2
) = 0, (11)

which relates the front speed v and the decay length of the
front λ, i.e., it gives a function v(λ). The theory of [23] states
that for initial conditions (ICs) that decay in space faster than
an exponential with a certain critical decay rate, the UTF
solution will have a λ that minimizes v(λ). All localized ICs,
such as a δ-function IC satisfy this criterion. This minimum
will take place at λ∗, and the front speed will be v∗ = v(λ∗).

Taking the derivative of Eq. (11) and solving for v′(λ) gives

v′(λ) = −v(λ)
� + λv(λ){�T − λeλT v(λ)[2λ − v(λ)]}

λ[� + �T λv(λ) + λ2v2(λ)eλT v(λ)]
.

(12)

This is zero when the numerator is zero. Thus, we can, in
principle, solve for v(λ) from Eq. (11), substitute into the nu-
merator, set it to zero, and find λ∗. Alternatively, we can treat
v∗ and λ∗ as two independent variables and find them from a
simultaneous solution of Eq. (11) and the numerator = 0, i.e.,

�e−v∗λ∗T − (v∗λ∗)2 − v∗λ∗[� − (λ∗)2] = 0, (13)

� + λ∗v∗[�T − λ∗eλ∗T v∗
(2λ∗ − v∗)] = 0. (14)

This was performed numerically for a set of � and T . Re-
verting back to the dimensionless notation, this produces
ṽ(�, T ). The result is plotted in Fig. 3 for several �s and
T s. Figure 4 compares these theoretical predictions with front
speeds obtained from the numerical solution of Eqs. (4) and
(5). The details of our numerical approach can be found in
Appendix A.

FIG. 3. Dimensionless speed ṽ vs dimensionless latent times T
for various dimensionless infection rates �.

C. Analysis

Figure 3 demonstrates that our results have three main
features. The first, is the limiting speed as T goes to zero. The
second, is the large T asymptotic regime, where ṽ(T ) appears
to have an asymptotic behavior reminiscent of a power law
(we show below that it is not a pure power law). The the
third, is the characteristic crossover point beyond which this
asymptotic approximation is valid. This crossover point is a
function of �. We now extract these properties.

1. Zero delay

First, we study the speed at zero delay. Setting T = 0 in
Eqs. (13) and (14) we can produce an analytic result. There
are four roots, but only one of which is positive and real. In
dimensionless notation, this root is given by

ṽ(�) = [6 + � − √
�(3 + �)]

√
−3� + 6

√
�(3 + �)

3(4 + �)
. (15)

This function is plotted in Fig. 5. At small � this function
behaves as 33/4√

2
�1/4. At large �, it approaches the asymptotic

behavior 33/2

2 �−1/2. The speed reaches the maximum value of
1 at � = 1.

FIG. 4. Comparison of theoretical ṽ(T ) with values extracted
from the numerical solution of Eqs. (4) and (5) for three different
values of �.
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FIG. 5. Dimensionless speed ṽ(�) at zero delay T . The inset:
The same quantity on a log-log scale. The two thin lines are the
low- and high-� asymptotics, 33/4√

2
�1/4 (blue) and 33/2

2 �−1/2 (red)
respectively.

At � = 0, the parent density is static, and the propagule
density obeys a driven diffusion equation – not FKPP model
– and does not admit UTF solutions; this is the meaning of
zero front speed. On the other hand, as � approaches infinity
we also do not recover the FKPP model, because whereas the
rate of conversion from propagules to the substrate density
goes to infinity, the rate of production of new propagules
remains 1. Therefore, this is effectively equivalent to killing
of propagules with infinite rate, giving a speed zero. So, we
see that the model does not match with the KFPP model in
either limit. The optimal speed is achieved at intermediate
� = 1, but there is no reason for it to reach the KFPP value
of ṽ = 2 since in this intermediate regime the model is clearly
not equivalent to the FKPP model.

