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Regulatory feedback effects on tissue growth dynamics in a two-stage cell lineage model
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Identifying the mechanism of intercellular feedback regulation is critical for the basic understanding of tissue
growth control in organisms. In this paper, we analyze a tissue growth model consisting of a single lineage of
two cell types regulated by negative feedback signaling molecules that undergo spatial diffusion. By deriving
the fixed points for the uniform steady states and carrying out linear stability analysis, phase diagrams are
obtained analytically for arbitrary parameters of the model. Two different generic growth modes are found:
blow-up growth and final-state controlled growth which are governed by the nontrivial fixed point and the trivial
fixed point, respectively, and can be sensitively switched by varying the negative feedback regulation on the
proliferation of the stem cells. Analytic expressions for the characteristic timescales for these two growth modes
are also derived. Remarkably, the trivial and nontrivial uniform steady states can coexist and a sharp transition
occurs in the bistable regime as the relevant parameters are varied. Furthermore, the bistable growth properties
allows for the external control to switch between these two growth modes. In addition, the condition for an early
accelerated growth followed by a retarded growth can be derived. These analytical results are further verified by
numerical simulations and provide insights on the growth behavior of the tissue. Our results are also discussed in
the light of possible realistic biological experiments and tissue growth control strategy. Furthermore, by external
feedback control of the concentration of regulatory molecules, it is possible to achieve a desired growth mode,
as demonstrated with an analysis of boosted growth, catch-up growth and the design for the target of a linear
growth dynamic.
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I. INTRODUCTION

Biological functions are carried out by organs composed
of tissues of specific architecture and sizes in high-level mul-
ticellular complex organisms. In the developmental stage, the
growth of tissue is governed by the interplay of cell prolifer-
ation, differentiation, and cell apoptosis [1] and regulated by
feedback signals for proliferation and/or differentiation down
the lineage [2] so as to ensure a normal pathway leading to
an appropriate tissue size [3]. Such feedback regulations are
often achieved by cell-cell communications, such as via quo-
rum sensing [4–6] in which bacteria are able to sense the cell
density and regulate their proliferation processes accordingly.
The ability to detect signaling chemicals is also essential for
cell differentiation in development [7], for example concen-
tration gradients of BMP and Wnt along two orthogonal axes
are responsible for both dorsal-ventral and anterior-posterior
axes formation [8]. Recently, signaling molecules that control
the output of multistage cell lineages have been explored in
the olfactory epithelium of mice [9], revealing that the spa-
tial distribution of diffusive signaling molecules (including
GDF11, Activin βB, and Follistatin) regulate the proliferation
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of each cell type within the lineage and help to generate
tissue stratification through controlling the spatial distribution
of these signaling molecules. Inhibitory feedback regulation
from signaling chemical acting on the proliferating cells in
general will suppress the cell population and hence achieve in
the control of the tissue sizes.

Cell lineage is the basic unit of tissue and organ forma-
tion. The molecular mechanisms underlying the control of
growth and regeneration of tissues and organs are subjects of
fundamental biological interests as well as medical concerns
[2]. Recent experiments have shown that in the mouse Olfac-
tory Epithelium, a secreted molecule, GDF11, produced by
terminally differentiated (TD) cells, feeds back on intermedi-
ate progenitors, and together with another molecule (Activin
βB produced by TD cells) that feeds back on stem cells,
creating a dual feedback loop [3]. Based on the above obser-
vations, a logic proliferation control model has been built (the
ODE model in Fig. 1) and the theoretical results indicating
that negative feedback on self-renewal indeed stabilizes the
exponentially growth of the cell system, thus producing a
steady-state tissue size. Such feedback regulations are often
carried out through diffusive molecules [6], such as mor-
phogens, growth factors, cytokins, and chemokines. A spatial
model of multistage cell lineage and negative feedback reg-
ulation indicates that tissue stratification can be generated
and maintained through controlling the spatial distribution of
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FIG. 1. Schematic picture showing a two-stage cell lineage
model with negative feedback. c0 and c1 are the concentration of SC
and TD cell, respectively. (a) SC replicates with a rate of ν and has
a probability P are of duplicating itself and 1 − P of differentiating
into two TD cells. (b) The molecule A, which negative regulates P ,
is produced by the TD cells at a rate μ, and decays with a rate d .

diffusive signaling molecules [9,10]. A mathematical model
consisting of a short-range activation of Wnt and a long-range
inhibition with modulation of BMP signals in a growing tissue
of cell lineage can account for the formation, regeneration
and stability of intestinal crypts [11]. In addition, a particular
feedback architecture in which both positive and negative
diffusible signals act on stem cells can lead to the appearance
of bimodal growth behaviors, and resulting in some kind
of self-organizing morphogenesis [12]. Until now, numerous
biological experiments and modeling have been extensively
studied from a mechanistic perspective, but little efforts have
been directed toward the understanding of the logic of con-
trol. In this paper, we attempt to address the above questions
through theoretical analysis on a built model and investigate
the fundamental control principles that shape the general ar-
chitectures of these biological systems.

By incorporating spatial diffusive regulatory molecules, we
examine the effects of feedback regulation via such signaling
molecules on the cell growth and tissue size of a simple
cell lineage model. Interesting, in some parameter regime, a
bistable regime of two uniform steady states can coexist. In
contrast to previous studies on feedback-driven morphogen-
esis which require both positive and negative feedbacks to
achieve the bistability, in our model mere negative feedback
regulation on the proliferation of stem cells can realize the
bimodal growth. While most previous studies relies on nu-
merical solution of the model equations, here we manage to
carrying out a thorough theoretical calculations that lead to
analytic results on the tissue growth dynamics and growth sta-
bility. Our theoretical results holds for rather general negative
feedback function and bistability occurs if the feedback sup-
pression is sufficiently sensitive. In particular, the feedback is
modeled by a Hill function and the full phase diagram can
be obtained analytically together with the phase boundaries
for arbitrary values of the Hill coefficient, regulation strengths
and other parameters of the model. The analytical results are
further verified by direct numerical solution of the model
equations. Possible applications in tissue growth engineering
strategies and control such as switching of growth modes
by external pulse control, engineered linear growth, catch-up
growth and the timing precision in growth boosting, are also
proposed and discussed.

II. CELL LINEAGE MODEL WITH NEGATIVE
FEEDBACK CONTROL

Cell lineage denotes the developmental history of a tissue
or organ from the fertilized embryo. An unbranched unidi-
rectional cell lineages may be produced by a sequence of
differentiation that begin with a stem cell (SC), progress
through some number of self-renewing progenitor stages,
and end with one or more TD cells [3]. On the other
hand, homeostatic control is an important goal for regula-
tion and feedback mechanism to maintain the stability in
biological tissues [13]. Furthermore, negative feedback reg-
ulations occur much more often than positive feedbacks so
as to maintain a well-controlled growth and development
in biological systems. For example, negative feedback reg-
ulates tissue sizes and enhances the regeneration. In the
model of mammalian olfactory epithelium, the tissue con-
tains SCs, transit amplifying cells and TD cells. Each cell
can potentially secret regulatory factors and respond to fac-
tors secreted by other cell types. With suitable negatively
regulated processes, the regulatory molecules can avoid
the fate of uncontrolled growth and also can achieve the
target cell population and tissue size that is biologically
appropriate.

In some cell lineages, the TD cells constantly turn over,
as occurs in hematopoietic, epidermal, and many epithelial
lineages. The balance between the turnover and production
of the TD cells is essential to sustain homeostasis, which can
be viewed as achieving a steady state [9] in the cell dynamics.
However, not all tissues can reach a dynamically steady state,
in such a case the TD cells last for the entire lifetime of the
organism (e.g., in the nervous system), with the SC either dis-
appearing or becoming quiescent. Such a scenario is referred
as the “final state” of the system [12].

