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Similarity of extremely rare nonequilibrium processes to equilibrium processes
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For system coupled to heat baths, typical nonequilibrated processes, e.g., induced by varying an external
parameter without waiting for equilibration in between, are very different from the corresponding equilib-
rium infinitely slow processes. Nevertheless, there are connections between equilibrium and nonequilibrated
behaviors, e.g., the theorems of Jarzynski and Crooks, which relate the distribution P(W ) of nonequilibrium
work to the free energy differences �F . Here we study the naturally arising question, whether those relevant
but rare trajectories, which exhibit these work values, show a higher degree of similarity to equilibrium. For
convenience, we have chosen a simple model of RNA secondary structures (or single-stranded DNA), here
modeling a medium-size hairpin structure, under influence of a varying external force. This allows us to measure
the work W during the resulting fast unfolding and refolding processes within Monte Carlo simulations, i.e.,
in nonequilibrium. Also we sample numerically efficiently directly in exact equilibrium, for comparison. Using
a sophisticated large-deviation algorithm, we are able to measure work distributions with high precision down
to probabilities as small as 10−46, enabling us to verify the Crooks and Jarzynski theorems. Furthermore, we
analyze force-extension curves and the configurations of the secondary structures during unfolding and refolding
for typical equilibrium processes and nonequilibrated processes. We find that the nonequilibrated processes
where the work values are close to those which are most relevant for applying Crooks and Jarzynski theorems,
respectively, but which occur with exponential small probabilities, are most and quite similar to the equilibrium
processes.
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I. INTRODUCTION

In statistical physics, the modeling of equilibrium systems
is well understood [1]. Nevertheless, due to open system
boundaries, or system driving or the lack of infinite time to
perform experiments or simulations, most real and simulated
model systems are constantly in nonequilibrium. The theoret-
ical treatment of nonequilbrium systems is more challenging
as compared to the equilibrium case. Still, relations between
equilibrium and nonequilibrium appear for many occasions,
like aging in glassy systems [2], or for the Mpemba effect
where sometimes hot water cools faster than cold water [3]. A
particularly illuminating bridge between both worlds is pro-
vided by the theorems of Jarzynski [4] and Crooks [5]. There
and in the present work, systems are considered which are
in contact to a heat bath, thus subject to thermal fluctuations,
i.e., the systems have a stochastic nature. The dynamics of
the systems may be deterministic or stochastic as well. Also,
the systems are subject to a change of an external parameter.
Typically the considered speed of the parameter change is fast
as compared to the system equilibration times. For this reason
the such considered processes are termed nonequilibrated.
Note that the parameter changes usually lead to physical
work performed on the system. The stochastic nature of the
system results in a distribution P(W ) of work W . Since any
parameter change may be reserved, there exist a correspond-
ing distribution Prev(W ) for the reverse process. For a system
coupled to a heat bath, the Crooks theorem reads P(W ) =

Prev(−W ) exp(−(�F − W )/T ). This can be used to recon-
struct the true free energy difference �F between initial and
final state, because P(W ) and Prev(−W ) cross at W = �F .
Analogously the Jarzynski equation reads 〈e−W/T 〉 = e−�F/T .
These and related theorems have led to many applications and
extensions relating equilibrium and nonequilibrium processes
in a field called stochastic thermodynamics [6–13]. One fruit-
ful field of applications is biophysics, where these theorems
are used to measure properties of small molecules like RNA.

One major goal of stochastic thermodynamics is to extract
equilibrium information from nonequilibrium measurements
or simulations [14]. The fluctuation theorems concern spe-
cific measurable scalar quantities like work [4,5,15], entropy
[16–24], or a quantity measuring the volume of the phase
space [25]. However, beyond statistics of particular scalar
quantities, the fluctuation theorems do not provide informa-
tion about the behavior along a corresponding equilibrated
trajectory, i.e., with respect to arbitrary measurable quantities
or possibly full configurations. Here “equilibrated” means
either that between measurements, e.g., recording of a con-
figuration, the system is given enough time to relax. On the
other hand, as is the case here, a direct equilibrium sample
may technically be possible.

Now, standard derivations of the fluctuations theorems in-
volve only terms which include energies and probabilities
of the initial and final state. What may we expect when we
analyze the full trajectory of a nonequilibrated process? First,
a typical, i.e., highly probable sample of a nonequilibrated
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trajectory will look very different from a corresponding tra-
jectory sampled during an equilibrium process. Second, it is
known that when reweighting trajectories suitably in a time-
dependent way, they also carry some information about the
intermediate equilibrium states, at the corresponding interme-
diate values of the control parameter [24,26,27]. This allows
for the reconstruction of full free-energy profiles beyond ini-
tial and final state. Third, it is somehow intuitive to believe
that the rare nonequilibrated processes which contribute most
to the estimation of �F are in a comprehensive way, without
reweighting, similar or even equal to the corresponding equi-
librium processes. For the case of the Crooks and Jarzynski
theorems, the statistics of the work distributions are most rele-
vant for particular work values W = �F and W = W ∗

J , where
the latter one is the value where the integrand e−W/T P(W )
exhibits a maximum. Note that these values are highly im-
probable to occur for large system sizes. Thus, rare events
may play a major role in the understanding of nonequilibrated
or nonequilibrium processes in general and in the application
of work theorems.

This motivates our present work: We investigate in a com-
prehensive way the dynamics of nonequilibrated processes
for a system coupled to a heat bath. We consider a large
range of nonequilibrium work values W , the typical regions as
well as those for rare untypical values of W . Then we select
trajectories according their value of W , typical and rare ones,
and compare with the equilibrium process behavior.

