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Discrete spectral eigenmode-resonance network of brain dynamics and connectivity
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The problem of finding a compact natural representation of brain dynamics and connectivity is addressed
using an expansion in terms of physical spatial eigenmodes and their frequency resonances. It is demonstrated
that this discrete expansion via the system transfer function enables linear and nonlinear dynamics to be
analyzed in compact form in terms of natural dynamic “atoms,” each of which is a frequency resonance of an
eigenmode. Because these modal resonances are determined by the system dynamics, not the investigator, they
are privileged over widely used phenomenological patterns, and obviate the need for artificial discretizations and
thresholding in coordinate space. It is shown that modal resonances participate as nodes of a discrete spectral
network, are noninteracting in the linear regime, but are linked nonlinearly by wave-wave coalescence and
decay processes. The modal resonance formulation is shown to be capable of speeding numerical calculations
of strongly nonlinear interactions. Recent work in brain dynamics, especially based on neural field theory (NFT)
approaches, allows eigenmodes and their resonances to be estimated from data without assuming a specific
brain model. This means that dynamic equations can be inferred using system identification methods from
control theory, rather than being assumed, and resonances can be interpreted as control-systems data filters.
The results link brain activity and connectivity with control-systems functions such as prediction and attention
via gain control and can also be linked to specific NFT predictions if desired, thereby providing a convenient
bridge between physiologically based theories and experiment. Amplitudes of modes and resonances can also
be tracked to provide a more direct and temporally localized representation of the dynamics than correlations
and covariances, which are widely used in the field. By synthesizing many different lines of research, this
work provides a way to link quantitative electrophysiological and imaging measurements, connectivity, brain
dynamics, and function. This underlines the need to move between coordinate and spectral representations as
required. Moreover, standard theoretical-physics approaches and mathematical methods can be used in place of
ad hoc statistical measures such as those based on graph theory of artificially discretized and decimated networks,
which are highly prone to selection effects and artifacts.
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I. INTRODUCTION

Relationships between brain activity and structure are cen-
tral to understanding how the brain functions and to interrelat-
ing and predicting experimental measurements. Tractability
and interpretability of analyses require compact representa-
tions of these quantities and these are widely sought in the
field, chiefly by statistical means and using approaches such
as graph theory. The purpose of this paper is to obtain a
compact representation from a physical starting point, which
yields a description in terms of natural dynamical entities that
embody spatial patterns and spectral resonances, rather than
phenomenological or statistical constructs. This provides a
bridge between experimentally observed spatiotemporal char-
acteristics on one hand and corresponding predictions from
phyiologically based theories on the other, notably neural field
theory (NFT).

At the microscopic level, the brain comprises a discrete
network of around 1011 neurons, each typically connected
to 103–104 others [1,2]. However, this level of descrip-
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tion is unwieldy for analysis, computation, or comparison
with large-scale mammalian brain dynamics and connectiv-
ity, notwithstanding large-scale efforts in this direction [3–5]
and successes in smaller nervous systems such as that of
Caenorhabditis elegans [6,7].

In recent years, much work has been done to study static
and dynamic brain connectivity on scales up to and including
the whole brain, with a literature now running to thousands of
publications. At this scale, individual neurons are not resolved
and brain tissue is effectively continuous. In most cases,
structural and functional studies have involved discretizing
or parcellating the brain into so-called regions of interest
in coordinate space. Connectivities between these discretized
regions are then quantified by tracing axonal connections or
evaluating two-point correlation functions of brain activity or
similar measures [6,8–11]. In both cases, the result is often
expressed as a connection matrix (CM) of structural (i.e.,
axonal) or functional (i.e., correlation-based) connections be-
tween regions, which label the rows and columns.

Numerous methodological and analysis issues arise when
discrete methods are applied to the continuous (at millimeter
scales and above, where individual neurons are not resolved)
brain, as discussed in detail in Ref. [12]. For example, there
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is widespread disagreement over whether to parcellate based
on known anatomical or functional subdivisions of the brain
such as Brodmann areas, into equal-sized elements (typically
of order a centimeter in linear size) that do not presuppose
what the subdivisions should be and which avoid artifacts
due to widely different regional sizes, or on some other basis
[9,13–21]. Second, experimental CMs can contain 104–108

elements, which makes them unwieldy and difficult to an-
alyze. Tied to this is a widespread desire to exploit the
isomorphism between CMs and corresponding graphs, in
which each row and column of a CM represents a graph
node and each entry is the strength of the corresponding edge
[6,7,12,19]. Such graphs are extremely dense, so CMs are
often severely thresholded to sparsify them by retaining only
the largest entries and even binarizing the resulting matrix
[16,17,19,22–24], thereby discarding much of its information
content. Then statistics of discrete graph-theoretic quanti-
ties such as degree, centrality, and stepwise path length are
calculated for the residual decimated structure [6,17,25]. Un-
fortunately, this represents a severe category error—no such
macroscopically discrete structure exists within the cortex,
for example, although structures such as thalamic nuclei and
basal ganglia are discrete from one another; this is despite the
existence of localized functions and other nonuniformities,
because the projections of white matter tracts have signif-
icant spread. Many resulting measures are thus dominated
by artifacts of the discretization and thresholding choices
made [12,19,22,23], although some can be redefined to be
valid in the limit of sufficiently fine discretization without
thresholding [12]. Additionally, because the brain is near-
critical, arbitrary removal of even relatively weak connections
is questionable because it may significantly change criticality
[26–32].

The above debates and inconsistencies have led to an
explosion in the number of proposed analysis methods and
measures and an extremely complex resulting literature. As a
result it is often difficult or impossible to compare the results
of different studies [19,22,23,33,34], although case-control
comparisons within a single protocol can yield robust statis-
tical differences between conditions, albeit without relating
these quantitatively to underlying mechanisms.

A common source of difficulty in current analyses of
brain connectivity and dynamics arises from discretizing the
system in coordinate space (which is intrinsically complex
and unwieldy) rather than in the spectral domain (which
is straightforward in the linear regime). When subsequent
thresholding and other ad hoc analysis steps are imposed to
try to enforce a simple outcome by fiat, the difficulty can lead
to errors in cases where interpretation is carried out through
the lens of a presumed architecture (e.g., modular, small
world, hierarchical) which is then enforced by bespoke anal-
ysis methods. Many problems thus arise from the widespread
insistence on treating the large scale structure of the brain as
if it really were the discrete system defined by the particular
parcellation and thresholding/decimation chosen by an indi-
vidual investigator, rather than viewing each parcellation as an
approximate discretization of the macroscopically continuous
system at hand. This is analogous to coarsely discretizing a
structure such as a musical instrument or machine part, keep-
ing only a few of the strongest connections between points,

and then studying the results by tabulating statistics of the
discretization, rather than via relevant physical laws. By its
very nature, such an approach is unlikely to yield first-
principles understanding of system properties. Valid results
depend on having a fine discretization, retaining connections,
and using dynamical methods that are based on the physical
properties of the system.

In recent years, much effort has gone into trying to
detect patterns in brain connectivity and activity, mainly
by using statistical means such as independent component
analysis (ICA), principal component analysis (PCA), or
k-means clustering of covariance patterns [35–38] to ob-
tain phenomenological “resting-state networks” (RSNs) or
other patterns without reference to the underlying dynamics
[39,40]. Many of these approaches require by fiat that patterns
be mutually exclusive with sharp edges [35,37,41].

Use of natural physical eigenmodes to analyze brain ac-
tivity (in direct analogy to Fourier analysis of the dynamics
of a violin string, for example) has a longer history and has
the advantage that it relates any observed activity patterns to
the dynamics of the brain [42–46]. More recently, it has also
been used to analyze brain connectivity and express it in com-
pact form within a NFT framework [47–51]. Graph-theoretic
analogs have also been proposed [24,33,52,53]; unfortunately,
some such studies suffer from overly coarse discretization,
binarization and thresholding, and oversimplifications such as
trying to explain individually selected patterns with a single
“best” mode, without providing a rationale for ignoring the
other patterns present and/or other modes [24,53]. In contrast,
compact modal representations of dynamics and connectivity
can be obtained if justified on a physical basis, consistently
with known properties of inputs, neurodynamics, and modal
structure [45,54]. Other successes of discrete approaches,
especially those based on patterns, may result from use of
methods that indirectly incorporate the contributions due to
low-order eigenmodes without considering these modes ex-
plicitly [48].

