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Protein dynamics implications of the low- and high-temperature denaturation of myoglobin
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We reinvestigate a simple model used in the literature concerning the thermodynamic analysis of protein
cold denaturation. We derive an exact thermodynamic expression for cold denaturation and give a better
approximation than exists in the literature for predicting cold denaturation temperatures in the two-state model.
We discuss the “dark-side” implications of this work for previous temperature-dependent protein dynamics
experiments and discuss microfluidic experimental technologies, which could explore the thermal stability range
of proteins below the bulk freezing point of water.
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I. INTRODUCTION

Water soluble proteins typically are unstable to unfolding
at both the obvious upper temperature TH (heat denaturation),
but also, and paradoxically, at a low temperature TC , a phe-
nomena called cold denaturation [1].

Figure 1 shows the basic phenomena, taken from [1]. The
water soluble protein myoglobin (Mb) denatures as a function
of pH at both high and low temperatures. Of particular note
in Fig. 1 is not only the sharpness of the hot denaturation of
Mb at pH4.0 but also the step up in the specific heat Cp of the
hot denatured protein, indicating that temperature-dependent
degrees of freedom have been exposed by hot denaturation.

Typically, the remarkable low temperature denaturation
occurs below the freezing point of water, and so is hidden
from view; destabilizing conditions such as extreme pH or
hydrogen bonding reagents such as urea are required to bring
it into view, in the case of Fig. 1, lowering of the pH. However,
the fact that the low temperature denaturation process is often
“invisible” does not mean it is irrelevant in obtaining a deeper
understanding of protein dynamics and stability [2], as we
hope to explain quantitatively here.

There is deep literature on cold denaturation of proteins,
although it is primarily based on thermodynamics. An excel-
lent thermodynamics review can be found in Dias et al. [3].
In this paper we wish to stress the statistical mechanics of
the limited thermal stability ranges of most proteins, except
possibly intrinsically disordered proteins, which apparently
have no basic order parameter, present a careful derivation
of the phenomena, emphasize the important role that cold
denaturation may play in understanding protein dynamics, and
suggest experimental approaches to probe what would seem
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to be an inaccessible region below the bulk freezing point
of water.

We reinvestigate the purely mathematical thermodynamic
calculation in which we demonstrate that, for each hot de-
naturation temperature, under a widely satisfied parametric
condition, there exists a unique cold denaturation temperature,
which can be calculated in terms of the hot denaturation point
and the other parameters. We point out a confusion in the
original analysis ([4]) that has propagated in the literature
and may hinder theoretical understanding. The more careful
analysis we perform gives an exact result and a better ap-
proximation for the cold-denaturation temperature given the
hot-denaturation temperature.

While we mathematically fit the phenomena of cold de-
naturation using classical thermodynamics, this does not lead
to understanding the physics of the simple experimental ob-
servation, evident in Fig. 1, that the slope of the specific
heat of a heat-denatured unfolded protein (CD) as a function
of temperature (rD = dCD/dT ) is greater than the slope of
the specific heat of a folded protein as a function of tem-
perature (rN = dCN/dT ), which leads to the thermodynamic
observations.

If rD > rN , within certain bounds which we discuss below,
basic thermodynamics predicts that there must be a second
denaturation (unfolding) temperature at low temperatures.
The physics behind this involves the protein + water system
above the high temperature denaturation transition and below
the low temperature denaturation transition. Paradoxically,
coming up from below the cold denaturation temperature by
increasing the temperature results in a decrease in the entropy
of the protein-water system, not an increase, and in an increase
in the fraction of folded proteins.

The physical reason for cold denaturation must be inti-
mately connected to the entropy of the solvent (water) in
which the protein is dissolved since presumably an isolated
folded protein in vacuo is in a state of minimum free energy
[5] and cannot unfold with decreasing temperature. If the
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FIG. 1. Temperature dependence of metmyoglobin partial spe-
cific heat capacity in sodium acetate solutions of differing pH values.
Taken from [1].

protein+water system can access more entropy as it cools
by unfolding, the cold denatured system wins thermodynam-
ically at low temperatures, although the conformation of this
cold denatured protein must be different than the heat dena-
tured conformation. No doubt there is a connection between
the low temperature and the high temperature denaturation
phenomena, and that connection must be the physics of the
water+protein system.