One of the simplest unbranched two-cell lineage systems
is depicted schematically in Fig. 1. The existence and unique-
ness as well as local and global stability of steady states in
the corresponding ODE system of multistage cell lineages
generalization have been established [14]. Tissue stratification
and regeneration of intestinal crypts can be successfully mod-
eled by considering spatial advection of cells and regulating
molecules, and it is suggested that the turnover of TD cell is
necessary to keep a stable dynamic equilibrium in the system.
But for the case of final-state tissues, the system is not main-
tained at some dynamical equilibrium due to the lack of TD
cell death [as shown in Fig. 1(b)], but the population of the TD
cell stops due to the extinction of the SC or the SC becomes
inactive. Bone, cartilage, retina, and most of the brain are such
final-state tissues. Other organs, such as liver, the turnover is
so slow that it can be taken to be effectively final-state tissues
from the viewpoint of development. Essentially all cases of
tight developmental size control over long distances involve
final states. So this mode of growth control is fundamentally
different from the checkpoint control, in which the control
occurs only near its target state. For the growing tissue that is
determined by its final state, it is best to take the control early
(when the dimension of tissue is much less than the decay
length of diffusible molecules) and employ a high feedback
gain to realize an effective control. For simplicity and the
purpose of illustrating the ideas, we consider a simple model
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of two-cell lineage to investigate the strategy of controlling a
final-state system.

It has been shown in Refs. [15,16] that in the continuum
limit, different cell types in different stages of a lineage
together with the diffusion of regulatory molecules can be
modeled by coupled PDEs of the cell densities and regulatory
molecule concentrations. And for the simple case of a two-
stage lineage model with cell and molecule advection, the cell
density and feedback molecule concentration can be modeled
as [9]

∂c0

∂t
+ ∂ (V c0)

∂z
= νc0[2P (A) − 1]

∂c1

∂t
+ ∂ (V c1)

∂z
= 2νc0[1 − P (A)] (1)

∂A

∂t
+ ∂ (VA)

∂z
= D

∂2A

∂z2
+ μc1 − Ad,

where P (A) is the stem cell proliferation probability which
is a decreasing function (to model negative feedback) of the
concentration of regulating molecules A. The stem cell dif-
ferentiates with probability 1 − P (A). In this two-stage cell
lineage in one dimension, c0 denotes the concentration of
stem cell and c1 is the concentration of TD cell. ν is the
cell cycle rate multiplied by ln 2. V represents the tissue
growth velocity driven by the proliferation and differentiation
of the cells. μ and d represent the secretion and decay rates
of molecules, respectively. D is the effective diffusion con-
stant of the molecules. Note that the asymmetric cell division
SC → SC + TD, is not included in the model, which can af-
fect the total stem cell balance mechanism if such a pathway is
significant. But actually even if the above asymmetric division
is included, the model can still be reduced [17] to an effective
form represented as in Fig. 1(a) by redefining P .

It is worthwhile to note that the TD cells in our model
will accumulate rather than being shed and the final state
will be a tissue consisting of only the TD cell resulting in
practice a “once in a life-time” growth. For a strict final-state
system, the TD cells can never turn over. However, if the turn
over rate of TD cells is slow, then the final state will better
describe the lineage dynamics on timescales that are short
relative to the TD cell lifespan. This can serve to describe the
fast growth developmental stage in which the growth rate of
TD cells is much greater than their death rate. Since tissue
morphogenesis often occurs much more rapidly than the TD
cell lifespans, final-state models may thus be inherently better
and convenient for lineage dynamics during morphogenesis,
even in self-renewing tissues.

For further explicit theoretical calculations, we shall adopt
the following Hill function form for the stem cell proliferation
probability

P (A) = p

1 + (γ A)m
, (2)

where γ is the regulation strength, m is Hill coefficient which
is a positive number and usually taken to be an integer, and
p represents the maximal replication probability. The Hill
function form in (2) is employed to describe a sharp decrease
(if m > 1) in P as a function of the concentration of the reg-
ulatory agent to model a rapid switching off of proliferation

when A exceeds some characteristic value. It is rather com-
mon to model the feedback regulation by cooperative binding
of several regulatory proteins on some binding sites, which
can be treated by statistical mechanical means and will lead to
a Hill function form [18].

Since real tissue must grow outward into physical space, it
will displace (advect) both the cells and diffusible molecules
to potentially different extent at different locations. Moreover,
molecules that mediate regulatory feedback will naturally
form spatial gradients, and feedback molecules can be con-
sidered to diffuse freely among the cells. In the study of the
regeneration of intestinal crypt in which the combination of
positive and negative feedback is considered, it was suggested
a reaction-diffusion mechanism with a short-range activation
plus a long-range inhibition can lead to Turing pattern for-
mation [11]. In the study of feedback-driven morphogenesis
with positive and negative feedback signals, a bimodal growth
behavior was reported [12]. Positive and negative feedback
certainly exist in realistic biological systems, but negative
feedback may play a more dominant role for maintaining
homoeostasis. Here we focus on the mechanism in which the
stem cell proliferation is only regulated by negative feedback
of different strengths. The effects of the secretion and death
rates of the feedback molecules in realizing different growth
behavior and hence in the control of tissue sizes are also
incorporated in our model. As will be described below, the
growth mode can switch merely by changing the negative
feedback in the absence of any positive regulation.

III. ANALYTICAL RESULTS: BISTABILITY
AND PHASE DIAGRAMS

By choosing the time and space in units of 1/d and
√

D/d
(the characteristic decay length), respectively, the number of
parameters in the governing equations in (1) and (2) can be
reduced to only four: μ̃ ≡ γμ

d , ν̃ ≡ ν
d , m, and p. The numerical

results associated with times and lengths presented in Sec. V
are all with the above natural units.

Assuming the two types of cells fill up the whole space
in which the tissue is occupying, one has the constraint c0 +
c1 = 1. Thus Eqs. (1) can be simplified to:

∂c0

∂t
+ ∂ (V c0)

∂z
= νc0[2P (A) − 1]

∂A

∂t
+ ∂ (VA)

∂z
= D

∂2A

∂z2
+ μ(1 − c0) − Ad (3)

∂V

∂z
= νc0.

Equation (3) can be rewritten to give

∂c0

∂t
= νc0[2P (A) − 1 − c0] − V (z)

∂c0

∂z
, (4)

∂A

∂t
= μ(1 − c0) − (νc0 + d )A − V (z)

∂A

∂z
+ D

∂2A

∂z2
, (5)

V (z) = ν

∫ z

0
c0(x, t )dx. (6)
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The spatially homogeneous solution, or the uniform state
dynamics of c0(t ) and A(t ), is given by putting the spatial
gradients in (4) and (5) to zero,

dc0

dt
= νc0[2P (A) − 1 − c0], (7)

dA

dt
= μ(1 − c0) − (νc0 + d )A. (8)

We first find the uniform steady-state (USS) solutions
(fixed points) in (3) and then carry out standard linear stability
analysis near the USSs. From (7) and (8), one can see easily
that the trivial USS (c0, A) = (0, μ/d ) always exists, and
other nontrivial USSs (c∗

0 �= 0, A∗) can also exist. The number
of nontrivial USSs depends on the parameter regimes, and the
values of (c∗

0, A∗) depend on μ, ν, and d , and the parameters
in P (A). The details of the calculations of the fixed points and
linear stability analysis for general feedback function P (A)
are shown in Appendix A 1. The condition for the existence
of a physical (c∗

0 > 0) nontrivial USS is rather general, it only
requires the existence of a root in (A3) which satisfies (A6)
(see Appendix A 1). The properties of the uniform steady
states and their transitions in the system is determined by the
trivial and nontrivial fixed point(s) and their stabilities.