Not only is the representation of activity in terms of the
eigenfunction basis straightforward in the linear regime but
CMs can also be represented compactly in terms of the same
basis [8,49,50,55]. This can easily reduce a 1000 × 1000
symmetric functional CM (fCM) with ∼500 000 independent
entries, to a diagonal matrix with 1000 entries, only a few
tens of which are nonnegligible [47,50]. This achieves the
widely desired aim of a compact, discrete representation in
a systematic way; the price being that it is realized in the
spectral domain, not coordinate space. However, this is not
a major issue if one remembers the analogy with a violin
string—each pure tone corresponds to a fixed sinusoidal spa-
tial pattern that oscillates with an amplitude that can change
over time [56]. Thus, as in other branches of physics, anal-
yses of brain connectomics and dynamics need to switch
between coordinate-space and spectral representations as re-
quired. Both representations are useful in different contexts,
as in the analogous case of wave-particle duality in quantum
physics—e.g., coordinate space for local neural interactions
and spectral space for larger-scale phenomena.

Brain dynamics is more complex than that of a violin
string, in which each spatial pattern has a unique frequency.
In the brain, both experiment and NFT show that multiple
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damped frequency resonances can exist for a single spatial
pattern [29,56–60]. This aspect proves to be straightforward
to handle using approaches from engineering control systems
that approximate the transfer function of each mode as a
rational function [61–64]. The result is a discrete sum of
resonances that contribute to each mode’s dynamics, each
of which corresponds to a pole of the transfer function and
has the properties of a proportional-integral-derivative (PID)
data filter with potential cognitive roles such as prediction
and attention [65]. Again, this provides a systematic means
of truncating to obtain a finite representation with just a few
poles retained for each of the dominant spatial modes. A
key advantage of this method is that it represents the dy-
namics in terms of spatial patterns and spectral resonances
that are widely observed experimentally and also predicted
from specific physiologically based NFTs, thereby providing
a convenient bridge between the two.

In almost all studies, connections between regions are
treated as linear because axonal outputs are generally pro-
portional to inputs, whereas local dynamics can be linear or
nonlinear. In the linear regime, eigenmodes are noninteract-
ing, which is what enables a very compact representation.
However, large-scale brain activity can involve a variety of
nonlinear effects, including firing rate responses, habituation,
facilitation, and synaptic plasticity [66–68]. Nonlinear inter-
actions have the effect of coupling the linear modes, an effect
that can be treated either directly or by retaining additional
terms in a perturbation expansion in the amplitude of the
activity [69]. This is directly analogous to the situation in
nonlinear optics and nonlinear plasma physics, where such
expansions are standard [70–72]. So long as the interaction is
not too strong, use of eigenmodes as the basis of expansion
still yields a compact treatment of the dynamics, with the
leading nonlinear terms describing three-wave coalescence
and decay [70–72].

Wave-wave interactions have been widely observed in the
brain in many contexts, including: (i) second-harmonic gener-
ation via three-wave coalescence of resonant alpha or spindle
waves [69,73,74]; (ii) modulation of high-frequency waves
such as ∼40 Hz gamma oscillations by lower-frequency ones,
including slow-wave (∼1 Hz), theta (∼4 Hz), alpha (∼10 Hz),
and beta (∼20 Hz) [26,75–84] ones; and (iii) three-wave co-
alescence and decay interactions seen in steady-state visual
evoked potential experiments [85–87]. NFT perturbation ex-
pansions and simulations have accounted for a number of
features of such phenomena [67,73,86,87]. Such interactions
have also been postulated to play roles in neural processing
and communication between areas—e.g., under the communi-
cation through coherence hypothesis that asserts that in-phase
oscillations can enhance communication between neurons
[76,81,84,88–103].

Here, our aim is to synthesize many prior lines of research
from physics, engineering, and neuroscience to obtain a
compact discrete representation of linear and moderately non-
linear brain dynamics and connectivity based on eigenmodes,
resonances, and their interactions. We consider a broad class
of NFT dynamical equations that follow macroscale activity
by averaging over microscopic neural structure. The particular
equations used here omit details to highlight the key features
of this approach. We use a perturbation expansion in orders

of the external stimulus amplitude to express the dynamics
in terms of a network of nonlinearly interacting modes. Fur-
ther simplifications are then made by introducing a rational
approximation to the modal transfer functions. The result
is a set of solvable coupled-mode equations in coordinate
space. Corresponding connection matrices between modes
and resonances will thus be dominantly diagonal, with weaker
off-diagonal terms arising from mode coupling. This formu-
lation in terms of a discrete network of modal resonances
achieves the aim of a compact, discrete representation of brain
dynamics and connectivity in which each modal resonance is
an interacting entity.

The structure of the paper is as follows. In Sec. II we
introduce a neural field equation that is sufficiently general
to establish the key results. Perturbation expansion of this
equation is then carried out. Section III solves the pertur-
bation equations to first order, deriving the linear transfer
function and its eigenfunction expansion. A further expansion
in terms of poles of the transfer function is then carried out to
obtain equations for the amplitudes of the individual poles.
Second-order nonlinear terms corresponding to three-wave
interactions are analyzed in Sec. IV and expressed in terms
of the modal linear transfer functions. How modal poles can
speed numerical simulations of strongly nonlinear dynamics
is then outlined in Sec. V. Section VI discusses some ways
in which the interactions between modal resonances can be
quantified. Section VII then describes procedures to obtain
modes and poles from data and thereby avoid use of predeter-
mined dynamic equations. The main results are summarized
and discussed in Sec. VIII, where generalizations and future
directions are also discussed.

II. THEORY

In this section we introduce the class of neural field
equations considered in the present work and expand their
dynamics up to second order in external perturbations to the
system. To keep the analysis as general as possible we do not
adopt a specific NFT model of the underlying system and its
nonlinearities, the aim being to establish the overall approach
and overarching results.

A. Neural field equation

A very wide range of brain activity dynamics can be de-
scribed in terms of the mean firing rate of neurons Q(r, t ) as a
function of the two-dimensional (2D) position r on the cortex,
and the time t . In the linear regime it is possible to write the
firing rates of all neural populations—excitatory, inhibitory,
and closely coupled thalamic ones, in terms of any one of the
set [12,104]. Because excitatory neurons are primarily behind
the signals detected in electroencephalography (EEG) and
functional magnetic resonance imaging (fMRI) [42,105], we
take Q to represent the mean excitatory firing rate henceforth.
We do not consider the other populations explicitly because
of our focus on the analysis of dynamics in terms of eigen-
modes and resonances; however, these strongly influence the
observable excitatory activity and are routinely incorporated
into NFT models of the corticothalamic system, such as the
ones cited in the Introduction and the next paragraph.
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Neural field theory (NFT) averages over microscopic neu-
ral properties to obtain (in the present case) an equation of
motion for Q(r, t ) when driven by external inputs N (r, t ),
which are mapped in a nearly one-to-one manner through
the thalamus to the sensory cortex, with r directly denoting
position in the cortex and labeling the location connected
to it in the thalamus (i.e., a rescaled position). A very wide
class of such equations, whose predictions have been verified
experimentally in many contexts, can be written in the form
[42,48,104,106–122]

(Dt + Dr )Q(r, t ) = N (r, t ) + Z[Q(r, t )], (1)

where Dt and Dr are linear operators that depend only on time
and position, respectively, and Z is a nonlinear function of
Q. Typically, Dt describes the temporal dynamics that results
locally from interactions within and between multiple neu-
ral populations and via topographically organized feedback
loops between cortex and thalamus, including time delays
during corticocortical and corticothalamic axonal propaga-
tion. The operator Dr describes spatial coupling via white
matter connections; together with Dt it governs spatial propa-
gation (across the cortex, for example) with associated spatial
spreading and time delays. The quantity Z is approximated
as being local in the present work but could involve integrals
over different locations and times; its form is discussed further
below.

An equivalent form to Eq. (1), without the nonlinear term,
has been used in structural inference in geophysics, acoustics,
and elsewhere [123], and includes wave and diffusion equa-
tions as special cases. This form also includes wide classes
of equations in which the evolution of Q is driven by both
local influences and integrated activity arriving from other
locations—the kernel of the integral being the Green function
of the dynamics [109].

Equations such as Eq. (1) can be solved by brute force nu-
merical computation. However, our aim here is to understand
the structure of the solutions and how they can be represented
in terms of a naturally arising discrete network of modes and
resonances. This will expose fundamental dynamic entities
and their interactions in a form suitable to tackle a wide
variety of problems in brain structure and dynamics.

B. Perturbation expansion

Without loss of generality, we assume that

N (r, t ) = N (0)(r) + N (1)(r, t ), (2)

where N (0) is the steady state value of N and N (1) is a pertur-
bation that represents the total time-varying external input.