While we know the structures of a great many proteins in
the folded state, we have very little knowledge of the struc-
tures of unfolded proteins as a function of temperature because
they typically, by definition, do NOT fold into the ordered
crystals needed for x-ray diffraction. In fact, we know of no
structures of a low temperature reversibly denatured protein.

This may seem to be a minor issue if one believes that only
correctly folded proteins are functionally active, but the basic
fact that low temperature denaturation even exists leads us to
speculate that extrapolating up (↑) from the low temperature
denatured configurations may reveal states that also play a role
in protein activity.

We note that biological systems also take into account
this two-faced nature of protein stability. We now know that
for water soluble proteins at normal conditions, folding into
active conformations after synthesis from the ribosome is a
formidable problem; proteins probably need the assistance
of chaperone proteins to assume the functional conformation
with the further expenditure of free-energy via adenosine
triphosphate (ATP) hydrolysis [6].

Further, even when folded into a basin of biologically ac-
tive conformations [7] (which may not be the conformation
basin which is lowest in the free-energy landscape) a high
temperature excursion results in incorrectly folded proteins
which need to be refolded by heat-shock chaperones. In a
similar manner, a low temperature excursion also results in
the generation of misfolded proteins. There is a separate
family of chaperons called cold-shock chaperones [8] whose
task is to refold proteins which have been misfolded by cold
temperatures.

II. ICE ENTROPY

One possible hidden source of increasing entropy with
decreasing temperature may be the interaction of the water
solvent with the exposed hydrophobic residues upon cold
denaturation. The water molecule in the sp hybridization ap-
proximation has four bonding orbitals forming a tetrahedral
symmetry around the oxygen atom. In the case of ice a dy-
namic kind of lattice is formed [9]. Any two of the four lobes
contain positively charged hydrogen atoms, while the other
two lobes contain negatively charged lobes of excess electron
density. Because of the high charge separation of the water
molecule, the static dielectric constant of water κ is extremely
high: κ = 88 at 273 K [10].

Note that there is an intrinsic amount of disorder contained
in such a lattice. Charge neutrality requires that any oxygen
atom can have at most two hydrogen atoms near it. The lattice
that forms has a residual amount of entropy due to the possible
ways of arranging the hydrogen atoms and still obey the
so-called “ice rule”: For the four nearest-neighbor hydrogen
atoms surrounding the oxygen atom, two are close to it and
two are removed from it. A particularly lucid discussion of
this problem can be found in Baxter [11].

Pauling did one of the first quantum calculations of the first
residual quantum entropies of ice [12] based on this reasoning.
Simply put, there are six possible tetrahedral arrangements
of two hydrogen atoms around a given oxygen atom, and
1/2 probability for the next adjacent oxygen that one of the
orbitals is occupied, yielding at 0 K a quantum entropy for a
mole of N water molecules

S = kB ln W = kB ln(6×1/4) ≈ 0.4kBJ/K. (1)

We will discuss below that the stability of a protein is
quite low at room temperature, with the Gibbs free energy
only about +0.2kBT per residue. The Pauling enthalpy H =
0.4kBT of ice is thus about the same order of magnitude as
the Gibbs energy, and thus the entropy increase of water as it
penetrates the protein can easily destabilize a protein at low
temperatures.

III. PROTEIN-WATER HAMILTONIANS
AND PHASE TRANSITIONS

Before we do a thermodynamic analysis, we would like to
examine the physics of the water-protein system since that is
a deeper way to understand the system.

Simple water soluble proteins consist of a chain of amino
acids. The amino acids interact with each other and with the
solvent (water). Our mission here is not to solve the terrifically
difficult protein folding problem, but rather to explore an
extremely simple model which can elucidate the basic physics
of the bistablity of protein structures.