For the Hill form feedback function in (2), as shown in
Appendix A 2, the stabilities of the USSs are determined only
by the following four positive parameters: μ̃ ≡ γμ

d , ν̃ ≡ ν
d ,

m, and p. Here m is a positive real number but not nec-
essarily constrained to be an integer. For 0 < p < 1

2 , only
the trivial USS exists and is stable. And for 1

2 � p � 1, the
stability boundary of the trivial USS (0, μ/d ) is [unstable if
μ̃ < μ̃0(p)]

μ̃ = μ̃0(p) ≡ (2p − 1)
1
m . (9)

The nontrivial USSs fixed point γ A∗ can be derived from (A3)
and is given by the root of

F (X ) ≡ (1 − ν̃)X m+1 − 2μ̃X m + (1 − ν̃ + 2pν̃ )X

− 2μ̃(1 − p) = 0, (10)

where X ≡ γ A∗.
The number of real and positive roots of X depends on the

range of values of μ̃ and can be derived analytically (details
are shown in Appendix A2b). The critical value, μ̃t at which
the number of positive roots changes from 1 to 3 (for ν̃ < 1)
or 0 to 2 (for ν̃ � 1) can be obtained from the solution of
F (Xt ) = 0 and F ′(Xt ) = 0, where Xt is the corresponding
value of the root at μ̃t . μ̃t has two branches and are given
by

2μ̃±
t = m(1 − ν̃)Y

1+ 1
m±

(m − 1)Y± − 1 + p
, (11)

where

2(1 − ν̃)Y± = [mp(1 + ν̃) + (2 − 3p)ν̃ + p − 2] ±
√

[mp(1 + ν̃) + (2 − 3p)ν̃ + p − 2]2 + (1 − p)(1 − ν̃ + 2pν̃ ). (12)

The number of roots in X (nontrivial fixed points) (see
Table I) and their stability depend on the regime set by μ̃±

t (p)
given by (11) and the stability boundary μ̃0(p) also. See Ap-
pendix A 2 for complete calculations. For physically possible
states, both c0 and A have to be real and non-negative, and
the phase diagrams in Fig. 3 summarize regions of stable
physical uniform steady states on the μ̃ � 0 and 0.5 � p � 1
plane. The nature of bifurcation and the phase diagram can
be classified into two types according to ν̃ < 1 or ν̃ � 1 as
follows.

1. ν̃ < 1

First consider the slow proliferation case of ν̃ < 1, in
which the stem cell replication rate is less than the decay rate
of the regulating molecules. One can see from Table I that
there can be three nontrivial positive roots for X for μ̃+

t <

μ̃ < μ̃−
t and one positive root otherwise. μ̃+

t and μ̃−
t approach

each other as p decreases and there is a threshold pt (ν̃)

TABLE I. Table for the number of real and positive roots of F (X )
in (10). μ̃±

t are given by (12) and (11).

m > 1 m = 1

ν̃ < 1 3 if μ̃+
t < μ̃ < μ̃−

t , 1 otherwise 1
ν̃ > 1 2 if μ̃ < μ̃−

t , 0 otherwise 2 if μ̃ < μ̃−
t , 0 otherwise

ν̃ = 1 2 if μ̃ < μ̃−
t , 0 otherwise 1 if μ̃ < p, 0 otherwise

[see (A23) in Appendix A2b] below which the three-root
regime vanishes. Detail examination indicates that at most one
(or none) of them is both physical (X � μ̃ or c∗

0 � 0) and
stable, depending on p is greater than or less than some critical
value pc, which will be analyzed in details as follows: The
μ̃−

t and μ̃0 curves cross at some “critical” value of pc, which
can be derived analytically as follows. At pc, μ̃ = μ̃0 and the
corresponding root X satisfies F (X ) = F ′(X ) = 0. Therefore,
pc(ν̃) can be calculated simply by requiring F ′(X = μ̃0) = 0
and hence pc can be derived to give

pc(ν̃) = m(1 + ν̃)

2[m(1 + ν̃) − 1]
. (13)

Therefore, a stable nontrivial USS exists for

μ̃ <

{
μ̃−

t (p) if p > pc(ν̃)
μ̃0(p) if p � pc(ν̃) . (14)

Figures 2(a)–2(c) show the typical bifurcations for p in
different regimes. The nontrivial positive roots for X ≡ γ A∗
are shown as a function of μ̃ in Fig. 2 and their stabilities
are denoted by solid (stable) and dashed (unstable) lines. In
addition, the nontrivial root is physical (i.e., c∗

0 � 0) only
for X � μ̃. The trivial root γ A = μ̃ is also shown (green
y = x straight line) whose stability is also denoted by solid
(stable) and dashed (unstable) portions. The corresponding
value of c0 for the physical and stable state is also shown (red
solid curve). For p < pc(ν̃) [see Fig. 2(a) for p < pt in the
single nontrivial root regime and 2(b) for pt < p < pc in the
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FIG. 2. The trivial (green curve) and nontrivial (blue curve) fixed points γ A as a function of μ̃ ≡ γμ

d for m = 2. The solid lines show the
stable states and the dashed lines show the unstable states. The corresponding physical (c0 � 0) and stable c0 states are also shown by the red
curve. (a) ν̃ ≡ ν

d = 0.5, p = 0.6; (b) ν̃ = 0.5, p = 0.74; and (c) ν̃ = 0.5, p = 0.9. The red vertical dotted lines shows the hysteresis behavior
and the bistable phase region lies between them. (d) ν̃ = 2, p = 0.52; (e) ν̃ = 2, p = 0.6; and (f) ν̃ = 2, p = 0.9.

three-root regime], there is a continuous transition at μ̃0(p)
from the nontrivial USS to the trivial USS as μ̃ increases. At
μ̃0(p), the trivial and nontrivial states exchange their stabil-
ities, signifying a flip bifurcation for the transition between
these two USSs [see Figs. 2(a) and 2(b)]. On the other hand,
there is a bistable regime for μ̃−

t (ν̃, p) > μ̃ > μ̃0(p) for p >

pc(ν̃) in which the trivial and nontrivial USSs coexist. There
is a first-order transition, characterized by a hystersis loop

(indicated by the arrows for the c0 curve) from the nontrivial
USS to the trivial USS as μ̃ increases.

The properties of the USSs is summarized in the phase
diagram of μ̃ vs. p shown in Fig. 3. The three-root regime
of the nontrivial state is bounded by the μ̃−

t and μ̃+
t curves

which merge together at pt as shown in Fig. 3(a). For p < 1
2 ,

only region II exists. The stability boundary for the trivial
USS, μ̃0(p), is also shown. Since the stable trivial USS lies

0.5 0.6 0.7 0.8 0.9 1
p

0

0.5

1

1.5

2

��
/d

III

I

II

(a)

0.5 0.6 0.7 0.8 0.9 1
p
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0.5

1

1.5

2

��
/d

IIIII

I

(b)

FIG. 3. The phase diagram of μ̃ ≡ γμ

d vs p with m = 2. The phase boundaries for the number of roots from equation (11), μ̃+
t and μ̃−

t

are denoted by blue dashed and red dot-dashed curves, respectively. The μ̃ = μ̃0(p) ≡ (2p − 1)
1
m curve is denoted by a green dotted curve

separating the blow-up growth (region I) and final-state growth (region II). The bistable regime (hatched region III) in which the c0 = 0 (trivial
state) and c0 > 0 (nontrivial state) uniform steady states coexist is marked by the shaded region between the μ̃−

t and μ̃0 curves. (a) ν̃ ≡ ν

d = 0.5.
The critical pt (ν ) given by (A23) and pc(ν ) given by (13) are shown by the vertical dot-dashed arrow and solid arrow, respectively. (b) Similar
phase diagram for ν̃ = 2.
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FIG. 4. (a) The critical value at which the coexistence regime vanishes, pc [given by (13) as a function of ν̃ for different values of the Hill
coefficient], m = 1 (dashed black), m = 2 (solid blue), and m = 4 (dot-dashed red). (b) The size of the coexistence regime �μ̃ ≡ μ̃−

t − μ̃0

[given by (11) and (9)] as a function of p for different values of m for ν̃ = 0.5 and (c) for ν̃ = 2.

in the μ̃ � μ̃0(p) regime, there is a bistable region with the
coexistence of the trivial and nontrivial USS [denoted by the
shaded region in Fig. 3(a)].

2. ν̃ � 1

For the rapid proliferating case of ν̃ � 1, the stem cell
replication rate is faster than the decay rate of the regulating
molecules. From Table I, one can see that there can be two
positive nontrivial roots X ≡ γ A∗, but careful examination
reveals that only one of them is both physical (X � μ̃) and
stable for p > pc. For p � pc, the two nontrivial positive roots
are both unphysical (X > μ̃). Thus the nontrivial stable USS
again lies in the region given by (14).