Evidently, this model does not reproduce the FKPP re-
sults for any parameters, and there is no reason to expect a
correspondence because the propagule production terms are
different. For instance, the localized dynamics in the absence
of transport is a first order in time in the classical FKPP case,
but it is second order in time in the new model.

2. Finite delay

Turning on a finite delay slows down the front as we
can see from Fig. 3. To understand the large-T asymptotic
behavior, we noticed from numerical calculations of solutions
to Eqs. (13) and (14) that the product v∗λ∗T tends to a num-
ber greater than 1 as T → ∞ for any �. Also, v∗ goes to
zero, whereas λ∗ does not. With the help of this observation,
Eqs. (13) and (14) at large T read

(v∗λ∗) − � + (λ∗)2 = 0, (16)

� − 2v∗(λ∗)3eλ∗T v∗ = 0. (17)

The first equation gives λ∗ = 1
2 [v∗ ±

√
(v∗)2 + 4�], and we

must choose the positive root because only this choice always
produces a positive λ∗. It is convenient to factor out the
quantity 2

√
� from the speed, so we let v∗ = 2

√
�w. Sub-

stituting both of these expressions into the second equation

FIG. 6. Tails of ṽ(T ) given by Eq. (20)—dashed curves, com-
pared with the exact result, obtained from Eqs. (13) and (14)—solid
curves.

gives

4�3/2w(w +
√

w2 + 1)e(2�T )w(w+√
w2+1) = 1. (18)

Now, an equation of the form 1 = auebu has a solution u =
W (b/a)

b , where W is a Lambert W function, or product loga-
rithm. Therefore, we have

w(w +
√

w2 + 1) =
W

( T
2
√

�

)
2�T . (19)

This has a solution,

w =
W

( T
2
√

�

)

2�T
√

1 + W ( T
2
√

�
)

�T

≈
W

( T
2
√

�

)
2�T .

So, the high-� tail of the dimensionless speed is given by

ṽ =
W

( T
2
√

�

)
√

�T
. (20)

We compare predictions of this equation with exact results
in Fig. 6. Evidently, the tail behavior of ṽ(T ) is not a pure
power law. We can estimate the crossover point approximately
by equating the value at zero τ given by Eq. (15) and the
denominator of Eq. (20). The result is a complicated function

FIG. 7. Dimensionless speed ṽ(�) at various delay T on a log-
log scale. The T = 0 curve is the same as in Fig. 5.
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that diverges at small � as
√

2
33/4 �

−3/4 and tends to a value of
≈0.3849 as � → ∞.

Finally, we also provide in Fig. 7 a function ṽ(�), similar
to Fig. 5. The black curve is the same as the inset in our Fig. 5,
and the other two curves plot this function for larger T . Thus,
when the value of the delay is held fixed—however large—the
speed does go to zero as � → 0.

III. CONCLUSION

The largest speed in our model is
√

δD, which is achieved
at zero delay and when the rate of conversion from propagules
to parent is matched to the rate at which the parent produces
propagules. This speed is exactly 1/2 of the classical Fisher
speed, although one must be careful to take this comparison
at face value since the terms that model production of new
material are different in the two models. Although propagules
are produced by a parent organism in the new model, they are
produced by other propagules in the basic FKPP model. Still,
the factor

√
δD in the expression for front speed naturally

arises in both models on dimensional grounds, although it is
multiplied by different factors in the two models.

Thus, we find that propagating fronts in organisms that
require a parent for reproduction will move at most half as
slowly as fronts in organisms that reproduce themselves. All
other common rates being equal, bacterial fronts will move
twice as fast as fungal fronts.