For this purpose we want to study a model which exhibits
at low temperatures a complex low-temperature phase with a
nontrivial energy landscape, possibly allowing for quenched-
disorder ensembles. This leads to slow glasslike dynamics
which makes it hard to reach equilibrium for such a model.
Furthermore, the model should include the possibility of per-
forming external work in nonequilibrium and, at the same
time, it should allow for an efficient sampling of configura-
tions in equilibrium, for comparison. A natural candidate and
often used for fundamental studies in statistical mechanics is
the Ising model [28], but, unfortunately, it does not allow for
exact sampling, unless the behavior of the model is too sim-
ple. Therefore, we have chosen another model which meets
the above criteria, i.e., the unfolding and refolding of RNA
secondary structures subject to an external force [29]. The
former one, denoted as forward process, involves stretching
an RNA by subjecting it to an external force f which is
increased from starting at zero. For the latter one, denoted as
reverse process, one starts with a large force and reduces it to
zero. For small RNAs consisting of few dozens of bases, the
Crooks theorem has been confirmed in experiments [30,31]
and simulations [15,32] for slow unfolding and refolding pro-
cesses. For such small RNA and slow processes, the resulting
work distributions are rather broad and the distribution for
forward and reverse processes are close to each other such
that they cross at high-probability values which are easily
accessible. For larger RNA molecules, the crossing points will
move to smaller probabilities, such that the crossing can not
be observed in experiments or standard simulations. To go
beyond such limiting system sizes, we applied for our study
sophisticated large-deviation algorithms [33,34]. This allows
one to measure probability distributions numerically down
to extremely small probabilities. These algorithms have also

been applied successfully to nonequilibrium processes like
the transition-path sampling approach to study protein folding
[35,36], population-based approaches to study asymmetric
exclusion processes [37,38] or Markov-chain Monte Carlo
(MC) methods to investigate, e.g., traffic models [39] and
the Kardar-Parisi-Zhang equation [40]. In particular such an
algorithm has also been used to measure with high precision
the work distribution of an Ising model subject to a varying
external field [41], providing the first confirmation of the
Jarzynski and Crooks theorems for a large system with many
thousands of particles.

Thus, here we will provide similar evidence for RNA sec-
ondary structure unfolding and refolding by applying such
a MC rare-event algorithm. The MC algorithm works in the
space of the random numbers which drives the underlying
dynamics and applies biases which direct the MC sampling to
possibly rare values of the work. This allows us to obtain the
work distributions of intermediate-sized RNAs down to prob-
abilities as small as 10−46. Furthermore, we will analyze the
temporal structure of the nonequilibrated processes, selected
by the occurring work values W . We will compare this to the
corresponding equilibrium process, which can be sampled ex-
actly [42–44] and efficiently, i.e., in polynomial time, for RNA
secondary structures without pseudoknots. Beyond confirm-
ing the Jarzynski and Crooks theorems we find in particular
that the nonequilibrated processes can be very similar in their
development to the equilibrium ones. The highest similarity is
reached for processes which exhibit a work value W between
the values W = �F and W = W ∗

J which are most relevant for
the Crooks and and the Jarzynski theorem, respectively.

We will next present our model and the used simulation
methods. Then we show our results and finish by a discussion.

II. MODEL

Each RNA molecule is a linear chain R = (ri)i=1,...,L of
bases, also called residues, with ri ∈ {A, C, G, U} and L is the
length of the sequence. For a given sequence R of bases, a
secondary structure is a set of pairs of bases, such that for
the present simple model only complementary (Watson-Crick)
base pairs A-U and C-G are allowed. This can be described
by a set S of pairs (i, j) (with the convention 1 � i < j �
L), meaning that bases ri and r j are paired. For convenience,
we also use s(i) = j if i is paired to j, which implies s( j) =
i, and s(i) = 0 if i is not paired. Our restriction to Watson-
Crick pairs means for A-U either ri = A and r j = U or vice
versa, correspondingly for the C-G pair. Note that the chain
of residues corresponds to a one-dimensional system. Since
pairs between arbitrary strutures are allowed, the secondary
structure model is in some sense a mean-field model.

Still the model describes the behavior of real three-
dimensional molecules, which leads, in a simplified way,
to the following two additional restrictions: (1) We exclude
so-called pseudoknots, which means, for any (i, j), (i′, j′) ∈
S with i < i′, either i < j < i′ < j′ or i < i′ < j′ < j must
hold. In the first case, pair (i, j) is located entirely before
(i′, j′) in the sequence. In the second case, pair (i′, j′) is called
to be inside of (i, j). If a bond is not inside of any other bonds,
we say it occurs on the first level, i.e., it is the topmost pair of
the structure enclosing all other pairs. Neglecting pseudoknots
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n(S)

FIG. 1. An example for a RNA secondary structure with one
globule and a line indicating the extension n(S ) of the folded RNA.
Circles denote bases, thick black lines links between consecutive
bases, and thin blue lines hydrogen bonds between complementary
bases.

follows the notion of them being more an element of the
tertiary structure [45]. It also means that it is always possible
to draw the molecule as a single line and connect all pairs by
lines such that no intersections occur. (2) Due to the bending
rigidity of the molecule, between two paired bases a minimum
distance is required, i.e., | j − i| > s.

Every secondary structure S is assigned a certain energy
E (S ), where the dependency on the sequence Ris not explic-
itly indicated. This energy is defined by assigning each pair
(i, j) a certain energy e(ri, r j ) depending only on the kind of
bases.

Furthermore there is a contribution arising from the exter-
nal force f which stretches the chain to its extensionn = n(S ),
as introduced previously [29]. The extension of the structure
is the part of the RNA which is outside any paired base,
plus length 2 for any paired base on the first level. Hence,
any globule in the chain contributes two length units. This is
illustrated in Fig. 1. This interaction with the external force f
gives rise to an energy contribution − f × n.

The total energy for the most basic model is the sum over
all pairs plus the interaction with the external force

E (S ) =
∑

(i, j)∈S
e(ri, r j ) − n(S ) f . (1)

By choosing e(r, r′) = +∞ for noncomplementary bases r
and r′, pairings of this kind are suppressed. Here we use the
most simple energy model, i.e., e(r, r′) = −1 for complemen-
tary bases A-U and C-G. Note that in this simple form our
model can also be seen as a model for single-stranded DNA.
Note that the purpose of this study is a fundamental statis-
tical mechanics one, to investigate the relationship between
equilibrium and rare nonequilibrium behavior. Therefore, the
model we use is at the same time simple enough but also
sophisticated enough. When on the other hand someone aims
at modeling real RNA as realistically as possible, one would
have to use an even more comprehensive model. For such
cases, stacking energies have to be included and also, when
it comes to free energy calculations, entropic effects related
to steric constraints that are originating from different types
of loops and multiloops. Software packages like mfold [46],
Sfold [47], RNAstructure [48], or the Vienna RNA Package [44]
exist for such detailed modeling with a biophysics focus.