We now expand Eq. (1) in orders of the perturbation by
writing [67]

Q(r, t ) = Q(0)(r) + Q(1)(r, t ) + Q(2)(r, t ), (3)

Z[Q(r, t )] = Z (0)[Q(r)] + Z (1)[Q(r, t )] + Z (2)[Q(r, t )],

(4)

where we have truncated the expansion at second order be-
cause many relevant nonlinearities occur at this order and it
suffices to establish the key results. In this vein we also choose

the form

Z[Q(r, t )] = a[Q(r, t ) − Q(0)(r)]2, (5)

where a is a constant. This form represents a nonlinearity in
the firing rate response to mean soma voltage in NFT, but
other nonlinearities such as habituation, facilitation, and plas-
ticity can be included in similar ways [66,67,69,87,107,122].
More generally, the firing rate nonlinearity is expected to be
sigmoidal [124], leveling off at high and low Q, but Eq. (5) is
a good approximation provided perturbations from the steady
state do not become too large. Equations (4) and (5) imply

Z (0)[Q(r)] = 0, (6)

Z (1)[Q(r, t )] = 0, (7)

Z (2)[Q(r, t )] = a[Q(1)(r, t )]2. (8)

Use of the form a[Q(r, t )]2 on the right-hand side of Eq. (5)
might seem simpler, but would lead to additional terms in
Eqs. (6)–(8) that would complicate the subsequent analysis
without affecting the conclusions except in detail.

Substitution of Eqs. (3)–(8) into Eq. (1) then yields

DrQ(0)(r) = N (0)(r), (9)

(Dt + Dr )Q(1)(r, t ) = N (1)(r), (10)

(Dt + Dr )Q(2)(r, t ) = a[Q(1)(r, t )]2, (11)

where we have equated terms order by order.

III. STEADY STATE, LINEAR RESPONSE,
AND TRANSFER FUNCTION

In this section we first briefly summarize prior work on
NFT linear dynamics and the system transfer function, includ-
ing its expansion in terms of eigenfunctions. When applied to
Eq. (1) these results yield a set of equations for the dynamics
of each eigenmode, which we express in terms of transfer-
function resonances, thereby leading to equations of motion
for the contributions of the individual modal resonances to the
overall dynamics.

A. Steady state and linear dynamics

The steady state of the system is determined by solution
of Eq. (9), which we do not need to examine explicitly here.
Perturbations from this solution are what give rise to nonin-
vasively measurable quantities such as EEG and fMRI signals
[42,125].

The first-order perturbation Q(1) is the solution of Eq. (10),
which can be obtained by the standard method of separation
of variables [126–128]. We start by solving in the case with
N (1) = 0 by making the ansatz

Q(1)(r, t ) = a(t )u(r), (12)

where the functions a(t ) and u(r) depend only on the variables
indicated and this separation is possible provided the structure
of the system can be approximated as static on the timescale of
variation of the activity. Substitution of this form into Eq. (10)
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with N (1) = 0 and division by a(t )u(r) gives

Dt a(t )

a(t )
= −Dru(r)

u(r)
= −K2. (13)

In this equation, we notice that the leftmost term is indepen-
dent of r and the middle term is independent of t ; since these
are equal, they must both equal a common constant, written as
−K2 on the right-hand side.

The above steps enable us to write the eigenfunction equa-
tion

Dru(r) = K2u(r), (14)

and the dispersion equation

Dt a(t ) + K2a(t ) = 0. (15)

In applications, the eigenfunction equation is typically a
spatial differential equation, which must be solved subject to
the boundary conditions of the system. In bounded systems
such as the brain, this gives rise to an eigenvalue spectrum in
which K takes only discrete values Kj , with j = 0, 1, 2, . . .

for corresponding spatial eigenfunctions uj (r). The u j (r) can
be normalized for symmetric Dr to form an orthonormal basis,
with ∫

u j (r)uk (r)dr = δ jk, (16)

where the integral is over all r (in the present work integrals
and sums written without bounds extend over the entire al-
lowable domain), δ jk is a Kronecker delta, and we assume
that the u j (r) are real without loss of generality. Then any
well-behaved function g(r) can be expressed in the form

g(r) =
∑

j

g ju j (r), (17)

g j =
∫

u j (r)g(r)dr, (18)

where the sum is over all modes. For example, if the operator
Dr is the Laplacian, as is often a reasonable approximation
[50,109], then Eq. (14) becomes the Helmholtz equation and
the eigenfunctions are Fourier modes in 1D- and 2D-planar
cases with wave number of magnitude K and spherical har-
monics for the surface of a sphere [129]. The Laplacian
approximation has been widely used in NFT (see references
cited in the Introduction) but we do not make this approxima-
tion in the present work.

For K = Kj the dispersion Eq. (15) yields the correspond-
ing temporal eigenfunction a j (ω). The general solution of
Eq. (10) is a sum of terms of the form aj (t )u j (r).

In contrast to their dynamic role in the brain, eigenfunc-
tions sometimes appear in the literature as descriptive tools to
simplify the form of covariance matrices, graph structures, or
other statistical measures [41,52], often relating to discretized
and thresholded representations that are subject to the difficul-
ties described above, and often postulating Laplacian spatial
couplings without reference to physiology. Considerations of
modal energies and eigenvalues that justify dominance of the
lowest-order modes can only be made in a dynamical context
[42,44,50,54,59].

At this point it is also worth noting that one must be careful
to avoid well-known pitfalls when undertaking eigenfunction

expansion: (i) Just as in Fourier analysis, expansion of fea-
tures with short length scales (e.g., narrow or sharp-edged
patterns) leads to contributions from a broad spectrum of
spatial eigenmodes owing to the spatial uncertainty principle,
and the Gibbs phenomenon can also occur [127,128]. Phe-
nomenological patterns such as RSNs are often forced to be
mutually exclusive with sharp edges. This means that expan-
sions of them in terms of eigenmodes will have artifactual
tails of high-mode contributions that arise from the edges,
which are prominent in the analysis in Ref. [24], for example.
(ii) It is not appropriate to analyze patterns by finding the
eigenmode with the “best match” to a single pattern selected
from among many [24,53]—the chance of false positives is
significant. In contrast, rigorous analysis requires avoidance
of coarse discretization and thresholding, and evenhanded use
of all significant eigenmodes; only then can extremely sparse
representations of observed features sometimes be justified, as
in Refs. [45,54], for example.

B. Transfer function expansion in eigenfunctions

We can write Eq. (10) in the form [130]

Q(1)(r, t ) =
∫∫

T (r, r′, t − t ′)N (1)(r′, t ′)dr′dt ′, (19)

where T is the transfer function (or Green function) and the in-
tegrals run over the whole system and times t ′ < t to preserve
causality (equivalently, one can note that any causal T must
be zero for t ′ < t and integrate over all t ′) [126–128,131]. The
transfer function contains complete information on the brain’s
linear properties, responses, and dynamics, and is equivalent
to the total effective connectivity between r and r′ via direct
and indirect paths [8,12,49,50,104,130]

Under our assumption of a symmetric operator Dr , T
can be written in terms of orthonormal eigenfunctions as
[12,49,56,126–128,131]

T (r, r′, τ ) =
∑

j

u j (r)u j (r′)θ j (τ ), (20)

where the temporal responses θ j (τ ) remain to be determined.
Notice that the multidimensional spatial dependence of the
tensor T on the left-hand side is simplified to a single sum
on the right-hand side once the eigenfunctions have been
identified.

The transfer function in Eq. (20) is, by definition, the re-
sponse of the system at r and t ′ + τ to a unit delta-function
perturbation at r′ and t ′, and thus satisfies Eq. (10) with a
delta-function on the right-hand side. Substitution of the form
of Eq. (20) into Eq. (10), and use of the orthonormality of the
eigenfunctions, then yields(

Dt + K2
j

)
θ j (τ ) = δ(τ ). (21)

Hence, by Fourier transforming this result with the convention

h(ω) =
∫

h(t )eiωt dt, (22)

h(t ) =
∫

h(ω)e−iωt dω

2π
, (23)
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we find

θ j (ω) = 1

Dt (ω) + K2
j

. (24)

The function θ j (ω) must satisfy the reality condition
θ j (−ω) = θ∗

j (ω) for θ j (τ ) to be real, where the asterisk de-
notes the complex conjugate.

C. Expansion in modal resonances

Generally, transfer functions have a very complicated form
owing to the complexities of Dt (ω) that arise from local dy-
namics of multiple neural populations and loops connecting
cortex to thalamus, for example. Hence, in engineering control
theory it is common to approximate them by rational functions
of ω or the Laplace-transform equivalent [61,62,65] and such
ideas have been used in brain dynamics for decades [124,132].
One thus writes [60]

θ j (ω) ≈
∑m

q=0 Bjq(−iω)q∑n
p=0 Aj p(−iω)p

, (25)

where m < n and the Aj p and Bjq are constants. The denomi-
nator of Eq. (25) is a polynomial in −iω, so it can be written
as a product of n linear factors, each of which has a zero at a
location ω j p in the complex plane. If we assume for simplicity
that the poles are distinct, then we can then use a rational
function decomposition to approximate θ j (ω), as a sum over
these poles, which gives

θ j (ω) ≈
∑

p

r j p

ω − ω j p
, (26)

=
∑

p

r j p

ω − � j p + iγ j p
(27)

(we omit the explicit bound on sums from now on), where
r j p is a complex constant, ω j p = � j p − iγ j p is a complex
resonant frequency, � j p is the corresponding frequency of
oscillation, and γ j p is the damping rate; both � j p and γ j p

are real and γ j p must be positive for stability. Responses are
strongest at modal resonances and Eq. (27) has been found to
provide an accurate approximation even for small numbers n
of poles [60].