Figures 2(d)–2(f) show the typical bifurcations for different
regimes of p. For p � pc(ν̃) [see Fig. 2(d) for p < pc and
Fig. 2(e) for p = pc, both in the two-root regime], there is
a continuous transition at μ̃0(p) from the nontrivial USS to
the trivial USS as μ̃ increases. For p < pc, the trivial and
nontrivial states exchange their stabilities, signifying a flip
bifurcation at μ̃0(p) [see Fig. 2(d)]. For p > pc(ν̃), the trivial
and nontrivial USSs coexist associated with a hystersis loop
in the μ̃0(p) < μ̃ < μ̃−

t regime as shown in Fig. 2(f). The
phase diagram for the ν̃ � 1 case is shown in Fig. 3(b). Since
the stable trivial USS lies in the region μ̃ � μ̃0(p), there is a
coexisting bistable region for these two USSs for p > pc(ν̃),
as marked by the hatched region.

The critical value at which the coexistence regime van-
ishes, pc, is displayed as a function of ν̃ for different values
of the Hill coefficient. pc decreases monotonically with ν̃

indicating the coexistence regime increases with ν̃. pc is also
smaller for larger values of m suggesting the coexistence
regime is larger for larger m. The size of the coexistence
regime can further be characterized by �μ̃ ≡ μ̃−

t − μ̃0.
Figures 4(b) and 4(c) show �μ̃ as a function of p for different
values of m for ν̃ = 0.5 and 2, respectively, indicating that the
bistable regime increases with p and is larger for larger values
of m. Notice that for ν̃ < 1, there is no bistable regime for
m = 1.

Summarizing this section briefly in physical terms: The
trivial USS and nontrivial USS correspond to the final state
and blow-up state, respectively. The existence of the latter
can be analytical tracked by the physical root of F (X ) in
(10). The stability of these two states can also be calculated

analytically to determine their respective stabilities and the
condition of the coexistence of the final state and blow-up
state. The full phase diagram of the model and the correspond-
ing phase boundaries for the stable regimes can be calculated
analytically in terms of the parameters of the model.

IV. ANALYTIC RESULTS: TISSUE SIZE DYNAMICS

Denoting the leading edge of the issue at time t by Lm(t ),
and consider initially the SC and TD cells occupy uniformly
in 0 � z � Lm(0), where Lm(0) is the initial tissue size. The
cells will grow and advect with speed V and hence the tissue
size, Lm(t ) will increase with time, whose dynamics can be
obtained from our model equations. To determine the evolu-
tion dynamics of the tissue size, it should be noticed that even
though the nontrivial USS is stable theoretically, there is a
sharp cell density gradient in the leading edge (z = Lm) of the
tissue in practice. Such a sharp gradient in c0 can destablize
the system and lead to the blow-up growth of the tissue. Such
a scenario can be understood theoretically from our model.
The growth rate of the leading edge is given by the advection
speed, thus we have from (6)

dLm

dt
= V (z = Lm) = ν

∫ Lm

0
c0(x, t )dx. (15)

The tissue growth acceleration can also be calculated by dif-
ferentiating (15) to be

d2Lm

dt2
= ν2

∫ Lm

0
dzc0(z, t ){2P[A(z, t )] − 1} (16)

and thus it is possible to have an early stage of accelerated
growth and then slow down to the final tissue size, typical of
a realistic “S-shape” biological growth curve [19].

Since we are mostly interested in the dynamics of the tissue
size, rather on the details of the spatial density profiles of the
cells or regulatory molecules, we can further approximate the
spatial profiles to be step functions and proceed for further
analytic results. As can be seen in the numerical solutions in
Sec. IV, the step-function approximation rather good except
very near the leading edge. Under the step-profile approxima-
tion, we have c0(z, t ) = c0(t ) for 0 < z � Lm(t ) and vanishes
otherwise. Since A rapidly equilibrated and from (B1), A is
also a step profile with magnitude A = A(t ) ≡ μ(1−c0(t ))

d (1+ν̃c0(t )) in
0 < z � Lm(t ). Using (16) and take the initial stem cell profile
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to be a step function of height c0(0) and size Lm(0), one
obtains the equation of motion for Lm as

d2Lm

dt2
= ν2c0(t ){2P[A(t )] − 1}Lm, (17)

dLm

dt

∣∣∣∣
t=0

= νc0(0)Lm(0), A(t ) ≡ μ[1 − c0(t )]

d[1 + ν̃c0(t )]
. (18)

Lm(t ) can be solved together with the equation of motion of
c0(t ) which is given in (7).

A. Tissue growth timescales

We first analyze in the tissue size dynamical evolution to
the final state, and one can see from (7) that c0(t ) is always
decreasing and eventually approaches to zero. As shown in
Appendix A 1, the saturation rate of final-state growth tissue
is given by the rate of c0 approaching the trivial USS fixed
point, with the saturation timescale

τ−1
s = ν[1 − 2P ( μ

d )]. (19)

Moreover, the tissue acceleration can be positive or nega-
tive and one can derive the condition for the tissue dynamics
with a S-shape growth curve as follows, even without the
explicit solution of Lm(t ). The S-shape growth curve is sig-
nified by an early acceleration and late time deceleration as
it approaches the final state. There is an inflexion point at
t = τsw at which the grow acceleration switches from positive
to negative, i.e., d2Lm

dt2 |t=τsw = 0. From (17), one can solve for
the corresponding c0(τsw) ≡ csw

0 to be

csw
0 = μ − dP−1

(
1
2

)
μ + νP−1

(
1
2

) . (20)

Since c0(t ) is a decreases with t , therefore the inflexion point
occurs only if c0(0) > csw

0 , i.e., the initial stem-cell profile
cannot be too small to have an early acceleration growth.

Now for the case of blow-up dynamics, one can also esti-
mate the explosive growth timescale as follows. For z � Lm,
the stable uniform steady-state nontrivial fixed point domi-
nates and the cell density c0 	 c∗

0. But for z ≈ Lm, the large
negative gradient ∂zc0 dominates over the first term in (4) and
destablizes the leading edge to give rise to blow-up growth in
the tissue size. The tissue size increases exponentially with a
timescale τ , which can be estimated as follows. The growth
rate of the leading edge in this case can be estimated by
approximating the SC profile with a step function of height
c∗

0 and size Lm, thus we have from (15)

dLm

dt
	 νc∗

0Lm. (21)

It then follows that the tissue size grows exponentially with a
characteristic timescale of τ given by

τ = 1

νc∗
0

, (22)

which can be checked against the values obtained from the
fitting of the numerical solutions. It should be noted that if the
initial SC concentration is far from the USS value c∗

0, then
the system will need a few cycle times to be attracted near the
value of c∗

0 and then the tissue size will grow exponentially
with the timescale given by (22).

B. Tissue size of the final state

Here we derive an approximate formula for the ultimate
tissue size for the final-state growth, Lm(t → ∞). We shall
focus on the case in which the final state is the only stable
state [i.e., p < pc(ν̃)] characterized by the trivial fixed point.
Since for large t , c0 decays to small values, expanding (7) to
leading order in c0, one gets

dc0

dt
= −c0

τs
+ O

(
c2

0

)
, (23)

where τs is given by (19). Hence

c0(t ) 	 αe
− t

τs (24)

for some constant α to be determined. Note that the decay
timescale τs in (24) agrees with that in (19). With the same
step-profile approximation as in previous subsection, Lm(t ) is
still given by (16), but for large t , it has to satisfy the boundary
condition of dLm

dt |t=∞ = 0. For large t and hence small c0, (16)
becomes

d2Lm

dt2
	 ν2c0(t )

[
2P

(
μ

d

)
− 1

]
Lm, (25)

	 −K2e− t
τs Lm, K2 ≡ ν

τs
α, (26)

where (24) was used to obtain (26). The solution of (26) with
dLm
dt |t=∞ = 0 is

Lm(t ) = Lm(∞)J0
(
2Kτse

− t
2τs

)
. (27)

Notice that the Bessel function of the first kind has the expan-
sion J0(x) 	 1 − x2

4 + Ox4 for small x, and hence (28) agrees
with the saturation approach to Lm(∞) with the timescale of τs

discussed earlier and will be verified by the numerical solution
in next section.