III. ALGORITHMS

In the following, we discuss the algorithms we have used.
First, we show how RNA secondary structures can be sampled
directly in equilibrium. For the nonequilibrium folding and
unfolding simulations, our dynamics consist of single base
pair steps performed within Markov chain MC simulations of
RNA structures, as presented in the second subsection. Thus,
one time unit of the simulation is one MC sweep. To study
rare unfolding and folding trajectories, we used a second type
of MC simulations, which is wrapped around the RNA MC
simulations, as presented in the third subsection.

A. Sampling secondary structures

For RNA secondary structures it is possible to sample them
directly in equilibrium for finite temperatures T in time O(L3).
We used an extension of the approach for the zero-force case
[42]. For this purpose, one needs also to calculate partition
functions for some subsequences, which is possible using
dynamic programming in polynomial time. These approaches
[29,49] are also extensions of the zero-force case method [50].

The partition function Zi, j (i � j) for subsequence ri . . . r j

at inverse temperature β = 1/T without external force and
without length constraints, obeying the minimum distance s
between two paired bases, is given by

Zi, j = 1 for j − i � s,

Zi, j = Zi, j−1

+
j−s−1∑

k=i

Zi,k−1e−βe(rk ,r j )Zk+1, j−1 else. (2)

All O(L2) values of Zi, j can be conveniently calculated [50]
by a dynamic programming approach, i.e., starting with Zi,i

and continuing with increasing values of j − i. Since most
contributions involve a sum of O(L) terms, the algorithm has
a running time of O(L3).

In order to include the interaction with the external force,
one needs additionally the partition function Q1, j,n of the
subsequence r1, . . . , r j such that the extension is fixed to the
value n, with n � j. We include the fixed index 1 for matching
with the notation for Zi, j ,

Our approach follows the lines of corresponding methods
[29,49] for calculation of partition functions and ground state
energies of RNA secondary structures subject to an external
force. The partition function reads

Q1,1,1 = 1,

Q1, j,1 = 0 for j > 1,

Q1,2,2 = Z1,2,

Q1, j,2 = 0 for 2 < j � s + 1,

Q1, j,2 = e−βe(r1,r j )Z2, j−1 for j > s + 1,

Q1, j,n = Q1, j−1,n−1

+
j−s−1∑
k=n−1

Q1,k−1,n−2e−βe(rk ,r j )Zk+1, j−1

for n > 2, j � n. (3)
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Also all these partition functions can be conveniently cal-
culated by dynamic programming in time O(L3).

This allows us to calculate the partition function with force
for subsequence r1, . . . , r j by

Z̃1, j ( f ) =
j∑

n=1

Q1, j,neβn f . (4)

Note that the case n = 0 can not occur and the case n = 1
corresponds only to one single base. With this it is possible
to calculate the mean extension of an equilibrium structure at
force f with

nEq( f ) =
L∑

n=1

nQ1,L,neβn f . (5)

The availability of the above partition functions also allows
us to sample secondary structures in the presence of an exter-
nal force directly, i.e., rejection free, also in polynomial time.
The approach is an extension of the zero-force algorithm [42]
to the case f � 0.

For sampling a structure, the following probabilities are
needed. The probability pp

i, j,k that for subsequence ri, . . . , r j ,
without the presence or influence of a force, base j is paired
to base k with i � k < j and j − k > s is given by

pp
i, j,k = Zi,k−1e−βe(rk ,r j )Zk+1, j−1

Zi, j
. (6)

For j − k � s, this probability is zero. The probability that
base j is not paired is given by

pu
i, j = Zi, j−1

Zi, j
. (7)

The probability p̃p
1, j,k ( f ) that for subsequence r1, . . . , r j ,

with the presence of a force f , base j is paired to base k with
1 � k < j and j − k > s is given by

p̃p
1, j,k ( f ) = Z̃1,k−1( f )e−βe(rk ,r j )+β2 f Zk+1, j−1

Z̃1, j ( f )
. (8)

For j − k � s, this probability is zero. The probability that
base j is not paired is given by

p̃u
1, j ( f ) = Z̃1, j−1( f )eβ f

Z̃1, j ( f )
. (9)

The sampling of a structure is now performed as follows.
Each time one starts for the full sequence r1, . . . , rL by con-
sidering the case with force f :

(1) Case with force f for subsequence r1, . . . , r j :
Base j is paired to one of the bases k = 1, . . . , j − s − 1

with probability p̃p
1, j,k ( f ), respectively, and remains unpaired

with probability p̃u
1, j ( f ).

Now, if base j has been paired to base k, recursively the se-
quence r1, . . . , rk−1 is treated in the same way (case with force
f ) and the subsequence rk+1, . . . , r j−1 is treated as described
in the case without force.

If base j has not been paired, the sequence r1, . . . , r j−1 is
treated in the same way (case with force f ).

(2) Case without force for subsequence ri, . . . , r j :
Base j is paired to one of the bases k = i, . . . , j − s − 1

with probability pp
i, j,k , respectively, and remains unpaired with

probability pu
i, j .

Now, if base j has been paired to base k, recursively the
sequence ri, . . . , rk−1 and rk+1, . . . , r j−1 are treated in the
same way (case without force).

If base j has not been paired, the sequence ri, . . . , r j−1 is
treated in the same way (case without force).

In this way, each time a structure is independently drawn
according to the Boltzmann distribution, i.e., the algorithm
constitutes ideal sampling.

When we sample a folding or an unfolding trajectory
in equilibrium, i.e., for a sequence of force values fk =
f0 + k� f (k = 0, 1, 2, . . .), we just sample an equilibrium
structure Sk for all force values { fk} encountered. This we
call equilibrium trajectory or, more generally, an equilibrium
process. Here we use fk ∈ [0, 2] and 400 different force val-
ues, i.e., � f = ±0.005. To each trajectory a work of W =
−∑

k n(Sk )� f is associated. This corresponds to a small
force increment and a subsequent imaginary (infinite) long
waiting time, either in real time or in terms of MC or molecu-
lar dynamic steps when performing simulations, until the next
equilibrium structure is encountered. Since we use very small
force increments, the work we measure is actually numerically
very close to �F , as we have verified.