The poles are divided into two classes. In the first class,
� j p �= 0, which corresponds to oscillations, so there must be
another pole p′ with r j p′ = −r∗

j p, � j p′ = −� j p, and γ j p′ =
γ j p, or else the reality condition would not be satisfied. It is
convenient to symmetrize these functions by writing

	 j p(ω) = 1
2 [θ j p(ω) + θ j p′ (ω)], (28)

= 1

2

[
r j p

ω − � j p + iγ j p
− r∗

j p

ω + � j p + iγ j p

]
, (29)

= i(ω + iγ j p)Im(r j p) + � j pRe(r j p)

(ω + iγ j p)2 − �2
j p

, (30)

= D′
j p(ω)

D j p(ω)
, (31)

where D′
j p(ω) and D j p(ω) are defined to be the numerator and

denominator on the right-hand side of Eq. (30), respectively.

Note that we use upper case 	 here to emphasize the sym-
metrization. In the second class of poles, � j p = 0, r j p is real,
and these resonances are purely damped. In this case,

	 j p(ω) = θ j p(ω). (32)

In the above symmetrized notation, one has

θ j (ω) =
∑

p

	 j p(ω). (33)

Depending on the accuracy required, it is possible to systemat-
ically truncate this sum to include only the least damped poles,
thereby capturing the dominant dynamics in a compact form
[61,65,124].

D. Modal-polar equations of motion

We now express the linear dynamics of Eq. (10) in terms
of individual modes and poles. If we substitute the general
eigenfunction expansions

Q(1)(r, t ) =
∑

j

q(1)
j (t )u j (r), (34)

N (1)(r, t ) =
∑

j

n(1)
j (t )u j (r), (35)

into Eq. (10), then the dynamics of q(1)
j (t ) can be analyzed by

first writing

q(1)
j (t ) =

∑
p

q(1)
j p (t ), (36)

where each term on the right-hand side represents the sym-
metrized response of one pole. The dynamics due to individual
symmetrized poles are best approached via Fourier space,
where one can write the response in pole p of mode j to the
component of the stimulus in mode j as

q(1)
j p (ω) = 	 j p(ω)n(1)

j (ω), (37)

or, equivalently from Eq. (31),

D j p(ω)q(1)
j p (ω) = D′

j p(ω)n(1)
j (ω). (38)

Equation (37) can be inverse transformed to the time do-
main. Noting that a time derivative corresponds to a factor of
−iω in Fourier space, this leads to the ordinary differential
equation

D j p(t )q(1)
j p (t ) = D′

j p(t )n(1)
j (t ). (39)

When � j p �= 0,

D j p(t ) =
(

d

dt
+ γ j p

)2

+ �2
j p, (40)

D′
j p(t ) = Im(r j p)

(
d

dt
+ γ j p

)
− Re(r j p)� j p. (41)

When � j p = 0, the corresponding expressions are

D j p(t ) = d

dt
+ γ j p, (42)

D′
j p(t ) = −ir j p. (43)

The above results express the dynamics of q(1)
j p in terms of

n(1)
j and its time derivative. In particular, Eq. (39) describes
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how external inputs drive resonant activity that is “broadcast”
across the brain in the corresponding spatial mode u j (r).
Arriving at other locations, this activity drives neurons and
is thus “read out” through its effects on their dynamics. A
coordinate-space version of this picture formed the basis of a
hybrid spiking neuron-NFT method proposed to speed large-
scale spiking neuron computations [98].

Solutions of Eq. (38) can be summed over p to obtain
q(1)

j (t ) and then the solution of Eq. (10) via Eq. (34). Explic-
itly,

Q(1)(r, t ) =
∑

j

u j (r)
∑

p

q(1)
j p (t ), (44)

From Eqs. (36) and (37) we see that the right-hand side of
Eq. (44) depends only on the uj , θ j , and n(1)

j (t ), in accord with
eigenmodes being independent of one another in the linear
regime.

The sums in Eq. (44) can be systematically truncated to
retain however many of the largest terms are relevant to a
given problem, thereby providing a discrete, compact rep-
resentation. We discuss how to estimate the factors on the
right-hand side from data in Sec. VII.

IV. NONLINEAR TERMS AND DISCRETE
SPECTRAL NETWORK

We now turn to the nonlinear dynamics of Eq. (11), into
which we substitute Eq. (34) and the expression

Q(2)(r, t ) =
∑

k

q(2)
k (t )uk (r), (45)

such that the solution Eq. (11) can be determined to second
order in the perturbation N (1). This yields

(Dt + Dr )
∑

k

q(2)
k (t )uk (r)

= a
∑
lm

ul (r)um(r)q(1)
l (t )q(1)

m (t ), (46)

which expresses the dynamics of q(2)
k in terms of the set of

q(1)
m , thereby establishing a discrete network of interactions.

If we invoke Eq. (14), multiply both sides of Eq. (46) by
u j (r), and integrate the result over all r to project out the
contribution to mode j, then we find(

Dt + K2
j

)
q(2)

j (t ) = a
∑
lm

b jlmq(1)
l (t )q(1)

m (t ), (47)

b jlm =
∫

u j (r)ul (r)um(r), (48)

where the coupling coefficients bjlm are analogous to the
Clebsch-Gordan coefficients from quantum mechanics, and
are discussed further below [126,133]. Equation (47) ex-
presses what is termed three-wave coupling in nonlinear
plasma theory and nonlinear optics [70,72,134–136]—modes
l and m couple nonlinearly to drive mode j, provided b jlm �=
0.

The operator on the left-hand side of Eq. (11) is identical
to the one on the left-hand side of Eq. (10). Hence, the same

FIG. 1. Three-wave coalescence processes in frames (a–c), and
decay processes in frames (d–f), all of which involve the spatial
overlap factor bjlm.

steps as in Sec. III yield the polar expansion

D j p(t )q(2)
j p (t ) = a

∑
lm

b jlmD′
j p(t )

[
q(1)

l (t )q(1)
m (t )

]
, (49)

which describes the evolution of the contribution of resonance
p to the second-order part of the amplitude of mode j. The
nonlinear drive in the square brackets on the right-hand side
can, of course, be decomposed into polar contributions via
Eqs. (36) and (39), thereby delivering a nonlinear coupling
equation for the excitation of various modal resonances. Equa-
tion (49) governs mode-mode interactions and, along with
Eq. (47), is one of the key findings of the present paper.

A number of further aspects of Eq. (49) are worth com-
menting on:

(i) This formulation neatly separates spatial aspects from
temporal ones.

(ii) The spatial overlap integral b jlm does not depend on
the second-order dynamical process involved, but expresses
the coefficient of u j (r) in the eigenfunction decomposition
of the product ul (r)um(r) and is symmetric in all its sub-
scripts. It thus arises in any of the three-mode coalescence and
decay processes seen in Fig. 1, which are discussed further
below and are related by crossing symmetries [137]. Not all
such coefficients are nonzero: in 1D or 2D planar geometries,
the eigenfunctions are plane waves and this factor is only
nonzero if the interaction conserves linear momentum; in the
2D spherical case, the eigenfunctions are spherical harmonics
and angular momentum conservation implies that the overlap
integral is only nonzero for certain combinations of the three
modes involved [126,129,133]; and, in the general case, coef-
ficients where characteristic wave numbers Kj do not satisfy
similar relations will tend to be small for similar reasons.
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(iii) The operators D j p and D′
j p do not change the frequen-

cies of the quantities they operate on because they simply
become multiplicative factors in Fourier space. Hence, the
Fourier transform of Eq. (49) is of the form

q(2)
j p (ω) = a	 j p(ω)

∑
lm

b jlm

∫
q(1)

l (ω − ω′)q(1)
m (ω′)

dω′

2π
,

(50)

where we recall Eq. (31). Equation (50) thus describes the
three-wave coalescence shown in Fig. 1(a), in which oscil-
lations in modes l and m interact to excite mode j. The
variables ω − ω′ and ω′ could equally well be exchanged,
which expresses the symmetry between these modes seen in
Fig. 1. Both amplitude and phase coupling are included via the
complex amplitudes in Eq. (50), thereby providing a system-
atic way to treat the wide variety of wave-wave interactions
mentioned in the Introduction. The structure of this equation
implies that nonlinear coalescence will be strongest when the
coalescing waves are both on-resonance.

(iv) The reality condition implies that every Fourier com-
ponent at ω is associated with a complex conjugate term at
−ω. Hence, all the processes illustrated in Fig. 1 are also
encompassed by variants of Eq. (49) obtained by permuting
the subscripts.