The constants α and Lm(∞) can be estimated by matching
their corresponding values at some (earlier) fixed time, say,
t = f τs (for some constant fraction f ), to the extrapolated
values from the initial slopes of c0(t ) and Lm(t ). After some
algebra, one finally gets

Lm(∞) 	 1 + f ντsc0(0)

J0

(
2

√
ντsc0(0)[1 + f ντs(2P

(
μ[1−c0(0)]
d[1+ν̃c0(0)]

)
− 1 − c0(0))]

)Lm(0), (28)

for an initial SC step profile of height c0 and size Lm(0); f 	
0.5 will be shown to be a reasonable choice in practice.

Summarizing this section briefly: The equation of motion
governing the tissue size growth dynamics is derived and can
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FIG. 5. Numerical solution of the lineage model with m = 2, ν̃ = 0.5, and p = 0.6 for μ̃ = 0.2 inside region I of the phase diagram in
Fig. 3(a) corresponding to the case of blow-up tissue growth. Time evolution of the (a) SC distributions c0(z) and (b) feedback molecule
concentrations A(z). The nontrivial USS value c∗

0 is marked by the horizontal dashed line in (a). Panels (c) and (d) are similar to (a) and (b) for
μ̃ = 2 inside region II of the phase diagram in Fig. 3(a) corresponding to the case of saturated tissue growth to the final state. Time and space
are in units of 1/d and

√
D/d , respectively. Distribution curves in (a) and (b) as well as (c) and (d) are separated by a time of 10 and 5 units,

respectively.

be solved analytically to obtain the precise time-dependence,
Lm(t ) for both the blow-up and final states. Analytic expres-
sion for Lm(t ) would be very useful to implement appropriate
external control (as illustrated in Sec. VI) or designing up-
stream regulatory pathways in a timely manner.

V. NUMERICAL SOLUTIONS

The model equations (3) in one spatial dimension can be
numerically solved to investigate in details the dynamics of
the tissue growth. The numerical results can provide valuable
quantitative information on the time evolution of the tissue
size and cell density profiles. Since the regulatory feedback
molecules diffuse with a timescale much faster than that of
the cell growth dynamics, one can exploit this separation of
timescale to solve for the quasistatic spatial distribution of
A(z) first and then obtain the cell/tissue dynamics. The details
of the numerical method is given in Appendix B.

A. Blow-up state, final state, and their coexistence

The time evolution of the profiles of c0(z) and A(z) for
m = 2, ν̃ = 0.5, and p = 0.6 for μ̃ = 0.2 and μ̃ = 2 are
shown in Fig. 5 [regions I and II, respectively, in the phase
diagram Fig. 3(a)]. As predicted by the analytic result of the
phase diagram, region I corresponds to the blow-up growth
case as the profile of c0(z) expands rapidly in space and at
the same time the value of c0 also grows and approaches

the theoretical nontrivial fixed point value c∗
0 [shown by the

horizontal dashed line in Fig. 5(a)]. The corresponding tissue
size growing dynamics is shown in Fig. 9(b). The dynamical
behavior of the blow-up state can be understood qualitatively
in terms of the phase space flow as depicted in Fig. 8(b)
where the system is attracted to the only stable (nontrivial)
fixed point (c0∗ > 0, A∗). And for the dynamics in region
II, the profile of c0(z) increases very slowly in space and at
the same time c0 approaches to zero (trivial fixed point) and
the growth stops as c0 becomes extinct, characterizing the
behavior of a final state. The corresponding tissue growth dy-
namics is shown in Fig. 9(a). Again the asymptotic dynamics
is governed by the flow toward the stable (trivial) fixed point
(0, μ/d ) as qualitatively shown in Fig. 8(a). For the case of
ν̃ = 2, the time evolution of the profiles of c0(z) and A(z)
are shown in Fig. 6 for μ̃ = 0.2 and μ̃ = 2 corresponding to
region I and II, respectively, in the phase diagram Fig. 3(b).
Compared with Fig. 5 for ν̃ = 0.5, the growth dynamics is
similar qualitatively but is about 4 times faster corresponding
to a 4 times larger ν̃.

We now turn to the more interesting bistable situation as
predicted in previous section. From the phase diagrams in
Fig. 3, we compute the numerical solutions for the case of μ̃ =
1, p = 0.9 and ν̃ = 0.5. The time evolution of the profiles of
c0(z) and A(z) are shown in Fig. 7 for two different initial
values of the step-function profiles of c0 = 0.1 and c0 = 0.5
(both are of the same initial spatial extend of 5). The corre-
sponding tissue size growing dynamics is shown in Fig. 10(a).
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FIG. 6. Numerical solution of the lineage model with m = 2, ν̃ = 2 and p = 0.6 for μ̃ = 0.2 inside region I of the phase diagram in
Fig. 3(b) corresponding to the case of blow-up tissue growth. Time evolution of the (a) SC distributions c0(z), (b) feedback molecule
concentrations A(z). Panels (c) and (d) are similar to panels (a) and (b) for μ̃ = 2 inside region II of the phase diagram in Fig. 3(a) corresponding
to the case of saturated tissue growth to the final state. Time and space are in units of 1/d and

√
D/d , respectively. Distribution curves in (a) and

(b) as well as (c) and (d) are separated by a time of 3 and 0.5 units, respectively.

FIG. 7. Numerical solution of the lineage model with m = 2, ν̃ = 0.5, and p = 0.9 for μ̃ = 1 inside the bistable region of the phase
diagram in Fig. 3(a). Time evolution of the (a) SC distributions c0(z), (b) feedback molecule concentrations A(z), for initial concentration of
c0 = 0.1. Panels (c) and (d) are similar to panels (a) and (b) but for initial concentration of c0 = 0.5. Distribution curves in (a) and (b) as well
as (c) and (d) are separated by time intervals of 10 and 2, respectively. Time and space are in units of 1/d and

√
D/d , respectively.
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FIG. 8. The A vs c0 phase plane portrait obtained from (7) and (8) showing (a) the case of final state with p = 0.6, μ̃ = 0.8; (b) the case
of blow-up state with p = 0.6, μ̃ = 0.2; and (c) in the bistable regime with p = 0.9, μ̃ = 1. In all cases, ν̃ = 0.5 and γ = 1. The stable and
unstable fixed points are denoted by a filled and open circles, respectively.

The fates of the two different initial profiles are totally differ-
ent and are governed by the trivial and nontrivial fixed points
corresponding to final-state and blow-up growth, respectively.
As shown in Fig. 8(c) for this bistable regime, there are two
stable fixed points (c0, A) = (0, 1) and (0.735,0.194) sepa-
rated by an unstable fixed point (0.261,0.654). The dynamics
in the bistable region can be understood in terms of the flow
in the phase plane showing the two stable fixed points and an
unstable one separating their basins of attraction. The ultimate
fate of the system depends on the initial SC density that
lies in the corresponding attractive basin of one of the two
stable fixed point. As shown in Figs. 7(a) and 7(b), the initial
profile with c0 = 0.1 is close to the trivial fixed point and
the subsequent dynamics shows the attraction toward the final
state. On the other hand, the initial profile with c0 = 0.5 lies in
the basin of attraction of the nontrivial stable fixed point and
the dynamics evolves toward this fixed point [see Fig. 7(c)
and the horizontal dashed line] resulting in blow-up growth.
The dynamics of the system is very sensitive near the unstable
fixed point, even small perturbations can alter the fate of the
system.

B. Tissue size dynamics and different growth modes

The tissue size, which is an experimentally convenient
observable, is also calculated from the numerical solution.
Figure 9(a) displays the saturation dynamics of the tissue size
to the final state. On the other hand, the tissue size grows
exponentially fast for the case of blow-up growth as shown
in Fig. 9(b).

Figure 10(a) shows the tissue size growth dynamics in the
bistable regime for different values of initial c0. For initial
c0 = 0.1, the Lm increases and saturates to the final tissue size
at which the stem cell will extinct and the tissue growth then
stopped. On the other hand, for initial c0 = 0.5, Lm shows
a rapid exponential increase. More interestingly, for initial
c0 = 0.2, Lm displays a pronounced early stage of accelerated
growth and later on switched to a retarded growth before it
eventually approaches to the final state, which was observed

in a broad class of biological growths. Such S-shape growth
is characterized by the existence of an inflexion point in Lm(t )
or equivalently there is a maximum of the instantaneous tissue
growth speed as shown in the numerical results in Fig. 10(b).
Furthermore, it should be noted that ultimate fate of the tissue
growth depends only on the initial value of c0, but is inde-
pendent of the initial tissue size Lm(0) since the dynamics is
governed by the phase flow as depicted in Fig. 8(c).