When the rate of propagule production by the parent does
not equal to the rate of conversion from propagules to the
parent, the front speed is slower than this optimal value.
Increasing conversion rate past the production rate decreases
front speed. For sufficiently large conversion rate, the speed
of the front—or, equivalently, the rate at which the amount of
biomass grows—scales as conversion rate to the power −1/2.
This is reminiscent of an effect that was recently described in
a completely different field. The authors of Ref. [24] describe
an open quantum system of free fermions driven by a source
that injects fermions. When the injection rate is sufficiently
large, the rate at which the number of fermions in the system
grows scales inversely with the injection rate. The authors
explain that this is a manifestation of the quantum Zeno effect.
Moreover, our Fig. 5 over the entire range of � resembles
Fig. 1 in Ref. [24] over the entire range of injection rates.

As one would expect, the delay further slows down the
propagation of fronts. We find that for sufficiently large delay,
the front speed scales approximately inversely with the delay
time, although a more exact result introduces nonpower law
corrections.
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APPENDIX A: NUMERICAL METHOD

Our numerical method uses a first-order time-differencing
scheme, for example,

∂φ

∂t

∣∣∣∣
x,tn

→ φ(xm, tn+1) − φ(xm, tn)


t
(A1)

FIG. 8. Front speed as a function of dx for T = 1, � = 1, and
simulation time T = 15.

and an upwind spatial differencing scheme,

∂φ

∂x

∣∣∣∣
xm,tn

→ φ(xm, tn) − φ(xm−1, tn)


x
(A2)

applied to Eqs. (4) and (5) (we continue to suppress ∼ for
readability). Here xm = x0 + m 
x and tn = t0 + n 
t . The
integration was performed over a finite spatial interval with
an initial condition placed in the center. At the extreme left
and extreme right points of this spatial interval, we set the
values of both densities to zero. However, the spatial domain
was chosen large enough so that neither front ever came close
to either boundary given the placement of the initial profile.

We performed convergence test for select parameter com-
binations. An example is shown in Fig. 8. The front speed
generated by the simulation code does not show a strong
dependence on 
x. All the results presented in the paper were
obtained with 
x = 0.05, which is much less than the typical
characteristic width of fronts. To ensure stability, we chose

t = 0.25(
x)2 as suggested by an earlier paper on a similar
model [25]. Instabilities were not observed. To extract the
speed of the wavefronts from these simulations, we tracked
the position of the contour of a fixed reference density, chosen
to lie in the leading edge. There is a transient time period
during which the shapes of fronts develop. During this same
transient period the speed of fronts also changes. As time
progresses, the front profiles tend to a stationary shape, and
front speeds tend to a limiting value. This limiting value will
be identical for both densities φ and θ , although instantaneous
front speeds of the two densities are generally not identical
during the transient period.

The rate of convergence to the limiting speed depends
on parameters. We needed to develop a consistent method
of scaling the total run time T with this convergence rate
and to ensure the simulations ran long enough for density
profiles to come close enough to the asymptotic speed. In
order to make this choice, we used the following idea. Starting
from a δ-function IC, the φ profile very quickly diffuses and
the maximal value rapidly decreases. At a certain instant of
time t∗ it reaches the smallest value after which the φ profile
grows again. This is a characteristic time at which the growth
mechanism becomes important. We display t∗ vs T in Fig. 9.
We used t∗ as a characteristic measure of the transient time.
Figure 10 demonstrates the measured speed of the front as a
function of the total simulation time T , expressed as multiples
of t∗ for a particular � and T . Here, we see that the front
speed maintains an upward trend for greater T and saturates to
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FIG. 9. t∗ as a function of T . Blue asterisks: � = 10−2, red
circles: � = 1, blue triangles: � = 10.

an equilibrium value for sufficiently large T . The simulation
time T was chosen to be a factor of 40 larger than t∗ [a linear
fit to t∗(T ) was used over a range of T s]. The number 40
was chosen as a compromise between a sufficiently small
error from the theory and a practical simulation time since
increasing T increases the simulation time dramatically. We
repeated the procedure for � = 10−2 and � = 10, although
the scaling factor of 20 was used for � = 10−2—it gave a
sufficient accuracy in comparison with the theoretical curve.