(v) Results of the type seen in Eqs. (49)–(52) are com-
monly found in nonlinear plasma theory and nonlinear optics.
Another perspective is obtained by considering Eq. (50) and
noting that resonances select out narrow-band responses on
the right-hand side. If we then approximate the two factors
of q(1) on the right-hand side of Eq. (49) as monochromatic
sinusoidal waves, then their product contains frequencies only
at their sum and difference frequencies, as has been seen in
steady-state visual evoked responses in experiment [85] and
NFT calculations [86,87].

Polar expansion of the integrand in Eq. (50) yields

q(2)
j p (ω) = a	 j p(ω)

∑
lm

b jlm

∑
sv

×
∫

rls

ω − ω′ − �ls + iγls

rmv

ω′ − �mv + iγmv

×n(1)
l (ω − ω′)n(1)

m (ω′)
dω′

2π
, (51)

= a	 j p(ω)
∑
lm

b jlm

∑
sv

× −irlsrmv

ω − (�ls + �mv ) + i(γls + γmv )

× n(1)
l (ω − �mv + iγmv )n(1)

m (�mv + iγmv ), (52)

where we have obtained Eq. (52) from Eq. (51) via the Cauchy
residue theorem after integration along the contour C in the
complex-ω′ plane, shown in Fig. 2, in the limit that the con-
tour radius R approaches infinity. We see that the quotient
on the right-hand side is maximal when the denominator is
minimal; i.e., when ω ≈ �ls + �mv , which is the usual con-
dition for energy conservation in the three-wave coalescence
in Fig. 1(a). The average of the right-hand side corresponds
to ω = 0 and is thus maximal in magnitude for �ls = −�mv .

FIG. 2. Contour C in the complex-ω′ plane used to obtain
Eq. (52) from Eq. (51). A pole of the integrand in Eq. (51) at ωmv =
�mv − iγmv is shown. The limit R → ∞ is taken when invoking the
Cauchy residue theorem.

In the case of random-phase inputs, which are appropriate for
spontaneous activity, the product of n(1) terms also tends to be
large for ω = 0 or ω = 2�mv , which favor rectification and
second-harmonic generation, respectively. Second-harmonic
generation is also favored by the approximately harmonic
relationship between the main corticothalamic resonances
predicted theoretically using specific equations analogous to
Eq. (1) and observed experimentally in waking states: these
are approximately zeroth, first, and second harmonics of the
alpha frequency for all the lowest modes [59]. Generation
of second harmonics of sleep-spindle waves has also been
predicted and observed experimentally [69].

When we consider that every pole is either nonoscillatory
or has a partner at an equal and opposite real frequency, we
see that there is a network of interactions between these reso-
nances. Figure 3 shows how a spectrum of external inputs n(1)

is resonantly filtered by the system transfer function of the jth
mode θ j . Together the spatially independent eigenfunctions
and the strong resonances form a spectral network whose
members interact as shown in Fig. 4. By analogy with such in-
teractions in plasmas, one expects energy to interact between
scales [134,135]. This may provide a means of systematically
communicating information between the short scales of local
processing and the long scales of global brain states, and vice
versa.

An idea of when nonlinear interactions are likely to be-
come significant can be obtained from known cases in which
second harmonic generation and other wave-wave phenomena
have been observed. These include generation of the second
harmonic of spindle waves [69] and wave-wave interactions
in steady-state evoked potential experiments [85,86]. In both
cases, the waves involved EEG amplitudes that were consider-
ably higher than most spontaneous EEG signals, but nowhere
near the extreme levels seen in epileptic seizures, for example.

V. SPECTRAL METHODS FOR NUMERICAL
SIMULATION OF STRONG NONLINEARITIES

In the linear regime, expansion in eigenfunctions pro-
vides a rapid way to evolve activity, because the undriven
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FIG. 3. Schematic resonant dynamics. (a) Magnitude of input
signal in mode j, |n(1)

j (ω)| vs ω (in units of s−1), with a white-
noise spectrum out to a cutoff frequency ωc much higher than any
significant system responses. (b) Magnitude of the temporal trans-
fer function |θ j (ω)| for mode j. (c) Resulting polar contributions
|q(1)

j p (ω)|, distinguished by line styles, with pairs indicated by the
same style.

mode evolution is exactly known, and driving can easily
be added [45,54,59]. It is possible to use modes to ex-
pand strong nonlinear interactions to higher order in the
perturbations than above, but this rapidly becomes pro-
hibitively complicated. Numerical analysis is thus demanded,
but fine simulations of large systems can still be slow.
Here we draw on methods from nonlinear plasma physics
to show how nonlinear terms can be incorporated into
a hybrid numerical method where linear dynamics is ac-

FIG. 4. Schematic of spectral network of three-wave interactions
between resonances p in modes lm to produce mode j. These cor-
respond to the types of interactions seen in Fig. 1. Each modal
resonance is indicated by a circle and arrows indicate examples of
pairs of modes that coalesce to produce a third, each case distin-
guished by a different line style. Any of these processes can be
reversed to yield a corresponding decay.

counted for exactly and nonlinear terms are treated as drives
[138].

The overall activity Q(r, t ) is a sum of contributions from
various modes and poles, so we need only consider a single
pole here, labeled j p. In this case, in the linear regime,

q(1)
j p (ω) = θ j p(ω)n(1)

j (ω), (53)

= r j p

ω − � j p + iγ j p
n(1)

j (ω), (54)

where we use the unsymmetrized form of θ j p(ω) because we
are only dealing with one pole.

If we multiply both sides of Eq. (54) by −i times the
denominator on the right-hand side and inverse Fourier trans-
form the result, then we find[

d

dt
+ i� j p + γ j p

]
q(1)

j p (t ) = −ir j pn(1)
j (t ). (55)

We now make the ansatz that

q(1)
j p (t ) = a j p(t ) exp[−i� j pt − γ j pt], (56)

where a j p(t ) is a time-varying amplitude. When the drive van-
ishes, the form of Eq. (56) is an exact solution of Eq. (55) with
constant amplitude a j p(t ), but the amplitude varies when the
drive is activated. More generally, substitution of this ansatz
into Eq. (55) yields

da j p(t )

dt
= −ir j pn(1)(t ) exp[i� j pt + γ j pt]. (57)

The need to avoid overflow due to the exponential of γ j pt
limits use of this form to short time intervals, but this suffices
for an individual timestep in a numerical integration scheme
[138].

Nonlinear effects, even if strong, can now be incorporated
by treating them as an additional drive via the expansion

Z (r, t ) =
∑

j

z j (t )u j (r), (58)

whence
daj p(t )

dt
= −ir j p

[
n(1)

j (t ) + z j (t )
]

exp[i� j pt + γ j pt]. (59)
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At each timestep, Z (r, t ) is evaluated by first computing
Q(r, t ) by summing qj p(t )u j (r) over modes and poles. The re-
sult is substituted into whatever functional form is being used
for Z (r, t ), then Eq. (18) is used to find z j (t ). In doing this, we
omit the superscript (1) on qj p(t ) because the amplitude now
includes nonlinear effects.

In nonlinear plasma physics, the above procedure has been
found to vastly speed up nonlinear simulations because the
linear dynamics are exactly known and only the nonlinear
effects and external drives need be tracked by detailed integra-
tion each timestep [138]. Typically, even in strongly nonlinear
regimes, only a few timesteps per linear oscillation are re-
quired, instead of using multiple steps to integrate oscillatory
dynamics that are already exactly known from linear theory
[138]. It is anticipated that similar improvements will be
achievable for neural field simulations, but their extent will
depend on the precise equations being solved. An additional
advantage is that the role of modes and poles is explicit in this
formulation.

VI. DIAGNOSTICS FROM MODAL-POLAR ANALYSIS

Having exhibited a compact representation of linear and
nonlinear activity and interactions, we examine some quan-
tities such as the bispectrum that can be used to detect
mode-mode interactions and others for which we can exploit
the modal-polar formulation to derive compact expressions.
Correlations between activity at different points in coordinate
space are widely used to define two-point functional con-
nectivity on the assumption that correlated activity implies
common involvement in brain function and we show how to
write these in modal-polar form [6,139]. Our above analysis
of the dynamics of Eq. (1) and how it gives rise to activity
patterns via spatially extended eigenmodes and resonances
also suggests other measures. Additionally, we show how to
express the power spectrum and spectral entropy in compact
form—both quantities that are widely used in applications.

A. Bispectrum

The insights obtained via the three-wave analysis in
Sec. IV enable us to propose diagnostics for such nonlineari-
ties. We can write Eq. (52) in the form

q(2)
j p (ω) = a	 j p(ω)

∑
lm

b jlm

∑
sv

alsmv (ω), (60)

where comparison of Eqs. (52) and (60) defines alsmv (ω). Here
the overlap integral b jlm governs coupling between spatial
eigenmodes, while alsmv (ω) expresses coupling between reso-
nances. Both these factors can be calculated once eigenmodes
and their resonant frequencies have been estimated, issues that
we discuss in Sec. VII.