C. Tissue growth timescales and final-state tissue size

The growth modes of the tissue to the final state is governed
by the presence of the stable trivial fixed point and the char-
acteristic dynamics is determined by the approach rate to this
stable fixed point which is predicted by (19). The saturation
timescale of the final-state growth of the tissue is then given
by

τs
−1 = ν

[
1 − 2p

1 + μ̃m

]
, (29)

which can be checked against the values obtained from the
fitting of the numerical solutions. Figure 9(a) displays the
saturation dynamics of the tissue size to the final state. The
tissue size is well fitted with the functional form Lm(t ) =
a0 + a1e− t

τs (solid curves) from which the predicted timescale
τs can be extracted (a0 and a1 are also fitting parameters).
The extracted final-state growth timescales are obtained as a
function of p for two different values of ν̃, and the results are
shown in Fig. 11(a); τs increases slowly with p and is inversely
proportional to ν̃. The theoretical predictions Eq. (29) (curves)
are also displayed showing very good agreement.

For the case of blow-up growth, our theory indicates that
the growth dynamics is governed by (15) giving rise to ex-
ponential growth. This is verified from the numerical results
of Lm(t ) in Fig. 9(b) from which the growth timescale τ can
be extracted by fitting of the tissue dynamics in the long-
time data. The extracted exponential growth timescales are
obtained as a function of p for two different values of ν̃ are
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FIG. 9. Numerical results on the tissue size dynamics of the lineage model with m = 2 for (a) μ̃ = 2 corresponding to the case of the tissue
size is governed by the final state for ν̃ = 0.5 and 2. The solid curves are fitting of results of the form Lm(t ) = a0 + a1e− t

τs . (b) Semilog plot of
the tissue size as a function of time for μ = 0.2 corresponds to the case of the blow-up growth. The straight lines in the large time regimes are
fitting using an exponential form from which the exponential growth timescales τ are obtained. Time and Lm are in units of 1/d and

√
D/d ,

respectively.

displayed in Fig. 11(b), showing very good agreement as well;
τ decreases with p and is inversely proportional to ν̃.

As shown in previous section that it is possible for the
approach to the final state via an early acceleration and then
follow by retarded growth. The condition for such a scenario
to occur is given by (20) for the initial SC cell concentration to
exceed some threshold value. For the Hill function regulation
(2), the above condition reads

c0(0) > csw
0 ≡ μ̃ − (2p − 1)

1
m

μ̃ + ν̃(2p − 1)
1
m

. (30)

Figure 12(a) shows the numerical results for the tissue size
growth dynamics for such cases. The instantaneous leading
edge speed displays a maximum at t = τsw signifying the
switch from accelerated growth to retarded growth [see the
veritcal dashed lines in Fig. 12(b)]. The dynamics of the SC
concentration is also shown and the corresponding value at
t = τsw is marked by a horizontal dot-dashed line at a value
csw

0 	 0.05, which is in reasonable agreement from the theo-
retical value of 0.047 from (30).

The ultimate tissue size can be achieved for the final-state
growth is of practical interest. From the numerical solutions,
the tissue size saturates at long times and the ultimate size,
Lm(t → ∞), can be measured. The time evolution of the
tissue size is displayed in Fig. 13(a), showing the satura-
tion approach to the ultimate tissue size. The result indicates
that Lm(∞) is not sensitive to the value of ν̃. The theo-
retical approximation of Lm(t ) for the final-state dynamics
given by (27) is also plotted, showing reasonable agreement.
The ultimate tissue size of the final state as a function of
μ̃ is shown in Fig. 13(b), showing a decrease in ultimate
size for increasing μ̃. The theoretical estimations for Lm(∞)
from (28) also show good agreement with the numerical
results.

The numerical solutions can provide detail quantitative
results such as the detail concentration profiles of the leading
edge of the growth, which is not easily obtainable analyti-
cally. In addition, the basin of attraction in the phase space
(which can only be obtained numerically) can provide valu-
able information in the evolution dynamics of the growth and
the sensitivity of external influences to alter the fate of the
growth.

FIG. 10. Different tissue growth modes in the bistable region. (a) The tissue size Lm(t ) for the system in Fig. 7 under three different initial
values of c0. Time and Lm are in units of 1/d and

√
D/d , respectively. (b) The growth speed of the leading edge of the tissue as a function

time in (a) for the initial c0 = 0.2, showing a peak at a time τsw (marked by vertical dashed line) the accelerated growth is switched to retarded
growth.
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FIG. 11. Characteristic timescales (in unit of 1/d) for the controlled growth and blow-up growth, for m = 2. Symbols are timescales
obtained from fitting of the tissue size from the numerical solutions. Curves are the corresponding theoretical predictions. (a) μ = 2 for the
case of controlled growth to the final state. Theoretical predictions are from (29). (b) μ = 0.2 for the case of blow-up growth. Theoretical
predictions are from (22).

FIG. 12. Numerical results on the tissue size dynamics of the lineage model showing the S-shape growth curve, with m = 2 for (a) leading
edge tissue size as a function of t for μ̃ = 0.48, p = 0.6, and ν̃ = 0.5 and 2. (b) The instantaneous growth speed of the leading edge of the
tissue in (a) for ν̃ = 0.5 and initial SC cell density c0(0) = 0.1 and 0.2. The maximum of the speed is marked by a vertical dashed line, which
occurs at t = τsw with the corresponding SC cell density decay to csw

0 	 0.05 (marked by dashed horizontal arrow), which agree reasonably
well with the theoretical prediction [from (30)] of 0.047 and is independent of the values of ν̃. Time and Lm are in units of 1/d and

√
D/d ,

respectively.

FIG. 13. (a) Tissue size time evolution to the final state from numerical solutions for ν̃ = 0.5 and 2 (symbols) with c0(0) = 0.1 and p = 0.4.
The theoretical approximations from (27) (with f = 0.5) for ν̃ = 0.5 (solid curve) ν̃ = 2 (dashed curve) are also shown. Time and Lm are in
units of 1/d and

√
D/d , respectively. (b) Normalized Lm(∞) as a function of μ̃ measured from the numerical solutions at long times. The

theoretical results from (28) are also shown.
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FIG. 14. Switching of growth modes by pulse control of the regulatory molecular concentration. (a) Tissue size growth dynamics with the
initial growth condition as in Fig. 7(a). Pulse control of A is applied for 5 � t � 15 (between the vertical dotted lines) by keeping A = 0.2 in
this period. The original final-state growth is boosted to the blow-up mode. (b) Tissue size growth dynamics with the initial growth condition
as in Fig. 7(c). Pulse control of A is applied for 5 � t � 15 by keeping A = 1 in this period. The original blow-up growth is suppressed to the
final-state mode. Time and Lm are in units of 1/d and

√
D/d , respectively.

VI. SOME POSSIBLE APPLICATIONS

Although the model considered in previous section is rather
simple, it can be applied to various experimental or clinical
scenarios to provide insights for practical purposes. A few
cases are considered below.

A. Growth mode switching with regulatory pulse control

The two major growth modes in our model are blow-up
growth and final-state growth, whose properties are governed
respectively by the corresponding nontrivial and trivial stable
fixed points. Moreover, in the bistable regime in which these
two growth modes can coexist, one can externally perturb
the system and drive one mode to the other and vice versa.
This can be achieved by controlling the concentration of the
regulatory molecules externally. We demonstrate this in the
bistable regime as that in Fig. 7. Figure 14 shows that different
growth modes can be switched to one another in the bistable
regime. In Fig. 14(a), the original final-state mode (dashed
curve) is switched to the blow-up mode when a pulse control,
which keeps the concentration A to a low level for a fixed
duration, is applied. Carefully examination of the evolution
of the values of c0 and A after the pulse control indicates
that the dynamics indeed flows to the nontrivial fixed point.
Conversely, as shown in Fig. 14(b), the explosive size increase
in an original blow-up growth can be suppressed by a similar
pulse control that keeps A to a high level to suppress the
subsequent growth to a final state. Quantitative knowledge
on the characteristic timescales of the blow-up and final-state
growth dynamics as described in Sec. IV B is essential in
designing the pulse control duration and the timing to applied
for a successful growth mode switching.