B. Folding and unfolding algorithm

The algorithm for performing an unfolding or refolding
process in nonequilibrium, and to measure the performed
work W for a given sequence R, works as follows: First, an
initial secondary structure S is drawn in equilibrium at some
given initial value f0 of the force and for RNA temperature
T . Then a Markov chain MC simulation is performed, called
RNA MC here. Here we use discrete time steps for conve-
nience and specify below the transition probabilities we use.
But also continuous-time MC methods are used to simulate
the dynamics of physical processes, in which case the algo-
rithms are often called kinetic MC [51], and one would specify
transition rates instead. The RNA MC is allowed to perform
small changes of the secondary structure, usually called local
moves in the MC literature. As we detail below, the changes
are closing and opening of single base pairs. A total of nMC

sweeps is performed while the force parameter f is increased
or reduced depending on � f . Note that the dynamics within
Monte Carlo does not correspond to solving Newton’s equa-
tions of motion, which are not available for this discrete model
anyway, but describe effective physical dynamics, e.g., of a
system coupled to a heat bath. It is widely used, e.g., for sim-
ulation of dynamics in Ising systems, where MC dynamics can
be actually derived from quantum mechanics [52]. Also, e.g.,
diffusion processes, chemical reactions, polymer dynamics or
surface growth are often investigated using MC simulations,
even if a microscopic classical or quantum model is available,
just for the purpose of accessing large-enough timescales. In
particular, due to the small changes performed in the MC ap-
proach, a sweep actually corresponds to a physical timescale
[53], which is larger than the one describing the smallest
microscopic movements. For most investigations, also the one
presented here, it is not necessary to know the exact timescale
of one MC step, but for some models the mapping is in-
terestingly known. For example, for Ising spin glasses, one
MC sweep of a single-spin flip update algorithm corresponds
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roughly to one picosecond [54]. But also for the MC approach
to RNA folding, estimates of the conversion factor between
MC step and time exist, for a hairpin structure it was found
that one MC step correspond roughly to 1.2 × 10−7s [55].

For the unfolding process, we used f0 = 0 and increased
the force until f = 2 was reached, while for the refolding
process we started at f0 = 2 and decreased the force to f = 0.
During the RNA MC simulation, nforce times the force is
increased by � f . Each time the force is changed, we obtained
a contribution �W = −n(S )� f to the work, where n(S ) is
the current extension.

The MC sweeps allow for the influence of thermal fluc-
tuations. Since the number of possible Watson-Crick pairs
is O(L2), we define one sweep as L2/2 MC steps. For the
individual MC steps, each time two random residues i and
j are selected. If these are already paired to each other in the
current structure S , a trial configuration S ′ is made by remov-
ing the pair, i.e., the bond is broken. In case of two nonbonded
bases, they will be paired in the trial configuration S’ if they
are complementary, and if they have a distance larger than s,
and if no pseudoknots would be created. The configuration is
not changed when just one of the selected bases is already
bounded, since a base can connect only to a single other
one. For these cases, the trial configuration is accepted, i.e.,
becomes the current one, with the usual Metropolis proba-
bility pMetr = min{1, exp(−β�E )} determined by the energy
change �E = E (S ′) − E (S ). The random numbers which are
used during the RNA MC simulation are generated before a
call to the subroutine and stored in a vector ξ . In this way, all
the randomness is removed outside this subroutine [56], for a
reason we will present in the next section. Note that all other
parameters like R, T etc. remain the same during a simulation,
thus the work obtained during unfolding or refolding is a
deterministic function of ξ :

algorithm W (ξ )
begin

draw for R an equilibrium structure S at
initial force f0 and RNA temperature T
f = f0

W = 0
for j = 0, · · · , nforce

begin
perform L2nMC/(2nforce ) MC steps:
begin
select two random residues l, m ∈ {1, . . . , L}
if (l, m) ∈ S, remove pair with prob. pMetr.

else if (l, m) is allowed set S = S ∪ {(l, m)}
with prob. pMetr.

end
f = f + � f
W = W − n(S )� f

end
return (W )

end

The vector ξ = (ξ1, ξ2, . . . , ξK ) contains K = L − 1 +
3L2nMC/2 random numbers which are uniformly distributed

in [0,1]. These are all random numbers that are needed to per-
form one full unfolding or refolding simulation. Each random
number has a specific fixed purpose. The first L − 1 entries
are required to sample an configuration from the partition
function, where an individual random number is utilized to
determine if base j ∈ [2, . . . , L] is either connected to base
k ∈ [1, . . . , j − s − 1] or unconnected. Not all of these L − 1
random numbers are necessarily used during a specific sam-
pling process, e.g., if for base j the remaining subsequence
for a potential pairing partner is too small. In this case, the
corresponding random number is just ignored, The subsequent
MC steps need three random numbers each, two for selecting
a pair and potentially one more, if the Metropolis criterion
is used. If not, the third random number is also ignored,
respectively. This results in a number of 3L2nMC/2 additional
entries in ξ .

Note that more efficient MC algorithms for RNA sec-
ondary structures exists [57,58], which are event-driven
Gillespie algorithms. Also they take as possible MC moves
only allowed moves into account, i.e., either pairs are
removed, or only allowed pairs are proposed, avoiding non-
complementary base pairs or pseudoknots. This requires
keeping track of the allowed moves, which also generates
quite some overhead in computation and it also involves the
calculation of necessary corrections factors due to the varying
number of accessible neighboring secondary structure con-
figurations, in order to guarantee detailed balance. Also, the
Gillespie nature of these algorithms make the use of ran-
dom numbers dependent on the history of previous events.
Nevertheless, for the present application, the work process
is embedded into another higher-level MC simulation; see
below. For a good performance of the higher-level MC sim-
ulation this requires that for each entry of the vector a specific
purpose is assigned, as presented above. If this requirement
is met, small changes to ξ yield typically small, i.e., not too
“chaotic” changes in the resulting work W = W (ξ ). This is
the case with the present algorithm.

C. Large-deviation approach

By repeating an unfolding or refolding simulation many
times, one can measure approximately the work distributions
P(W ) and Prev(W ), respectively. Nevertheless, this simple
sampling approach allows one to obtain the work distributions
only down to rather large probabilities, like 10−9. To obtain
the work distributions down to much smaller probabilities, we
applied sophisticated large-deviation algorithms [33,34]. Our
approach has already been used to measure work distributions
for large Ising systems [41]. The basic idea is to drive the
forward and reverse processes, respectively, by vectors ξ of
random numbers and control the composition of the vectors
with a Markov chain MC simulation, with a known, i.e.,
removable, bias depending on the measured work.