An elegant discussion of simple protein-water
Hamiltonians can be found in Sneppen and Zollchi [13],
which we follow closely. At one extreme we can assume that
there is only one state for a “correctly” folded protein, in
which all the amino acids are correctly positioned next to the
correct neighbor. This is called the golf-course Hamiltonian
Hgf since it has no folding pathway, just a single deep
free energy hole. This Hamiltonian can be written in terms
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of amino acid local order parameters φ j ∈ {0, 1} (0 for
wrong-ordering and 1 for correct-ordering). The golf-course
Hamiltonian (no water yet!) is then given by

Hgf = −NE0φ1φ2φ3 . . . φN . (2)

The other possibility for a protein Hamiltonian, and the more
biological one, is the “zipper” Hamiltonian, which assumes
a folding pathway and thus a sequential series of increas-
ingly correct amino acid neighbors. The zipper Hamiltonian is
given by

Hzp = −E0(φ1 + φ1φ2 + · · · + φ1 · · ·φN ). (3)

Of course, this so far assumes a vacuum. As we discussed
above, bulk water has an intrinsic low temperature entropy,
and is highly polar. In this exceedingly simple model, we can
assume that the highly polar water molecules interact with
interior amino acids in the unfolded state. Further, we can
assume that in the case of the entropy increase of water that
a large number g of water molecules participate per exposed
amino acid.

Note that we follow here the work of Sneppen and Zollchi
because of its simplicity. Obviously, the model below cannot
be used to predict ab initio the phase states of real proteins,
a terrifically hard problem and an area of active interest [14].
However, one advantage of this approach is that it sees the
forest if not the trees, and has the potential to explain the
sharpness of the folding and unfolding phase transitions in
terms of the variance in the states the protein is moving over,
as we will discuss in Sec. V.

Thus, following Sneppen and Zollchi [13] we write the full
Hamiltonian for a water-protein system, not exactly identical
for golf-course and zipper models but both have the same form

H = −Eoφ + (1 − φ)w, (4)

where φ is the protein variable (which could be either the golf-
course Hamiltonian or the zipper Hamiltonian, and it includes
the presumably constant normally exposed to water amino
acids), w is the water-amino acid Hamiltonian for buried
amino acids, which are exposed when the protein unfolds.

In this model, if the protein is folded (φ = 1) the in-
ternal water term w vanishes, while if the protein is
unfolded (φ = 0) hydrophobic groups are exposed. Presum-
ably the protein structure swells due to the penetration of
the water into the protein core and the water entropy is
raised.

The water part of the Hamiltonian w, while simple, is quite
subtle. It consists of several parts. An obvious term is the
physical interaction of the hydrophobic amino acid with a
water molecule, μ. There is an energy term δ which repre-
sents the interaction of the g water molecules perturbed by
the hydrophobic amino acid, and there must be an entropic
term Sw = kb ln(g) which represents the entropy gain spread
amongst g water molecules. Actually, g includes both the
product of the 6×1/4 water orbitals times some (unknown)
number of perturbed water molecules, which we lump into
essentially a fitting parameter.

The partition function Z for each amino acid becomes

Z = geEo/kBT + e−μ/kBT
g−1∑
j=0

e− jδ/kbT

= A + (1 − 2−1)B, (5)

where we do the geometric sum

A = gexp

(
E0

kBT

)
,

B = 2 exp

(
− μ

kBT

)(
1 − exp

(− gδ
kBT

)
1 − exp

(− δ
kBT

)
)

. (6)

In the case of the protein having N amino acids,
the partition function Z = ∑

{φ}
∑

{w} exp(H/kBT ) for those
Hamiltonians and the combinatorics can be calculated
analytically

Zgf = AN + (1 − 2−N )BN ,

Zzp = AN + 1

2

B

A − B
(AN − BN ). (7)

The specific heat capacity

C = 1

N

∂

∂T

(
kBT 2 ∂ ln Z

∂T

)
(8)

for these two models is surprisingly identical when the num-
ber of amino acids in the protein is infinite N → ∞. However,
it is clear that finite size effects are quite important in pro-
tein phase states and it is the simplicity of the model which
somewhat obscures this [15]. The model also ignores pressure
effects, these are known to be very important in cold denat-
uration [16], again we can only apologize for looking at the
simplest possible model.

Both protein Hamiltonians exhibit two phase transitions
corresponding to cold-denaturation and hot-denaturation.
Figure 2 shows an example of how the specific heat capacity
depends on temperature for N → ∞ and N = 100. The peaks
at transition temperatures (sharper as N increases) indicate
that there are finite specific calorimetric enthalpy changes �H
associated with the cold and hot denaturation (equal to the
areas under the peaks and above the N → ∞ line excluding
singularity C → ∞ at the transition temperatures). The as-
sumption �C ≈ const. > 0 is reasonable when the parameters
satisfy δ � 1 and gδ � 1.