B. Controlability and engineered linear growth

Understanding the growth dynamics of the system enable
one to design the desired tissue growth mode by controlling
the concentration of the regulatory molecule with external
feedback, i.e., adjusting A by adding or depleting regulatory

molecules with real-time feedback according to the instan-
taneous stem cell population. Here we demonstrate such an
external feedback control design to achieve a linear growth
mode. For the tissue to grow linear with time, one requires
d2Lm
d2t = 0 and (16) tells us that this can be achieved by ad-

justing A such that 2P (A) = 1 at all times. For P (A) given
by (2), to achieve a linear growth, one simply designs the
feedback to maintain the value of A = μ̃0(p)/γ at all times.
One first needs to know the intrinsic concentration of reg-
ulatory molecules, Aintrin secreted by the cell. Aintrin can be
estimated by assuming step-function profiles for both c0 and
Aintrin. Using (4) for USS, one has Aintrin 	 μ(1−c0 )

d (1+ν̃c0 ) , thus one
needs to increase the concentration of the regulatory molecule
externally by an amount Aext = [μ̃0(p) − μ̃(1−c0 )

(1+ν̃c0 ) ]/γ .
The above feedback control is implemented in numerical

simulations and the results are displayed in Fig. 15 showing
the success of achieving the linear growing tissue size. It
should be noted that under the linear control, the growing
speed is proportional to ν̃Lm(0), but is independent of μ̃

and p.

C. Catch-up growth

Catch-up growth is often observed in child development
[20]. After a period of growth retardation caused by severe
illness, subsequent acceleration of the growth rate can occur
which involves rapid increase in weight or length in infants
until the normal individual growth pattern is resumed. This
phenomenon has been studied for hundred of years, but the
mechanism of growth transition is not very clear, and strategy
in applying external growth stimulations (by hormones or
growth factors) to achieve effective catch-up will be desir-
able. Using our theory, we can model the catch-up growth
phenomenon and give some insight for the strategic imple-
mentation. We model the catch-up growth by a transient
duration of increase in the progenitor cell cycle speed, i.e., the
proliferation rate parameter ν̃ in our model, while all other
parameters remain unchanged. The analytic phase diagram
in Fig. 3 can provide valuable insights to determine whether
a catch-up growth is possible by merely increasing ν̃. For
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FIG. 15. Tissue designed to grow linearly by feedback control of the concentration of the regulatory molecules. m = 2. (a) Time evolution
of the c0(z) profiles for ν̃ = 0.5, each curve is separated by time intervals of 60 units. Time and space are in units of 1/d and

√
D/d ,

respectively. (b) Tissue size as a function of time showing the linear growth behavior for ν̃ = 0.5 and 2. Time and Lm are in units of 1/d and√
D/d , respectively.

catch-up growth, one looks for a final state on which an
increase in ν̃ can change it to the blow-up state. Careful
examination of the two phase diagrams in Fig. 3 reveals that
switching from a final state (region II) to a pure blow-up state
(region I) is impossible because the phase boundary separat-
ing these two states is μ̃0(p) = (2p − 1)

1
m (the dotted curve)

which is independent of ν̃. However, the phase boundary
between the final state (region II) and the bistable coexis-
tence state (region III) does depend on ν̃. For instance, if one
chooses the original final state with p = 0.8, then μ̃ = 1 and
ν̃ = 0.5 [see Fig. 3(a)]. Then with an increase of ν̃ to 2 during
the catch-up period, the system is switched to the bistable
growth state [see Fig. 3(b)] and hence allowing the possibility
of a blow-up growth for catching up. In addition, the stem cell
concentration c0 cannot be too small so that blow-up growth
will occur in the bistable state. Figure 16(a) demonstrates the
success of a catch-up growth with the original final state of
p = 0.8, μ̃ = 1, c0 = 0.3, and ν̃ = 0.5; followed by a short

catch-up duration of two time units during which ν̃ is switched
to 2. As shown in Fig. 16(a), if the catch-up period occurs
at an early stage (5 � t � 7), then the catching up is rather
successful with a final tissue more than twice as the of the
original growth. On the other hand, if the catch-up occurs later
(10 � t � 12), then the effect of catch-up growth is much less
pronounced.

D. Timing in growth boosting

Here we assume the boosted growth is initiated by some
upstream regulation or external stimulations that suppress the
secretion rate of the regulatory molecules from the TD cells,
i.e., a decrease in μ, for a period of time so that the growth
can be faster to catch up. To model such a catch-up period, we
impose a pulse control of a small value of μ for some period
of time in the original final-state growth. Figure 16 shows the
tissue size dynamics for an initial final-state growth [region

FIG. 16. (a) Catch-up growth modeled by a short duration of increase in the progenitor cell proliferation rate parameter ν̃. The original
final state grows with p = 0.8, μ̃ = 1, c0 = 0.3, and ν̃ = 0.5 (dashed curve). A catch-up growth occurs at an early stage (solid curve) in
5 � t � 7 (between two vertical solid lines) during which ν̃ = 2. Another similar catch-up growth occurs at a later stage (dot-dashed curve)
in 10 � t � 12 (between two vertical dot-dashed lines) during which ν̃ = 2. (b) Boosted growth modeled by a pulse control of the secretion
rate parameter of the regulatory molecules, μ̃. The original growth of the tissue is with parameters m = 2, ν̃ = 0.5, μ̃ = 2, and p = 0.6. The
tissue size growth curves are shown for the original (dashed curve), early boosted (solid curve), and late boosted (dot-dashed curve) growths.
An early pulse control of μ̃ is applied for 5 � t � 15 with the change μ̃ = 0.1 in this period. Another similar boosted pulse control is also
applied but at a later time in 10 � t � 20. The vertical lines show the corresponding boosted periods during which μ̃ is changed. Time and Lm

are in units of 1/d and
√

D/d , respectively.
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II of the phase diagram in Fig. 3(a)], the boosted growth
is applied at an early and a later times. During the boosted
period, the value of μ̃ is kept at a low value such that the
system is pushed to region I of the phase diagram in Fig. 3(a)
for blow-up growth. In practice, to lower the value of μ̃ can be
achieved by decreasing the production rate μ or by increasing
the decay rate d of A, or by decreasing the regulation strength
γ . Furthermore, Fig. 16 also suggests that effective boosted
growth can be achieved if it is applied at an early stage (solid
curve); otherwise, if the system has already grown near to its
final state, then the same boosting duration has little effects on
the final size of the tissue (dot-dashed curve). In other word,
the timing, duration, and strength of the boosted pulse are
all essential in determining the ultimate mature size after the
boosted period.

VII. CONCLUSION AND OUTLOOK

A two-stage lineage cell model with spatially diffusive
negative feedback signaling molecules, focusing on the tissue
growth dynamics, is investigated analytically and numeri-
cally. By deriving the fixed points for the uniform steady
states and carrying out linear stability analysis, the phase
diagrams are obtained analytically for arbitrary parameters of
the model for Hill function form of the negative feedback.
Different growth modes, including saturation dynamics to a
final state of finite tissue size and blow-up growth in which
the tissue size become exponentially diverging, are obtained
in the model. The rich growth dynamics is summarized in
terms of the tissue size Lm as follows: the final-state growth
mode occurs in region II of the phase diagram, characterized
with retarded growth, d2Lm

d2t < 0, at late times. And blow-up
growth mode occurs in region I of the phase diagram with
accelerated growth d2Lm

d2t > 0. And in the bistable regime III of
the phase diagram, depending on the initial c0 concentration,
the ultimate dynamics can approach a final-state tissue size
or grow exponentially. On top of the above, it is possible
to have a typical biological growth mode of an accelerated
early growth and a retarded growth at late stage (a a S-
shape tissue growth curve), characterized by the presence of
a switching time τsw at which d2Lm

d2t = 0 (inflexion point) with
a maximal instantaneous growth speed [see Fig. 10(c)], if the
system lies in region above the phase boundary μ̃ > μ̃0(p)
and the initial stem cell density is sufficiently high [as given
by (20)]. Furthermore, the existence of a bistable regime
for a wide range of parameters would provide a buffered
regime for the controlled growth to finite tissue size against
possible stochastic fluctuations that could otherwise lead to
uncontrolled blow-up growth. It is worth to compare our
model with some similar model such as in Ref. [12] in
which both positive and negative feedback are consider in a
two-lineage model but without the explicit dynamics of a reg-
ulatory molecule (A in our model). For the special case of only
negative feedback with Hill coefficient m = 1 in Ref. [12],
bistable regime will not exist, in agreement with the prediction
in our model. In addition, our model also gives the explicit
result of pc(ν̃) [Eq. (13)] quantifying the termination of the
bistable region for p < pc(ν̃), and also predict the final-state
tissue size Lm(∞) in (28).