As mentioned in the previous section, for a given sequence
R, temperature T and the other parameters, which are all kept
fixed for a set of simulations, the outcome of the unfolding or
refolding process is solely determined by the random values
contained in the vector ξ . Thus, to perform a standard simple
sampling simulation, each time a random vector ξ is drawn
with all its entries being a pseudo random number uniformly
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distributed in [0,1]. This results in one work value W which
is sampled from the true distribution. Thus, if one repeats
the simple sampling many times, one can collect many work
values and calculate a histogram to approximate the full dis-
tribution. Nevertheless, running the simple sampling K times
will allow one only to resolve probabilities larger or equal to
1/K in the histogram.

In order to access the work distribution down to very small
probabilities, the following is done: Another Markov chain
MC simulation is employed, where the states of the simulation
are represented by samples ξ (t ) of the random vectors that
drive the RNA unfolding or folding simulations. Thus, each
state of the Markov chain corresponds to exactly one instance
of a full RNA MC process consisting of starting with an
initial state in equilibrium and performing a, typically fast,
nonequilibrated process during which the force is changed.
“Fast” means here that the system is allowed only for a couple
of RNA MC steps to relax between two force changes, re-
spectively. In the end, a work value W = W (ξ (t ) ) is obtained.
Therefore, the MC simulation takes place on a higher level
than the unfolding or refolding RNA MC simulations. Now,
the main idea is to include a bias in the high-level MC simu-
lation, which involves a Metropolis acceptance depending on
the change in the resulting work.

To be more precise, say we have the current state ξ (t ) with
work W (t ) = W (ξ (t ) ) in the MC simulation. First, a trial state
ξ ′ is generated, by copying ξ (t ) and then redrawing a number
nξ < K of randomly selected entries from the K entries of
ξ ′. Next, a complete work process is performed for ξ ′, which
results in the measured work W ′ = W (ξ ′). The trial state is
then accepted, i.e., ξ (t+1) = ξ ′ with Metropolis probability
p̃Metr = min{1, exp(−�W/�)}, where �W = W ′ − W (t ) is
the change in work and � is a temperature-like control pa-
rameter. Otherwise, the trial state is rejected, i.e., ξ (t+1) = ξ (t ).
Note that an empirical acceptance rate of around 0.5 is aimed
for, such that nξ is typically small for small values of � and
larger for larger values of �. Actual values are given below.

Since the setup of the high-level MC simulation is like any
standard MC approach for a system coupled to a heat bath,
only that the energy is replaced by the work and � is used for
the temperature, it is obvious that our approach will sample
the true work distribution but including a bias which is ex-
actly the Boltzmann factor ∼exp(−W/�). As usual, the initial
phase of the Markov chain, i.e., the equilibration phase, is dis-
carded and sample values are drawn only at suitable large MC
time intervals. Thus, one can in principle perform simulations
for a given value of �, measure a histogram approximating the
biased distribution P�(W ) ∼ P(W ) exp(−W/�) and obtain
an estimate for the true distribution P(W ) by multiplication
with exp(+W/�), up to a normalization constant. Note that,
technically, to resolve the distribution over a large range of the
support, one needs to perform simulations at several suitably
chosen values of the control temperature �, get the normaliza-
tion constants for all measured histograms and combine them
into one single finally normalized histogram [33]. Details, in
particular for the case of the work distribution of on Ising
model in an external field, can be found elsewhere [41]. This
approach has already been applied to other nonequilibrium
processes like the Kardar-Parisi-Zhang model [40] or traffic
flows [39].

FIG. 2. Exemplary equilibrium secondary structures at T = 1 for
different forces. Top: f = 0. Middle: f = 0.805. Bottom: f = 2.
Drawn with the VARNA package [59].

Note finally, that if one aims at using a more realistic
(free) energy model for the RNA calculations, it would not be
possible to just use existing packages like mfold [46], Sfold
[47], RNAstructure [48], or the Vienna RNA Package [44]
because they use random number generators internally and do
not allow for feeding in vectors ξ of numbers to be used.

IV. RESULTS

An RNA sequence is considered, which is not too small,
such that differences between equilibrium and nonequili-
brated secondary structure configurations can be observed
with suitable resolution. Concretely, we studied a hair-
pin structure of length L = 100 which has the sequence
(AC)25(UG)25, resulting in a ground state of one large stack
with a small loop. This sequence is chosen because hairpins
are common secondary structure elements of RNA, which
have been studied frequently experimentally not only in ther-
mal equilibrium [60], but also in direct use to verify the
Crooks theorem and the Jarzynski relation [30,31] by folding
and unfolding hairpins by mechanical force. Hairpins are like-
wise used in simulations that aim to reproduce experimental
results [32,61]. Also numerically, an exponential increase of
the unfolding MC time with the hairpin stem length was
observed, while the folding MC time is almost independent of
stem and loop length [55]. This shows that the thermodynamic
behavior can be complex, making it an ideal candidate for our
study. One the other hand, the fluctuations in force-extension
curves decrease with the number of hairpins in the overall
secondary structure, due to a compensation effect [49]. Finally
and interestingly, due to its simple structure, there even exists
an analytical solution of the partition function in the limit of
large L for a hairpin structure [62].

For the studied RNA size of L = 100, the application of
large-deviation algorithm is necessary to measure the work
distribution with suitable accuracy such that the Jarzynski
and Crooks theorems can be applied and the unfolding and
refolding histories can be captured.

We considered the RNA to be coupled to a heat bath at
temperatures T = 0.3 and T = 1, respectively. These are low
enough temperatures, such that in the force-free case, the
RNA is basically folded, but exhibits thermal fluctuations. Ex-
ample equilibrium secondary structures are shown in Fig. 2. It
becomes apparent how the extension increases with the force
parameter f .
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TABLE I. Simulation parameters for different temperatures T ,
for different process speeds nMC and unfolding ( f = 0 → 2) and re-
folding ( f = 2 → 0) processes. For the high-level MC simulation n�

different values of the temperature-like parameter � ∈ [�min, �max]
were considered. In each MC step a number nξ ∈ [nξ,min, nξ,max] of
entries from the vectors ξ of random numbers are changed. For the
lowest value of � we have nξ = nξ,min, for the largest nξ = nξ,max,
for the others in between. The total number of MC steps in the
large-deviation simulation was always larger than the given values
tld, the actual values depending on the value of � and on the avail-
able computing time on the computing cluster, respectively. The
longest running time occurred for the unfolding (forward) process
T = 1, nMC = 8 and took tld = 14.5 × 108 steps.