Three-wave processes are widely quantified by calculating
the bispectrum [22,71,82,140,141]. In our case, the relevant
form involves the product

Bjlm(ω1 + ω2, ω1, ω2) = y∗
j (ω1 + ω2)yl (ω1)ym(ω2), (61)

where y j = q(1)
j + q(2)

j . This expression must be averaged over
multiple time intervals to separate systematically correlated
terms from random ones. Note that, because of the separation

of spatial and temporal aspects in the foregoing analysis, it
suffices to consider modal amplitudes here and temporarily
omit spatial factors.

The lowest-order term in an expansion of Eq. (61) in
n(1) contain products of three first-order terms. These can be
significant in coherently driven systems, or during impulse
responses, but average to zero under spontaneous conditions
if the drives to different modes have random relative phases.
The next terms have two factors of q(1)

j and one of q(2)
j .

Hence, Eq. (52) implies that this contribution involves the
coalescence of two waves to produce a third, where one of
the two coalescing waves is itself the result of coalescence.
(More generally, Bjlm will also involve waves that interact via
decays.) In this case, the average of Bjlm over multiple epochs
will be nonzero when the waves involved satisfy energy con-
servation and the pairwise averages of the drives are nonzero;
e.g., in the case of random-phase drive, one finds〈

n(1)
j (ω)n(1)

k (−ω)
〉 = ∣∣n(1)

j (ω)
∣∣2

δ jk, (62)

where |n(1)
j |2 is the power spectrum of the drive to mode j and

the angle brackets indicate an average over instances of phase,
or over time if ergodic.

The approximation of white noise inputs [i.e., |n2
j (ω)| =

constant] has been found to reproduce a wide range of ex-
perimental results on EEG and fMRI phenomena, including
spectra of spontaneous EEG activity in waking and sleep
states over nearly three decades in frequency, a finding that
has been tested in large cohorts of subjects using an NFT that
lies within the class described by Eq. (1) [29,30,142,143].

B. Correlation and covariance

As mentioned above, the two-point correlation function
in coordinate space is a common way to quantify functional
connectivity in the literature [11], with

C(r, r′, τ ) =
∫

[Q(r, t + τ ) − Q(0)(r)]

×[Q(r′, t ) − Q(0)(r′, t )]dt, (63)

where the integral over t selects the zero-frequency Fourier
component (i.e., the average). The value at τ = 0 is the covari-
ance, which is the most common method used in the literature
to define functional connectivity.

Expansion in eigenfunctions and application of the Wiener-
Khintchine theorem [144] then yields

C(r, r′, τ ) =
∑

jl

u j (r)ul (r′)
∫

e−iωτ q(1)
j (ω)q(1)

l (−ω)
dω

2π
,

(64)

to leading order in the perturbation. Hence,

C(r, r′, τ ) =
∑

jl

u j (r)ul (r′)

×
∫

e−iωτ θ j (ω)θl (−ω)n(1)
j (ω)n(1)

l (−ω)
dω

2π
.

(65)
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In the random-phase limit, we obtain the form

C(r, r′, τ ) =
∑

j

u j (r)u j (r′)

×
∫

e−iωτ |θ j (ω)|2∣∣n(1)
j (ω)

∣∣2 dω

2π
, (66)

which is diagonal in the mode number [i.e., the sum over l has
been done via the Kronecker delta in Eq. (62)]. Notably, the
leading terms in the correlation function involve only pairs of
first-order perturbations, so Bjlm is better suited to detection
of three-wave interactions.

Polar expansion allows the integral in Eq. (66) to be ex-
pressed as a sum. Following similar steps to those used to
obtain Eq. (52) we find

C(r, r′, τ ) ≈
∑

j

u j (r)u j (r′)
∑

sp

−ir j pr∗
js

∣∣n(1)
j (� j p)

∣∣2

� j p − � js − i(γ j p + γ js)

× exp[−γ j pτ − i� j pτ ]. (67)

This result is dominated by the most weakly damped reso-
nances with s = p, which have the strongest and longest-lived
responses [43].

C. Mode amplitudes

The mode amplitudes q j (t ) can be obtained via Eq. (18)
once the eigenfunctions are known. Unlike the measures in
the previous two subsections, this involves no time integration
or windowing. Hence, mode amplitudes are well suited to
tracking transient dynamics such as evoked responses, but
can also be Fourier transformed to calculate correlations of
amplitudes and/or phases, or the bispectrum, if desired.

The above points largely obviate the need to work
directly in coordinate space, although the resulting
spatial quantities can be obtained simply by associating
the relevant eigenmodes u j (r) with the amplitudes
q j (t ), just as for the spatial patterns of a violin
string.

D. Power spectrum and total power

The power spectrum in the mode j is

Pj (ω) = ∣∣θ j (ω)n(1)
j (ω)

∣∣2
. (68)

If the stimuli to different modes are uncorrelated on average
so that Eq. (62) applies, then the total power spectrum is

P(ω) =
∑

j

Pj (ω). (69)

We can also calculate the total power to be

Ptot =
∑

j

∫
|θ j (ω)|2∣∣n(1)

j (ω)
∣∣2 dω

2π
, (70)

≈
∑

j p

∫ |r j p|2
∣∣n(1)

j (ω)
∣∣2

(ω − � j p)2 + γ 2
j p

dω

2π
. (71)

If we change variable to z = (ω − � j p)/γ j p, then we find

Ptot =
∑

j p

|r j p|2|n(1)
j (� j p)|2
γ j p

∫
1

1 + z2

dz

2π
, (72)

=
∑

j p

|r j p|2|n(1))
j (� j p)|2

2γ j p
, (73)

=
∑

j p

Pj p, (74)

where comparison of Eqs. (73) and (74) defines Pj p, which is
the power in the pth resonance of the jth mode.

E. Spectral entropy

Spectral entropy can be used to quantify the complexity of
brain activity and has thus been widely proposed as the basis
for various measures of consciousness [145–148].

The power spectrum of a temporal signal P(ω), where ω is
the angular frequency, can be used to define a purely temporal
spectral entropy S as

S = −
∫

P(ω) ln

[
P(ω)
ω

Ptot

]
dω

2π
, (75)

where an effective bandwidth 
ω is included to make the
argument of the logarithm dimensionless, and is discussed
below in the spatiotemporal case. Here, Ptot is defined by
the analog of Eq. (70) without the modal sum. The more
complex the signal, the more structure there is in the spectrum,
and the larger the entropy, thereby underpinning a number of
proposed measures of consciousness [145–148]. Note that S
is defined without dividing by Ptot in the leading factor on the
right-hand side, so that S → 0 if P(ω) → 0 as in brain death.

Brain activity varies in both space and time and its spectral
transform is of the form

S = −
∑

j

∫
Pj (ω) ln

[
Pj (ω)
ω j p

Ptot

]
dω

2π
, (76)

where 
ω j p is an effective bandwidth and

Pj (ω) =
∑

p

|θ j p(ω)|2∣∣n(1)
j (ω)

∣∣2
, (77)

from Eqs. (33) and (68).
By substituting Eq. (26) into Eq. (77) we thus find

S = −
∑

j

∫ [∑
pq

r j p

ω − ω j p

r∗
jq

ω − ω∗
jq

∣∣n(1)
j (ω)

∣∣2

]

× ln

[

ω j p

Ptot

∑
lm

r jl

ω − ω jl

r∗
jm

ω − ω∗
jm

∣∣n(1)
j (ω)

∣∣2

]
dω

2π
, (78)

= −
∑

j

∫ [∑
pq

r j pr∗
jq

∣∣n(1)
j (ω)

∣∣2

(ω − � j p + iγ j p)(ω − � jq − iγ jq)

]

× ln

[

ω j p

Ptot

∑
lm

r jl r∗
jm

∣∣n(1)
j (ω)

∣∣2

(ω − � jl + iγ jl )(ω − � jm + iγ jm)

]

× dω

2π
. (79)

034411-11



P. A. ROBINSON PHYSICAL REVIEW E 104, 034411 (2021)

The terms in the sums in Eq. (79) are largest in magni-
tude when the denominators are smallest. This occurs when
ω = � j p or ω = � jq and the largest terms of all occur when
both these conditions are satisfied, which selects p = q in the
leading factor and, similarly l = m = p in the argument of the
logarithm. Then

S ≈ −
∑

j p

∫ |r j p|2
∣∣n(1)

j (ω)
∣∣2

(ω − � j p)2 + γ 2
j p

× ln

[

ω j p

Ptot

|r j p|2
∣∣n(1)

j (ω)
∣∣2

(ω − � j p)2 + γ 2
j p

]
dω

2π
. (80)

We evaluate the integral in Eq. (80) by dividing numerator
and denominator by γ 2

j p and changing variables to z = (ω −
� j p)/γ j p. This yields

S ≈ −
∑

j p

|r j p|2
∣∣n(1)

j (ω)
∣∣2

γ j p

∫
1

1 + z2

×
[

ln

(

ω j p|r j p|2

∣∣n(1)
j (ω)

∣∣2

Ptotγ
2
j p

)
− ln(1 + z2)

]
dz

2π
,

(81)

≈ −
∑

j p

|r j p|2
∣∣n(1)

j (� j p)
∣∣2

2γ j p
ln

[

ω j p|r j p|2

∣∣n(1)
j (� j p)

∣∣2

4Ptotγ
2
j p

]
.