IV. DETAILED THERMODYNAMIC ANALYSIS

We assume that the protein can exist in two discrete states,
the native folded one, and a denatured (unfolded) one which
can exists both at low and high temperatures. At thermal
equilibrium temperature T , denote the changes in the Gibbs
free energy �G(T ), the enthalpy �H (T ), and the entropy
�S(T ) between the two states as

�G(T ) = G(D)(T ) − G(N )(T ),

�H (T ) = H (D)(T ) − H (N )(T ),

�S(T ) = S(D)(T ) − S(N )(T ).

(9)
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FIG. 2. The specific heat capacity for N → ∞ and N = 100 as a
function of temperature for the golf-course model and zipper model
using parameters E0 = 1, μ = −2, δ = 0.1, and g = 60 satisfy δ � 1
and gδ � 1).

Let TH be the hot denaturation temperature. Then from the
relations between thermodynamics variables

�S(TH ) = �H (TH )

TH
,

�G(TH ) = �H (TH ) − TH�S(TH ). (10)

From the assumption that the difference in heat capacity is a
constant

�CP =
(

∂�H (T )

∂T

)
P

⇒ �H (T ) = �H (TH ) + �CP(T − TH ). (11)

The quantities �CP and �H (TH ) can be read off directly from
the CP(T ) near hot denaturation temperature TH , as shown
in Fig. 3.

From the thermodynamics relation(
∂S

∂T

)
P

=
(

∂S

∂H

)
P

(
∂H

∂T

)
P

, dS = �CP

T
dT, (12)

it follows that

�S(T ) = �S(TH ) +
∫ T

TH

(
∂�S(T )

∂T

)
dT

= �H (TH )

TH
+ �CP

∫ T

TH

dT

T

= �H (TH )

TH
+ �CP ln

(
T

TH

)
. (13)

FIG. 3. How to obtain �CP and �H (TH ) from the CP(T ) plot
near hot-denaturation temperature TH .

This, together with (11), gives

�G(T ) = �H (T ) − T �S(T )

= �H (TH )

(
TH − T

TH

)
+ �CP(T − TH )

−�CPT ln

(
T

TH

)
. (14)

Here is where some confusion in the literature has originated:
the second term in the sum in the last line of (14) has the
opposite sign to that shown in equation (8) of [4], and while
some references do realize and fix it, they do not go further to
re-examine the theoretical consequences [3,13] in depth. This
is what we will explore below.

We first calculate the first two derivatives of �G(T ) with
respect to T :

∂�G(T )

∂T
= −�H (TH )

TH
− �CP ln

(
T

TH

)
= −�S(T ), (15)

and

∂2�G(T )

∂T 2
= −�CP

T
. (16)

The graph of �G(T ) has a zero at T = TH , which corresponds
to the hot denaturation temperature. Its first derivative van-
ishes only at temperature

TS = TH exp

(
−�H (TH )

�CPTH

)
. (17)

For �H (TH ) > 0 and �CP > 0, TS < TH . Since for these
conditions ∂2�G(T )/∂2T < 0, the curve is concave down-
wards thus TS is a maximum. It follows that �G(T ) = 0 at
another point, TC < TS < TH . This is the cold denaturation
point, whose properties we investigate below. See Fig. 4 for
the relation between �G and T .

We would like to solve the equation �G(T ) = 0 for a
positive value of TC . To simplify the analysis, let

x = T

TH
, (18)

then from (14), the equation can be written as

(1 − x)

(
�H (TH )

�CPTH
− 1

)
− x ln x = 0. (19)
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FIG. 4. The relation between �G and T from Eq. (14) with
the relevant temperatures: hot-denaturation happens at TH , cold-
denaturation happens at TC , and the protein in its native state is most
stable at TS .

We are looking for a solution to (19) for x < 1. Clearly, the
second term in this equation is always positive, so there is no
solution (and therefore no cold denaturation) unless

�H (TH )

�CPTH
< 1. (20)

This is a specific criterion for protein unfolding at low-
temperature depending directly on physical quantities mea-
sured at the hot denaturation transition.

Cold denaturation can still emerge at low temperature even
though the enthalpy change is positive �H (TH ) > 0, as long
as it is small enough �H (TH ) < �CPTH . We note that the
mistake made in [4] leads to the wrong conclusion that for
cold denaturation to happen, the enthalpy change has to be
strictly negative �H (TH ) < 0.