T nMC f n� �min �max nξ,min nξ,max tld/108

0.3 8 0 → 2 17 0.6 7 938 9 × 104 5.44
0.3 8 2 → 0 10 0.4 2 1587 6 × 104 4.05
0.3 16 0 → 2 18 0.6 8 1407 12 × 104 2.50
0.3 16 2 → 0 10 0.457 2 2557 9 × 104 1.82
1 8 0 → 2 11 0.8 10 354 6 × 104 6.95
1 8 2 → 0 13 1 5 1350 6 × 104 2.81
1 16 0 → 2 11 0.8 10 938 75 × 102 4.41
1 16 2 → 0 10 0.8 5 2344 12 × 104 2.35

For all unfolding and refolding processes, the force was
increased from f0 = 0 to fmax = 2 and vice versa, with 400
steps each. Thus, the change of the force was � f = ±0.005.
Two different speeds of the processes were simulated, i.e., two
different numbers nMC of sweeps performed during the pro-
cess, here nMC = 8 and nMC = 16. This can be compared to
typical MC timescales needed to equilibrate RNA secondary
structures of the hairpin using the RNA MC approach, while
beginning from an empty structure. We performed some tests
and found that for T = 1 and f = 0 the hairpin structure
finds typical configurations (as measured by the overlap, see
Sec. IV C) in about 1000 sweeps while for T = 0.3 it takes
roughly 40 000 sweeps. Thus, our nonequilibrated processes
are fast compared to the equilibration MC time. Table I shows
the other simulation parameters we have used.

A. Work distributions

In Fig. 3 the work distributions P(W ) of the forward
and Prev(−W ) of the reverse processes are shown for the
case T = 1 and nMC = 16. With the application of the large-
deviation scheme, very small probabilities down to 10−26

could be resolved, i.e., over 26 orders in magnitude. The
crossing of the distributions at a work value W = �F
predicted by the theorem of Crooks [5] can be well ob-
served. For the present model, because the partition function
can be calculated exactly numerically, we are able to ob-
tain �F = 1/T log{Z ( f = f0)/Z ( f = fmax)}. Apparently, the
data matches the expectations from the Crooks theorem with
high precision.

The Crooks relation means that when Prev(−W ) is rescaled
according the exponential exp(−(�F − W )/T ), it equals
P(W ). This is also confirmed very convincingly by our data
over up to 15 decades, as shown in the inset of Fig. 3. This in
particular shows that our higher-level MC simulation is well
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FIG. 3. Plain and mirrored work distributions for T = 1 and
16 sweeps of the forward and reverse process, respectively. They
intersect near W = �F , which is the exact value and indicated
by the vertical line. The inset shows the same plot but with the
distribution for the reverse process (cross symbols) rescaled as
Prev(−W ) exp(−(�F − W )/T ), according to the Crooks equation,
yielding a good agreement with P(W ).

equilibrated [41]. Similar results were obtained for the faster
nMC = 8 process (not shown).

In Fig. 4 the corresponding results for the lower tem-
perature T = 0.3 (nMC = 16) are shown. Again, the Crooks
theorem is confirmed with high precision. For the case nMC =
8 (not shown) the distribution even reaches probabilities as
small as 10−46.

B. Jarzynski integrand

The integrand of 〈e−W/T 〉 = ∫
dW P(W )e−W/T is shown in

Fig. 5, for T = 1, nMC = 8 and forward and reverse work
processes, respectively. The point where the integrand peaks is
exponentially relevant and can be used to approximate the in-
tegral. Here this is the value W ∗

J ≈ −172. This, together with
its probability, determines according to the Jarzynski equation
the free energy difference via P(W ∗

J )e−W ∗
J /T ≈ e−�F/T , i.e.,

�F = W ∗
J − T log P(W ∗

J ), which explains the notable differ-
ence of W ∗

J from �F .

C. Similarity to equilibrium

Our results allow us to go beyond calculation of distri-
butions and study the actual dynamic processes. This is in
particular possible when selecting among all sampled trajecto-
ries any value of W . We concentrate now on T = 1, the results
for T = 0.3 are similar. During a forced process, we sampled
structures, one for each considered value of f , in equilibrium
and in nonequilibrated ensembles, respectively. To compare
two sampled structures S and S ′ from each of the ensembles,
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FIG. 4. Plain and mirrored work distributions for T = 0.3 and
16 sweeps of the forward and reverse process, respectively. They
intersect near W = �F , which is the exact value and indicated
by the vertical line. The inset shows the same plot but with the
distribution for the reverse process (cross symbols) rescaled as
Prev(−W ) exp(−(�F − W )/T ), according to the Crooks equation,
yielding a good agreement with P(W ).

we define an overlap σ , which runs over all bases of the
sequence, and counts 1/L if for both structures the base is not
paired or if for both structures it is paired with the same base.
Otherwise zero is counted. By using the equivalent notations
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FIG. 5. Jarzynski integrand of the forward process for eight
sweeps at T = 1. Inset: same for the reverse process, in which the
maximum is not reached. Error bars are smaller than symbol sizes.
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FIG. 6. Average nonequilibrated overlap profiles σ ( f ) for some
sample processes at T = 1 and 16 sweeps, with mentioned nonequi-
librium work values W . The average is performed over 100
equilibrium trajectories while keeping the same nonequilibrium one.
The solid line is the average overlap between 2500 pairs of inde-
pendently sampled equilibrium structures for every force value. Top
row: forward process for typical values of W (left) and for W ≈ �F
(right). Bottom row: the same for the reverse process. Error bars are
smaller than symbol size.