(82)

= −
∑

j p

Pj p ln

[
Pj p
ω j p

2γ j pPtot

]
, (83)

where we have used Eqs. (73) and (74) in finding the final
form.

We can now determine the value of 
ω j p by considering a
case in which all the power is in one modal resonance (which
must have � j p = 0 to satisfy the reality condition). In this
case,

S = −Ptot ln(
ω j p/2γ j p). (84)

In this case, there is minimal disorder, so the entropy should
be zero. Hence, we set


ω j p = 2γ j p, (85)

whence Eq. (83) becomes

S = −
∑

j p

Pj p ln(Pj p/Ptot ). (86)

Thus, subject to the approximations made above, the modal
resonances act as separate states in determining the spatiotem-
poral spectral entropy, but noting that states with nonzero � j p

must come in pairs.
As noted above, S → 0 in cases where Ptot → 0 or where

all the power is concentrated in a single modal resonance.
When the power is spread equally over M modal resonances,

S = Ptot ln M. (87)

An immediate consequence is that S is greater for a pair of
poles with nonzero � j p than for a single pole, reflecting the

case that the latter is a simple, damped state, whereas the
former is oscillating with an extra degree of freedom.

VII. DETERMINATION OF EIGENFUNCTIONS
AND RESONANCES FROM DATA

The results in preceding sections have shown that one can
obtain compact representations of brain dynamics in terms
of a discrete spectral network of modes and poles. But one
would also like to be able to determine these from data without
assuming particular dynamic equations a priori, although it
is also possible to specify a NFT and fit its parameters to
reproduce the experimentally inferred modal resonances. Here
we briefly outline ways in which eigenmodes and their modal
decomposition can be calculated from data. This synthesizes
work done elsewhere to establish proof-of-principle, but the
references cited below have noted that more needs to be
done to refine and validate the experimental data processing
pipelines that are involved to minimize noise and artifact.
Although this remains an active area of investigation, ex-
perimental limitations will likely be overcome in due course
and they in no way negate the physical existence of modes,
resonances, and the resulting spectral network. The purpose of
the present section is to show how the relevant quantities can
be determined, in principle, not to resolve the experimental
issues involved in doing so. We refer in detail below to Fig. 5,
which summarizes the main steps, more details of which can
be found in the references cited.

A. Eigenfunctions

We have seen above that the eigenfunctions u j (r) are the
same for the activity, transfer function, correlation function,
and covariance. Of these, the covariance is easiest to de-
termine by averaging equal-time (τ = 0) spontaneous EEG,
magnetoencephalographic (MEG), or fMRI measurements
over a period of time, but correlations can also be measured
using EEG or MEG, which are sufficiently fast to resolve time
delays τ . If the covariance is finely discretized in coordinate
space, then it can be approximately written in matrix form,
with rows and columns indexed by position, and integrals
becoming sums. It is essential to discretize finely enough
to resolve all the physical features that affect the dynamics,
to satisfy the Courant condition if wavelike dynamics are
involved [127], and to verify that the results are not sensitive
to the discretization chosen—use of nodes from a published
discrete structural connectome will not suffice in general.

The eigenvectors of the covariance matrix can be obtained
by eigenfunction decomposition [8,12,49,50,55,56,127].
These results can then be interpreted as finely discretized
approximations to the continuous eigenfunctions of the
original system, including any hidden dynamics that is
at scales, or in structures, that are not observed directly.
Critically, one must not treat the spatial discretization as
being in any way fundamental, or forming an actual brain
network. On the contrary, only those features that do not
depend on the discretization or thresholding can possibly be
properties of the brain itself.

Modeling of specific cases of corticothalamic dynam-
ics can also yield approximate eigenfunctions. For example,
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FIG. 5. Schematic of steps involved in estimating eigenfunc-
tions, transfer functions, resonant frequencies, dynamic equations,
and mode amplitudes from data. Input data are indicated in car-
touches, and results in solid rectangles, linked by the indicated
processing steps. Detailed discussion is found in the text.

solution of the Helmholtz equation [which is obtained by
setting Dr = ∇2 in Eq. (14)] on the cortical surface has been
used to obtain approximate eigenfunctions within neural field
theory. These prove to be very similar to those found from
the covariance and from structural connectivity [50] because
the Green function of the resulting NFT equation is very close
in form to the distribution of ranges of cortical white matter
axons [1,109].

As mentioned in Sec. III A, a number of authors have
spectrally factorized statistical covariance matrices to express
them compactly in terms of eigenvectors. However, in those
cases, these eigenvectors have not been related to the contin-
uous eigenmodes of the underlying dynamics. Eigenvectors
have also been widely used as spatial patterns in statistical
approaches such as independent component analysis to ob-
tain compact representations of time series, again without
relation to dynamics [38]. We reiterate that dynamical eigen-
modes and their resonances are privileged over statistical and
phenomenological patterns by being fundamental dynamic
entities of the brain at macroscopic scales, which means that

they exist independently of investigator choices and data anal-
ysis methods.

B. Transfer function

It has been established that the diagonal form Eq. (59)
of the correlation function of background activity can be
spectrally factorized in Fourier space to yield the transfer
function, so long as relevant time delays are resolved by
the measurements [8,56,149–152]; this procedure yields the
eigenfunctions and their eigenvalues as byproducts, as sum-
marized in Fig. 5. Alternatively, if the measurements are
too slow to resolve the temporal structure of the correlation
function, then the spatial covariance can still be spectrally fac-
torized to yield the u j (r) and their corresponding eigenvalues.

Once one has estimated the u j (r), one can exploit the fact
that the transfer function is by definition the evoked response
at a measurement point r to a δ-function stimulus at a stimu-
lated point r′ [45,123,131]. Hence, in Eq. (20) we find [12,45]

θ j (t ) = 1

u j (r′)

∫
T (r, r′, t )u j (r)dr. (88)

All modes are excited by an impulse at r′ except those that
are zero at that point, just as plucking a violin string excites
a spectrum of modes, not a pure tone. Evoked responses are
routinely measured in electrophysiological studies of cogni-
tive processes [58,153].

Eigenmode methods allow us to efficiently approximate the
integral in Eq. (88) if we restrict attention to a finite trunca-
tion to the lowest L modes, choose a stimulus point r′ and
measurement points rk with k = 1, . . . , L. If the modes are
known from the analysis above, then a δ-function stimulus at
r′ evokes responses Q(rk, t ) at the rk , which can be measured
using a fast method such as EEG. If these are in the linear
regime, then we can write

Q(rk, t ) = T (rk, r′, t ), (89)

≈
L∑

j=1

bk jθ j (t ), (90)

bk j = u j (rk )u j (r′). (91)

As noted in Refs. [12,56], Eq. (90) and its solution can be
written in matrix form as

Q(t ) = B	̃(t ), (92)

	̃(t ) = B−1Q(t ), (93)

where Q(t ) and 	̃(t ) [not to be confused with 	 j p(ω) in Eq.
(32)] are L-element column vectors of Q(rk, t ) and θ j (t ) and
the elements of the L × L matrix B are the bk j . The resulting
θ j (t ) can then be substituted into Eq. (20) to obtain the transfer
function, as shown in Fig. 5. Because only L observation
points are required, spatially coarse-grained methods such as
EEG or MEG can be used to determine these temporal aspects
of spatially fine-grained modes determined by fMRI.
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C. Estimation of poles

Once one has modal time series θ j (t ), standard methods
of system identification from control theory can be used to
calculate the polar expansion in Eq. (26) for each mode
[61–64]. This involves fitting the dynamics implied by the
expansion to the observed time series (e.g., of an evoked
response) to estimate the r j p and ω j p, as indicated in Fig. 5.
This usually yields a polar expansion in Laplace space, which
can be re-expressed in Fourier form. It has also been pointed
out that this feature plausibly explains why approaches such
as low-dimensional dynamic causal modeling can capture
many features of dynamics [48,139,154]. Likewise, coarse-
grained approaches may capture the dynamics of the dominant
low-order modes through optimization without invoking the
modes directly; this may lie at the root of the success of such
approaches in some contexts [48,155–157].

As noted in Sec. VI C, it is often useful to have a com-
pact representation of general (i.e., arbitrary) brain activity to
simplify interpretation and comparison with theoretical pre-
dictions. In this case, one can use the u j (r) to compute the
relevant coefficients as functions of time by replacing g(r) by
Q(r, t ) in Eq. (18). The integral can be performed using only
a few points by means of the same methods as in Sec. VII B
and is indicated by the column headed “General Activity” on
the right-hand side of Fig. 5, with the above ERP expansion
being one particular case.