To further simplify the notation, let

y = �H (TH )

�CPTH
. (21)

Then equation (19) can now be written as

(1 − x)(y − 1) − x ln x = 0, (22)

which is equivalent to

y = 1 + x ln x

1 − x
. (23)

We will show that, for any y < 1, there is a unique solution
x < 1. It is useful to first calculate the first derivative

dy

dx
= ln x + 1 − x

(1 − x)2
. (24)

It is straightforward to show that, as x → 0, y → 1, and
dy/dx → −∞. For x → 1 y → 0 and (via twice applying
l’Hopital’s rule) dy/dx → −1/2. It is also straightforward to
show that dy/dx < 0 throughout the domain 0 < x < 1 and
that d2y/dx2 > 0. The function y(x) is therefore a monoton-
ically decreasing function with upward concavity. Ergo, x(y)
is also a monotonically decreasing function. For each y < 1,
there is a unique value of x < 1, which is what we set out
to show. So there is a unique value of TC < TH at which
denaturation occurs.

To plot x(y), we simply take the mirror image of y(x)
given by the y = x line in the same domain of 0 < x < 1 and

FIG. 5. The relation between x and y, from the equivalent analyt-
ical forms of y(x) and x(y), where W−1 is a Lambert W function.

0 < y < 1. Of course, for y → 0, x → 1 and dx/dy → −2
(the reciprocal of −1/2). As y → 1, x → 0, and dx/dy → 0.
The relation between x and y can be seen in Fig. 5.

So what happens to the entropy at the denaturation temper-
atures? Clearly, for �S(TH ) = �H (TH )/TH > 0. The entropy
increases with increasing temperature (hot denaturation) as
the protein unfolds. At TC , however,

�S(TC ) = �CP(y + ln x) = �CP

(
1 − x + ln x

1 − x

)
. (25)

The numerator 1 − x + ln x is also the numerator of dy/dx,
which was already shown to be negative for 0 < x < 1. For
x < 1, therefore, �S(TC ), here defined as the change in en-
tropy as the temperature is increased at the cold denaturation
point is also negative. This is because the protein folds into the
lower entropy state as it is heated past the cold denaturation
point. Equivalently, the entropy increases as the temperature
goes below the cold denaturation point. This is the paradoxical
feature of cold denaturation.

In fact, an explicit solution for x(y) can be written in terms
of a Lambert W -function [17]

x(y) = exp

(
(1 − y) + W−1

(
− (1 − y)

exp (1 − y)

))
. (26)

In other words, the temperature TC can be represented analyt-
ically in terms of TH , �H , and �CP:

TC = TH exp

((
1 − �H (TH )

�CPTH

)

+W−1

(
−

(
1 − �H (TH )

�CPTH

)
exp

(
1 − �H (TH )

�CPTH

)
))

, (27)
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FIG. 6. Comparison between the analytical exact result (27),
the standard approximation as given in [3,4,13], and our
approximation (28).

which can be approximated as a quadratic polynomial from
the values x and the first derivatives dx/dy, at y = 0
and y = 1:

TC ≈ TH

(
1 − �H (TH )

�CPTH

)2

. (28)

It should be noted that this approximation is an improvement
over the standard one widely used in the literature [3,4] (see
Fig. 6), and makes the cold denaturation condition (20) visible
from the constraint that TC > 0 for physical thermodynamic
temperature.

The change in entropy at cold denaturation �S(TC ) is
given by

�S(TC ) = �CP

(
1 + W−1

(
− (1 − y)

exp(1 − y)

))

= �CP

(
1 + W−1

(
−

(
1 − �H (TH )

�CPTH

)
exp

(
1 − �H (TH )

�CPTH

)
))

< 0.

(29)

The negative sign indicates that the transition from the de-
natured unfolded basin to the native folded state results in a
decrease in entropy as the temperature is raised at the cold
denaturation point, and therefore an increase in entropy as the
temperature is cooled down at the cold denaturation point.
This also follows from equation (15) and the graph for �G
in Fig. 3. The relation between �S(TC ), �CP, �H (TH ), and
TH can be seen in Fig. 7.