{s(i)} and {s′(i)} for the pairing partners of the residues (0 if
not paired), the overlap is given by

σ (S,S ′) = 1

L

L∑
i=1

δs(i),s′ (i) (10)

where the Kronecker delta is given by δk,l = 1 if k = l and
δk,l = 0 else. Therefore, two structures are considered as equal
for the ith residue if in both structures the residue is either
not paired, or if in both structures it is paired to the same
other residue. Note that the other residue of the pair will also
contribute positively to the sum, so each pair in the secondary
structure actually contributes a value of two. This means the
overlap equals one when S,S ′ denote the same secondary
structure, e.g., also for an empty structure. It equals zero
when they are completely different. Overlap quantities are
used frequently to determine order in complex systems, e.g.,
spin glass [63].

Figure 6 shows average nonequilibrium profilesσ ( f ), i.e.,
averaged overlaps σ as function of f , where in the calculation
of the overlaps one structure is a given nonequilibrium sample
of a forward or a reverse process and the other structure is a
sampled equilibrium structure. The average is always taken
over 100 equilibrium structures. The nonequilibrated trajec-
tories are selected by values of W of interest, i.e., the results
are binned by W . In particular we focus first on typical values
of W , i.e., where P(W ) is large, and on W ≈ �F . In the next
paragraph we then study the full range of work values. Note
that σ ( f ) also reflects the fluctuations of the configurations.
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These fluctuations are determined by the ensembles where
S and S ′ are taken from, respectively. For comparison in all
plots the average equilibrium profile is shown, where 2500
pairs of independently sampled equilibrium structures were
generated for every force value. Our results show that folded
structures at low force value f are characterized by a variety
of secondary structures, while at high values of f , where the
RNA is basically stretched, the secondary structures are very
similar to each other. Note that for the reverse trajectories in
the nonequilibrated case, the overlap is for f → 0 slightly
higher than the equilibrium value. This is probably due to
the fact that the nonequilibrated trajectories contributing the
structures S ′ to σ are selected with respect to the work W ,
i.e., they represent a subensemble with an almost fixed work
value. Thus, they overall fluctuate less as compared to the
equilibrium structures, where the work fluctuates more. We
see that for typical work values (left panels), i.e., where P(W )
and Prev(W ) peak, large differences for nonequilibrium pro-
files compared to the average equilibrium profile occur, in
particular for the forward process. On the other hand, for work
values W ≈ �F (right panels), a much higher similarity is
observed. Thus, these nonequilibrium processes, which occur
only rarely since P(W ) is very small, exhibit a high similarity
to the equilibrium ones.

Note that for work values W ≈ W ∗
J also a high similarity is

observed. Since these overlap profiles look similar, we do not
show them here. Instead we want to quantify the similarity Iσ

of the nonequilibrated processes to the equilibrium case for
any value of W . Thus, we integrate over all force values f
the absolute difference of σ ( f ) between the equilibrium and
nonequilibrated case, and average this integral over close-by
values of W . Thus, we obtain

Iσ (W ) =
⎡
⎣ 1

nf

∑
f

|σ ( f ) − σ Eq( f )|
⎤
⎦, (11)

where the average [. . .] is over different trajectories exhibiting
work values from the same bin W . The result is shown in
Fig. 7, in which rather larger differences for typical values
of W are observed. This is in particular true for the forward
process, see also Fig. 6. The reason is that for each sequence
of nested pairs only the first-level pair is subject to the force.
Thus, when increasing the force, opening pairs below the first
level pair it is energetically not favorable. Therefore, basically
one pair must be openend after the other, while the remainder
of the structure will not change much. Thus, the structure is
opened like a zipper, but due to the random update order this
takes a while. On the other hand when f → 0 is decreased,
any formed pair will decouple a certain subsequence from the
force, which creates many potential pairs which are energeti-
cally favorable. This leads to faster folding, i.e., less MC steps
are needed, as compared to unfolding.

Next, near W ≈ ±�F the similarity is of the order of the
similarity I0 obtained by averaging Iσ over many independent
equilibrium processes, which represents the equilibrium fluc-
tuations. Also the forward processes sampled for work values
near the value W ∗

J ≈ −170 where the Jarzynski integrand
P(W )e−W/T peaks exhibit a high similarity to the equilibrium
case. Note that for the reverse process, the value of W ∗

J occurs
outside our sampled region, thus we do not have processes
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FIG. 7. Integrated difference Iσ between equilibrium and
nonequilibrium overlap profiles at T = 1, for forward (left) and
backward (right) processes. For 16 sweeps the data is only partially
shown, for better visibility. The horizontal line indicates I0, the value
of Iσ in equilibrium. Vertical lines indicate work values at (from
left to right) the maximum W ∗

J of the Jarzynski integrand, the free
energy difference �F , the maximum W typ

f of the forward process
work distribution, the negative free energy difference −�F , and the
maximum point W typ

r of the reverse process work distribution. At
eight sweeps there are a total of 90 947 RNA MC runs for the forward
and 44 136 for the reverse process. At 16 sweeps there are a total of
50 763 RNA MC runs for the forward and 25 214 for the reverse
process.

for this case. For the slower case of nMC = 16 sweeps, i.e., a
bit nearer to equilibrium, the location minimum moves closer
to �F and even decreases in height towards the equilibrium
value I0.

Thus, our results show that not only do the rare processes
near W = ±�F have similar work values like the equilib-
rium processes, they exhibit also very similar sequences, as
function of the force f , of sampled structures. We obtained a
similar result when considering force-extension curves.

D. Force-extension curves

In addition to the overlap profiles σ ( f ) presented before,
we also used force extension curves (FECs) n( f ) to compare
processes for equilibrium and nonequilibrated situations. Note
that the extension n(S ) of a structure can be very much influ-
enced by single base pairs. Thus two processes, which look
very similar on the level of secondary structures, can be very
different with respect to force-extension curves.