VIII. SUMMARY AND DISCUSSION

This paper has demonstrated how to express brain dy-
namics and functional connectivity in terms of their intrinsic
spatial eigenfunctions and frequency resonances, without re-
lying on the phenomenological and statistical patterns and
analyses that are extensively used in the literature. By adopt-
ing approaches from neural field theory (NFT), nonlinear
physics, and control-systems engineering, this achieves the
long-sought goal of a compact, discrete representation of
macroscale dynamics and functional connectivity that com-
plements descriptions of local neural activity in coordinate
space.

The main results are:
(i) A broad class of macroscopic brain dynamics, embodied

in Eq. (1), has been analyzed via a perturbation expansion in
orders of input from external stimuli. These equations are suf-
ficiently general to include most types used in NFTs of brain
dynamics and connectivity and provide a bridge between NFT
and experimental observations of patterns and resonances.
Moreover, they do so in a way that relates directly to causal
mechanisms.

(ii) Linear terms in the above expansion yield the system
transfer function and its discrete expansion in terms of eigen-
modes and their frequency resonances, by means of spectral
decomposition and control-systems techniques. Eigenmode
discreteness arises from boundary conditions on the finite
brain, whereas resonances arise chiefly from local dynamics.
Systematic truncation of the resulting series of terms is possi-
ble, retaining leading terms that dominate the dynamics.

Of all possible spatial patterns, eigenmodes that arise from
dynamics are fundamental to the system and thus privileged

over statistical and phenomenological constructs that are com-
mon in the literature. Moreover, their analysis can proceed
via standard methods, rather than ones that assume the reality
of artificially decimated “networks” or graphs that depend on
discretization, thresholding, and other investigator-dependent
choices.

(iii) Each mode can have multiple resonances and each
modal resonance gives rise to an ordinary differential equation
for its dynamics in the time domain, as in Eq. (39).

(iv) Second-order terms in the perturbation expansion give
rise to three-wave interactions between modal resonances that
correspond to coalescences and decays, as in other branches
of physics. These couple the linearly independent eigenmodes
into a discrete network of interacting entities, allowing trans-
fer of activity between scales. The modal-polar representation
allows frequency convolutions that arise in the analysis to
be evaluated analytically, as in Eq. (52). Spatial interactions
are governed by integrals over products of three eigenmodes
that are analogous to Clebsch-Gordan coefficients in quantum
theory.

This formulation provides the tools required to quantita-
tively address wave-wave interactions, amplitude and phase
correlations, and other phenomena that are widely observed
in the brain (see Introduction). Likewise, they are appro-
priate to analyze situations pertaining to the communication
through coherence (CTC) hypothesis, in which it was argued
that in-phase oscillations can facilitate communication be-
tween distant neurons [94]. This hypothesis was originally
advanced for firing of individual neurons at the microscale,
but the present work shows that analogous population-level
effects may enhance firing at the macroscale through activity
correlated via oscillations in eigenmodes; close correlations
between intracellular firing, local field potentials, and EEG
recordings have long been established, spanning a wide range
of spatial scales [158].

(v) Together with the above results, spectral methods from
nonlinear plasma theory open the possibility of fast simula-
tions of even strong nonlinearities by separating linear from
nonlinear terms and treating the latter as driving the linear part
of the system, whose dynamics are known. This extends the
utility of eigenmode analysis from the linear to the nonlinear
regime of brain dynamics, which covers strongly driven cases
and epileptic seizures, for example.

(vi) Potential diagnostics of functional interactions and
connectivity were discussed in the framework of modal-polar
interactions. The bispectrum is well suited to detecting three-
wave interactions, while correlations and covariances enable
calculation of eigenmodes (see below). Spatial modes and
their individual resonance amplitudes in the time domain are
perhaps the most generally useful quantities, because they
do not require the temporal averaging or windowing that is
implicit in spectral measures. They can thus be applied to
transient phenomena such as evoked responses. The power
spectrum and spatiotemporal spectral entropy were also cal-
culated in compact form in terms of modal resonances.

(vii) Because eigenmodes and resonances exist even if the
equations governing them are not known, the above results
are more general than the specific class of systems embodied
in Eq. (1) and analyzed in detail. The results suggest routes
by which modal-polar structure can be determined directly
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from data by spectral factorization and system-identification
methods, as summarized in Fig. 5. Most steps have already
been demonstrated in the brain, on synthetic data, and/or in
engineering contexts, but some remain to be implemented
experimentally in neural systems. It is hoped that the present
work will stimulate efforts in this direction by highlighting the
utility of obtaining eigenmodes and their resonances in this
way.

Turning from the above specific results, it is worth dis-
cussing some more general features and implications of the
analysis. Most significantly, each mode has a unique spatial
structure and each resonance has dynamics that correspond
to a data filter that can implement functions such as atten-
tion and prediction [65]. Cognitive roles for prominent brain
resonances (often called rhythms in the electrophysiological
literature) have been speculated upon since their discovery
over 90 years ago [57], given significant evidence of long dis-
tance correlations in signal-processing pathways [42,58,89].
Notable among theories of this type is the CTC hypothesis
mentioned above [94].

When one considers that each mode has its own spatial
structure and resonances, plus three-wave interactions with
other modes, it is plausible that they serve as spatiotemporal
communication channels. In this picture, local neuronal ac-
tivity would drive eigenmodes of neural fields, which would
then influence the firing of distant neurons [98]. Such channels
would connect most strongly between spatial antinodes of the
modes in question, especially between modes with large spa-
tial coupling as described by the coefficient b jlm in Eq. (48).
The filtering characteristics of resonances would imply that
these channels could also carry out information processing
tasks such as prediction and attention via gain control [65].

The nonlinear processes that underlie three-wave interac-
tions include the nonlinear firing rate responses that would
lead to enhanced neural firing at the peak of each oscillation
(especially at spatial antinodes), just as required in CTC and
seen in the theta-gamma and other wave-wave interactions
mentioned in the Introduction. Thus, the present analysis pro-
vides the basis to formulate and test macroscopic versions
of CTC and related proposals quantitatively in realistic brain
geometries using physiologically based neural field equations.
Moreover, analysis of three-wave cascades will illuminate
transfer of activity from local processes at small scales up
to large scales at which global “broadcast” of relatively few
pieces of information to other locations occurs. Such a sce-
nario provides a new perspective on the complementary issues
of segregation and integration that may help to illuminate
issues relating to consciousness. Notably, the data-filter prop-
erties associated with each modal resonance imply that some
modal processing of stimuli occurs even during sleep, via
spindle and slow-wave resonances. gamma-band resonances
in visual cortex may also be relevant in this context.

The results obtained here underline the need to switch
between coordinate-space and spectral representations as re-

quired by the problem at hand, just as in quantum physics,
where particle and wave representations are each best suited
to particular classes of problems. Here, large scale activity and
structure are shown to be most easily represented in spectral
form. However, localized inputs and readouts of modal activ-
ity occur in coordinate space.

The advantages and necessity of a physically based ap-
proach via standard mathematical techniques are apparent
from the insights obtained above. These approaches allow a
shift from phenomenological and statistical analyses to quan-
titative analysis in terms of causal mechanisms in a framework
that unifies and interrelates multiple phenomena. To make
greater use of the information contained in data one must
thus go beyond patterns and statistics that are based on sys-
tem decimation via artificial discretizations and thresholding,
for example. However, given the widespread use of methods
based on graph theory and resting state networks, in particular,
one might ask what validity such approaches have, especially
given the inability to quantitatively compare results between
them [12,19,22,23,34]. Certainly, within a given protocol, it
is often possible to reliably detect case-control differences
between conditions and subjects, and this can yield useful
outcomes. However, it is not possible to make more than qual-
itative connections to mechanisms and the strong influences
of investigator choices (e.g., thresholding, discretization, and
processing steps) and resulting artifacts and selection effects
must throw such interpretations into significant doubt.

Future directions would usefully include experimental im-
plementation and verification of the steps outlined in Sec. VII
for determination of modes and poles directly from data,
which would also enable new tests of theoretical models of
dynamics. The targets provided for measurement motivate
specific improvements in artifact removal and noise reduction
in fMRI, EEG, or MEG measurements. Data-driven modes
have the advantage that they implicitly incorporate nonuni-
formities and aspects of dynamics that are not included in
models. Application to quantitative analysis of CTC would
be highly desirable and would shed light on the relationship
between large-scale activity embodied in modes and local
signal processing, which is more naturally considered in co-
ordinate space. Other questions that would bear examination
would include whether zeros and antinodes of modes coincide
with specific functional areas of the brain or their boundaries,
or are otherwise related to anatomical structure, as has been
suggested for some classes of patterns [35].
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