For completeness, we can redo the analysis above starting
from (10) at cold denaturation to obtain TH from TC and

FIG. 7. The relation between �S(TC ), �CP, and y shows that
�S(TC ) < 0 for 0 < y < 1 when �CP > 0.

relevant information from CP(T ) around that temperature:

TH = TC exp

((
1 − �H (TC )

�CPTC

)

+W0

(
−

(
1 − �H (TC )

�CPTC

)
exp

(
1 − �H (TC )

�CPTC

)
))

, (30)

note that �H (TC ) < 0 which follows from (29). This can
be approximated by replacing �H (TH ) with �H (TC ) +
�CP(TC − TH ) in (28):

TH ≈ TC

(
1 − �H (TC )

�CPTC

)2

. (31)

Since �H (TC ) = TC�S(TC ) and �S(TC ) < 0 as we find in
(29), it follows that �H (TC ) < 0.

V. IMPORTANCE OF THE SHARPNESS OF THE
DENATURATION PHASE TRANSITIONS

The zipper Hamiltonian is vastly favored by protein folding
experts over the golf-course Hamiltonian because it naturally
leads to a folding pathway approach to protein self-assembly,
while the golf-course Hamiltonian would seem to pose an
existential problem to protein self-assembly, as was pointed
out by Levinthal [18].

However, a brief inspection of either the experimental
melting curves of Mb in Fig. 1 or the simulated heat capacity
calculations of the golf-course and zipper Hamiltonians in
Fig. 2 shows that the melting curves of Mb at physiological
conditions are surprisingly sharp, and that the golf-course
Hamiltonian yields a much sharper melting profile than a
zipper Hamiltonian. This indicates that actually the golf-
course Hamiltonian would appear to be the better model for
understanding cold and hot denaturation.

This observation can be made quantitative. At the peak of
the melting curve, the specific heat has a peak value CP. We
can imagine two scenarios at the denaturation temperature.
(1) The system can fluctuate between two discreet states,
folded (F ) and unfolded (U ), or (2) it can move over a contin-
uum of states, most broadly as a flat line between the F and U

034414-6



PROTEIN DYNAMICS IMPLICATIONS OF THE … PHYSICAL REVIEW E 104, 034414 (2021)

extrema. Clearly, the golf-course Hamiltonian represents the
two discreet state possibility, while the the zipper model rep-
resents the continuum flat, broad distribution.

Following Bakk et al. [19], we note that the normalized
inverse of the statistical variance α of a system of N amino
acids can be written in terms of the ratio of the square of the
total number of amino acids in the system N2 divided by the
difference between the average value of the square 〈n2〉 and
the square of the average value 〈n〉2 of the number of amino
acids in excited states:

α = N2

〈n2〉 − 〈n〉2
, (32)

which is evaluated in the vicinity of the phase transition tem-
peratures (hot and cold denaturation).

The bigger the variance, the smaller is α, and the sharper
is the transition; a two-state system has the largest variance
possible. That is, for a two-state (golf-course) Hamiltonian
there are only two possible states, 0 and 1, and so αgc = 4,
and this is the smallest value that α can have. For the zipper
Hamiltonian there is a flat continuum between 0 and 1 which
yields an αzip = 12. Since the golf-course Hamiltonian must
have the maximum variance for any distribution between 0
and 1, it also has the sharpest phase transition. The zipper
Hamiltonian does not necessarily have the minimum variance,
but it certainly will have a much broader melting peak than a
two-state system.

This statistical result can be recast into thermodynamic
terms by noting that the specific heat at constant pressure CP

can be written in terms of the variance in the energy of the
system [this is easily shown using the partition function (5)]:

CP = 〈E2〉 − 〈E〉2

kBT 2
. (33)

This allows us to write α in terms of measured thermodynamic
quantities Cpeak

P at the peak of the transition, and �H the latent
enthalpy of the transition

α = �H (TC )2

kBT 2
C Cpeak

p

. (34)

The smaller α is, the sharper the transition, with α = 4 being
the sharpest possible value (a two-state transition), and α =
12 for an evenly broad transition with all intermediate states
equally populated, although α can be greater than 12 for other
distributions.

As was long ago pointed out by Privalov [1] and em-
phasized by Bakk et al. [19], most water-soluble proteins
have values of α very close to 4, with myoglobin perhaps
the sharpest two-state phase transition of all proteins studied.
This indicates, rather shockingly, that proteins in their native
state are actually crystalline like in their structure, and that
the zipper model fails miserably. How then can proteins fold
quickly, if Levinthal’s Paradox is actually supported by the
statistical mechanics of the calorimetry we explore here?