Samples for equilibrium and nonequilibrated FECs for
forward processes, along with corresponding averages, are
shown in Fig. 8. For the equilibrium case, a sigmoidal form
can be observed, with some fluctuations, and a strong change
near the critical force value, where the folding-unfolding
transition takes place [29]. For the nonequilibrated case, the
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FIG. 8. Top left: mean FECs, in equilibrium as well as in
nonequilibrium for typical forward processes and for work values
near �F , for two different numbers nMC of sweeps at T = 1. The
nonequilibrated FECs that were averaged are selected from a work
range ±1 around the specified values yielding at least 443 or more
contributing RNA MC runs. Top right: samples of such single FECs
in equilibrium. Bottom left: single, i.e., nonaveraged, samples of
nonequilibrated FECs with nMC = 8 for W near �F . Bottom right:
single, i.e., nonaveraged, samples of typical nonequilibrated FECs,
i.e., where W � �F , with nMC = 8. The solid line represents always
the mean equilibrium FEC; see Eq. (5).

typical FECs, i.e., with typical work values W far from �F ,
agree only for small values of f , i.e., in the initial phase of the
process. On the other hand, the rare processes with W close to
�F , where five different examples are shown here, are much
more similar to the equilibrium FECs. Here differences appear
mainly near the critical folding-unfolding force.

Samples for equilibrium and nonequilibrated FECs for
backward processes, along with corresponding averages, are
shown in Fig. 9. The results correspond to the forward case,
but the processes with typical values of W agree well with
the average equilibrium FEC only for large values of f but
not for small values of f . This means they also agree in
the initial phase of the process, before the critical folding-
unfolding force value is reached. The FECs for work values
W ≈ �F are also for reverse processes much more similar to
the equilibrium case than typical reverse processes.

These results are confirmed by averaging the absolute value
of the differences between one FEC n( f ) and the mean equi-
librium FEC nEq( f ) over all available values of the force f ,
i.e., calculating

In(W ) =
⎡
⎣ 1

nf

∑
f

|n( f ) − nEq( f )|
⎤
⎦. (12)

The average [. . .] is over different realizations of n( f ) exhibit-
ing work values from the same bin W . Even when considering
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FIG. 9. Top left: mean FECs, in equilibrium as well as in
nonequilibrium for typical reverse processes and for work values
near �F , for two different numbers of nMC of sweeps at T = 1.
The nonequilibrated FECs that were averaged are selected from a
work range ±1 around the specified values yielding at least 164 or
more contributing RNA MC runs. Top right: samples of such single
FECs in equilibrium. Bottom left: samples of nonequilibrated reverse
FECs with nMC = 8 for W near �F . Bottom right: samples of typical
nonequilibrated reverse FECs, i.e., where W � �F , with nMC = 8.
The solid line represents always the mean equilibrium FEC as shown
already in Fig. 8.

equilibrium FECs for n( f ), respectively, there is some
variation reflected by a nonzero average value I0. When using
nonequilibrated FECs, with a specified binned value of W ,
one sees stronger differences, as visible in Fig. 10. Similar to
Iσ , the closest agreements between nonequilibrium and equi-
librium are seen near W ≈ �F . In contrast to Iσ the level of
the equilibrium fluctuations is not reached for the measurable
quantity FEC.

V. DISCUSSION

RNA unfolding and refolding under influence of an ex-
ternal force for one particular RNA sequence have been
studied in exact equilibrium and for nonequilibrated dynam-
ics. The equilibrium trajectories where generated by direct
exact sampling, for various values of the external force. The
nonequilibrium trajectories where generated by MC dynamics
during which the force was changed. For the nonequilibrated
case, by using sophisticated large-deviation algorithms, we
could access a large range of the support of the probabil-
ity distribution for the work. This allowed us to confirm
the Crooks and Jarzynski theorems over several dozens of
decades in probability. Furthermore, we analyzed the trajecto-
ries in force-extension as well as in secondary-structure space
by selecting according to various values of W . It was observed
that near the most relevant, but very improbable, values of
W , the sampled trajectories reach a high similarity with true
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FIG. 10. Integrated extension difference In between averaged
equilibrium and nonequilibrium at T = 1. For eight sweeps the entire
work range is plotted, where for 16 sweeps only a range around the
minimum is shown, for better visibility. I0, represented by a hori-
zontal line, is the averaged value of In when comparing equilibrium
FECs to the averaged equilibrium FEC. The left curves represent the
forward, the right ones the reverse process. Vertical lines indicate
work values at (from left to right) the maximum W ∗

J of the Jarzynski
integrand, the free energy difference �F , the maximum W typ

f of the
forward process work distribution, the negative free energy differ-
ence −�F , and the maximum point W typ

r of the reverse process work
distribution. At eight sweeps there are a total of 90 947 RNA MC
runs for the forward and 44 136 for the reverse process. At 16 sweeps
there are a total of 50 763 RNA MC runs for the forward and 25 214
for the reverse process.

equilibrium. Thus, the study here does not depend on assign-
ing a time-dependent weight to the trajectories as, e.g., in
Refs. [24,26,27], the selection is solely by the total work per-
formed during the process and suitably evaluating fluctuation
theorems. Also no other particular similarity to equilibrium
is enforced explicitly by our procedure. Our approach and
results may open a pathway not only to learning about

equilibrium characteristic scalar numbers from nonequi-
librium measurements, but also even investigating near-
equilibrium dynamics by performing biased nonequilibrium
simulations which require only a small number of MC steps.
We anticipate that similar studies are feasible and useful for
many different types of systems.

Clearly, we have studied so far one particular RNA se-
quence. Although we expect that in general the closeness of
relevant rare-event trajectories to equilibrium carries over, de-
tails on the result will certainly depend on the actual sequence.
One can imagine that there are biological sequences which
fold easily and thus evolve closer to equilibrium anyway. On
the other hand, there might be more complex structures, e.g.,
arising from random sequences, which have an even more
complex behavior than the hairpin. Here it would be very
interesting to test whether our approach still works and, if so,
how close the most relevant trajectories to equilibrium are in
this case.

For further studies, also beyond considering RNA sec-
ondary structures, one could also extend the approach, by
storing the configurations of the close-to-equilibrium W ≈
�F generated rare trajectories. Starting with these configura-
tions, one could perform additional equilibrium simulations at
fixed force values, i.e., without performing work, in the hope
to get quickly close or even up to equilibrium. We have run
some test simulations which show that one can indeed get
even much closer to the equilibrium behavior by applying
this add-on equilibration, apparently perfectly with respect
to the force-extension curves, but this also depends on the
temperature. Here more studies are needed, in particular a
comparison of how good one can equilibrate by just using
secondary-structure RNA MC simulations when starting with
empty configurations, i.e., the extended structure without any
base pairs. Also it would be very interesting to see how these
results depend of the actual RNA sequence and the corre-
sponding energy landscape.
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