APPENDIX B: SATURATION DYNAMICS

Here we demonstrate that profile densities behind fronts
saturate to their maximum values without oscillations. In
seeking the UTF, we substituted the ansatz θ (x, t ) = θ (x −
vt ) and φ(x, t ) = φ(x − vt ) into Eqs. (4) and (5) of our paper.
This resulted in Eqs. (7) and (8). We would like to emphasize
that the full solution of Eqs. (4) and (5) does not have this form
since it has two fronts spreading in opposite directions. The
UTF describes the shape and speed of each front if it attains

FIG. 10. Front speed ṽ vs the total simulation time T for � =
1 and τ = 0.5. The data points are calculated for T = 10t∗, T =
20t∗, T = 40t∗, T = 80t∗, T = 160t∗, T = 320t∗.

a constant speed and shape (the validity of the UTF ansatz
is checked by comparing predictions of front speeds with
simulations, such as in Fig. 4). In other words, the solution to
Eqs. (7) and (8) represent what a comoving observer running
along with the front would see at times when the distance
between fronts becomes much larger than their width.

The dynamical system represented by Eqs. (7) and (8) has
two fixed points that satisfy

0 = θ∗ − �φ∗,

0 = �φ∗(1 − θ∗).

These fixed points are as follows: (θ∗ = 0, φ∗ = 0) and (θ∗ =
1, φ∗ = 1

�
). The first represents the leading edge of the front

(i.e., the part of the front ahead of the direction of its motion),
and the second represents the saturated value.

The shape of the front is given by the heteroclinic solution
of Eqs. (7) and (8) that connects the (θ∗ = 1, φ∗ = 1

�
) fixed

point with the (θ∗ = 0, φ∗ = 0) fixed point [23]. In describing
the right-moving front, where z → ∞ corresponds to going
ahead to the leading edge, such a heteroclinic trajectory leaves
the (1, 1

�
) fixed point at z = −∞ and arrives at the (0,0) fixed

point at z = +∞.
We expand Eqs. (7) and (8) around the (1, 1

�
) fixed point.

Let θ = 1 + X and φ = 1
�

+ Y . The result is

−vY ′ = X (z + vT ) + Y ′′ − �Y, (B1)

−vX ′ = −X − �XY. (B2)

Here the prime represents differentiation with respect to z, and
the first term on the right hand side of the first equation means
evaluate X at z + vT . We are interested in the dynamics
around X = Y = 0, so we keep only the linear terms. Also,
let Y ′ = U . Therefore, we are concerned with the dynamics
of the linear delayed system given by

Y ′ = U, (B3)

U ′ = −vU + �Y − X (z + vT ), (B4)

X ′ = X

v
. (B5)

We now seek the exponential ansatz that represents the depar-
ture from the saturated state. Let⎛

⎜⎝
U

X

Y

⎞
⎟⎠ =

⎛
⎜⎝

a

b

c

⎞
⎟⎠eμz.

Substituting this into into the system (B3)–(B5) and rearrang-
ing terms we get⎛

⎜⎝
1 0 −μ

μ + v eμvT −�

0 μ − 1
v

0

⎞
⎟⎠

⎛
⎜⎝

a

b

c

⎞
⎟⎠ =

⎛
⎜⎝

0

0

0

⎞
⎟⎠. (B6)

The eigenvalues are μ1 = 1
v

and μ± = −v±√
v2+4�

2 . Two of the
eigenvalues are positive, and one is negative. The eigenvectors
(not calculated here) corresponding to the positive eigenval-
ues span the space of the unstable manifold of the fixed
point (θ∗ = 1, φ∗ = 1

�
). The heteroclinic trajectory leading

into the (θ∗ = 0, φ∗ = 0) fixed point should lie on this
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unstable manifold [26]. Because the eigenvalues are real, there
are no oscillations around the saturated state. Thus, there is

never “overshooting” around the maximal density left behind
moving fronts.
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