While Bakk et al. want to explain this paradox by assuming
that proteins fold through a series of crystalline substates
(multiple pathways and hierarchical Hamiltonians), and this
may be correct as far as it goes, we feel that they really should
consider far more carefully the role that protein chaperones

play in guiding proteins over a golf-course landscape rather
than the putative funnels. Some combination of these two
processes must be at work.

VI. COMPARISON WITH EXPERIMENTS

It should be no surprise that our better approximation for
predicting cold denaturation temperatures, Eq. (28), yields
good agreement with known cold denaturation temperatures.

For the numbers used in [4], TH = 60C, �H (TH ) =
500 kJ/mol, and �CP = 10kJ/Kmol, our approximation (28)
gives TC = −32C which agrees with the numerical plot in
[4], while the approximation used in the same paper results
in TC = −17 C.

This equation is in quite good agreement with actual
experimental results from the literature. For example, Chy-
motrypsinogen (pH 2.07 under 0.3GPa) has a measured
cold denaturation temperature at −9 C [3,20], while equation
(28) yields a temperature of −10 C. Similarly, Ribonuclease
(pH 2.0 under 0.3GPa) has a cold denaturation temperature
measured at −32 C, with a value of −29 C from (28).

We are now equipped to understand at a deeper level the
denaturation curves of met-Mb shown first in Fig. 1 and now
presented again in Fig. 8 with some analysis. We can use
(28) to predict the steps in the low temperature denaturation
temperature seen in Fig. 1, and we can extract values for α

which give measurements of the distribution of protein states
at the phase transitions.

Figure 8 shows some of the extracted thermodynamic
values necessary to compute the predicted low temperature
denaturation temperatures of Mb for three different pH values.
In principle, we should be able to go backwards, that is,
predict the high temperature denaturation temperatures from
the low temperature thermodynamics, but unfortunately, since
the data cut off at 0◦ C it is not possible to get the critical
values for the thermodynamics variables from this data set.
Table I presents the predicted and measured values of Tc.

FIG. 8. Analysis of the metMB denaturation curves. 4 pH dif-
ferential calorimetery scans were reported at pH 4.10, 3.84, 3.70,
and 3.50.
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TABLE I. Thermodynamic analysis of predicted cold denatura-
tion temperatures and high Tc values, and α from Fig. 8.

pH TH �Cp(J/gK) �H (J/g) T predicted
c T measure

c α

4.10 341 K 0.7 26 270 K N/A 4
3.84 329 K 0.5 14 275 K 281 K 11
3.70 322 K 0.3 4.5 293 K 285 K 16

Next we can determine how the variance in the states given
by α changes as one approaches presumably a fully denatured
Mb at pH 3.50, which has NO phase transitions.

Our analysis shows (roughly) that we start with a clean
two-state denaturation process at pH 4.10, to an almost flat
distribution of states at pH 3.84, with a flat or centered in-
termediate unfolded distribution at pH 3.70. This analysis
suggests that indeed proteins at normal pH ranges are well de-
scribed by the golf-course Hamiltonian, but progress towards
a zipper-like Hamiltonian as the pH (in this case) is lowered
until the protein is completely denatured at all temperatures.

VII. MICROFLUIDIC TECHNIQUE FOR HIGH
AND LOW TEMPERATURE DENATURATION

To probe the temperature- and pressure-dependent stability
and possible metastability of proteins we developed a unique
microfluidic technology which will allow studies of protein
stability over an unprecedented range of temperature and pres-
sures using a microfluidic bubble technology coupled with
optical and x-ray techniques.

The basic idea is simple: since we want to study pro-
tein conformations over a temperature range from −10 C to
+60 C, we will have to supercool proteins dissolved in water
to access regions where the �G clicks below zero. Although
water can be supercooled because of its high surface tension,
bulk water cannot be stably cooled below 0 C because small
fluctuations can nucleate microcrystals [21]. However, in a
water drop, the smaller the volume of the water drop VD the
less likely is the formation of a random fluctuation in that
drop. Hence, highly purified water, when made into a fine
mist, can consist of supercooled water droplets (also known
as clouds).

It is possible, using microfabrication techniques, to gener-
ate arbitrarily small water drops using hydrodynamic focusing
of a central water jet and side jets of a water-immiscible
oil [22]. A fundamental task is finding a water immiscible
hydrocarbon of high enough molecular weight that it has
a low vapor pressure, and hence will not partition into the
water nanodrops, but still have a low enough melting point
that we can supercool to at least −10 C with low viscosity.
We found that the simple aliphatic hydrocarbon undecane
(C11H24) has the desired properties. Unfortunately undecane
has undesirable swelling properties for many elastomers (such
as polydimethylsiloxane, PDMS) which has required us to
develop all-glass and silicon based microfludics, and epoxy-
based sealing of microfluidic sealing gaskets to the external
pumps.

The chip we developed to do hydrodynamic focusing uses
deep reactive ion etching of channels into silicon, as shown

FIG. 9. Schematic of a microdrop generator for supercooled
water-protein studies. Undecane comes in from the two side channels
and a protein solution in water comes in from the top. Adjustment
of the flow rates yields nanodrops of water which then pass over a
temperature controlled peltier plate.

in the SEM image in Fig. 9. The thin (100 micron) pyrex
glass coverslip is anodically bonded to the silicon chip. A
computer controlled peltier-effect device is placed against the
down-stream channel of the nanodrop generator and can be
run either as a heater or a cooler to explore the heat denatura-
tion and cold denaturation of the protein molecules within the
nanodrops.

Optical studies of the fluorescence resonance energy trans-
fer (FRET) distances of labels in the protein can be done
through the thin pyrex window at the single-molecule level
[23]. Back-etching of the chip allows us to thin the wafer
to under 20 microns over the channel to allow ultimately
for small-angle x-ray scattering (SAXS) measurements of the
protein radial distribution moments as a function time and
temperature after nanodrop generation [24].

With this technology, it should be possible to explore in a
more systematic way various water soluble proteins and their
high and low denaturation points, as a test of the utility of the
analysis developed here.

VIII. CONCLUSION

In this paper, we showed that, under widely satisfied condi-
tions in globular proteins, for each hot denaturation point TH

there exists a unique cold denaturation temperature TC for a
protein. We explicitly calculate TC in terms of TH and the other
parameters. We also calculated the entropy change �S(TC ),
which is shown to be positive with unfolding. We demonstrate
agreement with experiments, and correct some fundamental
mistakes in the literature.

We used the golf course and zipper Hamiltonians, cou-
pled with their water-protein Hamiltonian of Sneppen and his
colleagues, to verify that their elegantly simple physics can
reproduce the phenomena of low and high temperature denat-
uration of globular proteins. This can capture the two-state
nature of the pseudo-first-order phase transitions observed,
implying, after all these years, that the two-state model should
be taken more seriously.

There are two dark sides to this paper we have to discuss.
One dark side, as we have mentioned, is that the sharpness
of the low and high denaturation temperatures as evidenced
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by the state variance given by α implies a discrete two-state
distribution of states under biological conditions, not a con-
tinuum, supporting the golf-course Hamiltonian as opposed
to the zipper Hamiltonian.

The second dark side of this paper calls into question the
interpretation, but not the data, of the work on the dynamics
of Mb-CO at low temperatures [25]. Since the authors of that
paper cooled myoglobin slowly in a glycerol-water solvent,
there is a distinct possibility that the low temperature structure
dynamics studied was not of the native Mb structure at room
temperature, but rather of a cold-denatured state. Given that
presumably the cold-denatured state is a high entropy state
consisting basically of a random coil (although that is not
known), perhaps it would not be surprising to see glassy-like
power law activation energy distributions [26]. This is purely
speculative on our part at present since nobody has done
differential scanning calorimetry of Mb in a glycerol-water
solvent to verify that there is a cold denaturation in this
solvent.

One obvious next step is to better understand the bro-
ken symmetry of the quantum entropy states of water at
cold denaturation, which clearly results in a different change
in conformational degrees of freedom than occurs in hot
denaturation, and drives the strange phenomenon of cold de-
naturation. Next, we believe that the actual structure of the
cold denatured and hot denatured states need to be measured
since they are so critically linked to the conformation of
proteins weakly held together between the two denaturation
phase changes.
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