Several illustrative studies are also carried out to demon-
strate the possibility of applying our model to the growth
control strategy, including the controlled switching between
final-state growth and blow-up growth, the appropriate timing
for effective boosted growth and catch-up growth, and the
design to achieve a target growth dynamics such as the en-
gineered linear growth. It is demonstrated that the knowledge
of the analytic phase diagrams such as those in Fig. 3 is very
valuable for the success of implementing the growth control.

It is worth to note that in other studies of feedback-driven
morphogenesis, both positive and negative feedbacks are re-
quired to achieve the bistability. But in our model, mere
negative feedback regulation on the proliferation of stem cells
can realize the bimodal growth. In support of our finding
that just negative feedback is sufficient for achieving growth
bimodality, we note the following phenomenon was reported
in experiments. In the mouse olfactory epithelium (OE), a
reduction in the strength of FGF signaling (due to loss of
Fgf8 [21]), can lead to not just a smaller OE, but even to a
complete absence of tissues (agenesis). While agenesis due to
loss of Foxg1 can be rescued by inactivation of Gdf11 [22],
interestingly, inactivation of even a single allele of Gdf11 in
Foxg1 mutant animals can restore the OE to full thickness.
Such experimental findings were consistent with idea that
growth modes can be switched sensitively by negative feed-
back. In our model, the properties of the negative feedback
can be varied by changing the parameters γ , μ, or d , i.e.,
the regulation strength, feedback production and death are all
closely related to effectiveness of the feedback and takes parts
in the switching of the growth modes. Our findings can give
further inspirations on biological experiments that there may
be more diverse channels for the control of the growth of cell
lineages and tissue sizes.

In the theoretical analysis of the stability of the spatially
homogeneous solution, we focus on the interior region of the
tissue which is far away from the leading edge. For a steadily
growing tissue, the length scale of the leading edge with
significant concentration gradient is small compare to the bulk
tissue, and hence we only focus on the stability of the bulk
tissue in the theoretical analysis. In reality or in the numerical
solution, the concentration gradient near the leading edge will
lead to deviation from the uniform concentration profile, as
seen in the numerical plots. Also in Sec. IV, the spatial profiles
are assumed to be step functions to allow for the analytic
results on the tissue size dynamics. Since the tissue size is
mainly dominated by the growth in the bulk (which depends
on the bulk concentration), the assumption of a step-function
profile (neglecting the shape profile of the leading edge) is
reasonable. Such assumptions in the theoretical analysis can
be justified from the fact that the results of the tissue growth
dynamics measured from the numerical solutions agree well
with the analytic predictions. On the other hand, one needs
to resort to the numerical solution for the detail concentration
profile of the leading edge.

In our model, the stem cell might become extinct in the
parameter regime of the final-state growth. On the other hand,
due to changes in environmental stimuli or changes in inter-
nal/external conditions, the biological system might need to
adapt and to re-start to grow again, such as in the case of
fast tissue regeneration. Then the system needs to be regulated
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by other upstream pathways that would lead to the revival of
the stem cell production, together with the regulations that
cause the change or switch of the parameters in the current
status. Such a possibility of adaptability to change the growth
pattern can be extended in the present framework by including
possible upstream regulatory pathways.

One spatial dimension is considered in this work in the
theoretical model (1), which can be extended to higher dimen-
sions by ∂z(V c0) → ∇ · ( �V c0) and ∂2

z → ∇2, with a growth
velocity vector �V . For higher spatial dimensions, the same
USS solutions hold as in the one-dimensional case, i.e., the
same trivial and nontrivial fixed points will govern the growth
fate of the system, and hence one expects the conclusion in
the present work is expected to hold qualitatively also. For the
simple case that �V is along the (outward) normal direction of
the tissue boundary, similar numerical schemes (as outline in
Appendix B) can be applied as in the one-dimensional case
with the extra complication of updating a moving domain
boundary, and the resulting dynamics is qualitatively similar.
In general, the growth velocity (direction and magnitude) is
determined by the tissue mechanics and constitutive equa-
tions of the cells niches and tissues. For instance, �V can be
assumed to be the passive velocity governed by some gen-
eralized Darcy’s law as a result of the pressure induced by
cell proliferations as well as determined by the fluxes due to
the interactions among the cells. The resulting growth of the
tissue, cell concentration and pressure field can also be solved
numerically. However, due to the complex interactions and
the interplay of soft-tissue mechanics, new spatial instabilities
might arise that could lead to spatial patterns which is an
interesting problem to be explored in details.

The present work focused on a simple two-stage lin-
eage cell model, it can also be extended to include
lineage of multiple stages [3] or branched lineages [23]
with cross-regulations across different lineages. The in-
terplay among self-proliferation, differentiation and de-
differentiation [15,24], and cell-cell interactions [25,26] can
be incorporated to investigate the effects on the growth dy-
namics. With the present theoretical basis, more sophisticated
clinical situations can be modeled with appropriate extension
of the present model. For example in cell transplantation,
the growth dynamics for a transplanted new growing bud in
a mature tissue is the focus of regenerative medicine. The
transplantation experiments in mouse muscle showed that the
myofiber associated satellite cells are allowed to repopulate
injured muscle [27]. In such experiments the transplanted
cells, which are FGF2-treated prior to transplantation, trigger
an abnormally high rate of myoblast proliferation and differ-
entiation, which can be sustained without further intervention
for years. Our model can be extended to include two types
of stem cells with different parameters corresponding to the
(original) final state and blow-up state (for the transplanted
cells). The above transplantation growth dynamics can be

modelled by coupled partial differential equations of the two
stem cell concentrations and the feedback molecular concen-
trations.
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APPENDIX A: UNIFORM STEADY STATES
AND THEIR STABILITY

1. General P (A) and linear stability analysis

First, we consider general negative feedback regulatory
function P (A), which is assumed to be a monotonic decreas-
ing function. The USS is given by the equations for the fixed
points

c2
0 = (2P (A) − 1)c0, (A1)

νc0A = μ(1 − c0) − Ad. (A2)

One can see easily that the trivial fixed point (c0, A) =
(0, μ/d ) always exists, and the nontrivial fixed point(s)
(c0∗ �= 0, A∗) may exist which is given by the root of the
following equation for A∗:

2(μ + νA)P (A) = 2μ + (ν − d )A, (A3)

and c∗
0 is given by

c∗
0 = 2P (A∗) − 1, (A4)

= μ − A∗d

μ + νA∗ . (A5)

It follows that for physical nontrivial solution of 1 � c∗
0 > 0,

one has P (A∗) > 1
2 , and using (A3), it is also equivalent to

0 � A∗ <
μ

d
. (A6)

Notice that although in general the nontrivial fixed point
c∗

0 �= 0, it can be seen from (A3) and (A5) that c∗
0 = 0 at the

specific value of (P−1 always exists since P (A) is a monotonic
decreasing function)

μ = μ0 ≡ P−1( 1
2 )d. (A7)

The stability of the fixed point can be analyzed by con-
sidering small deviations from the USS (c(u)

0 , A(u) ) with c0 	
c(u)

0 + δc0 and A 	 A(u) + δA. Then (3) is linearized to give

∂

∂t

(
δc0

δA

)
= −

(
νc(u)

0 (1 + z∂z ) − ν{2P (A(u) ) − 1} −2νc(u)
0 P ′(A(u) )

μ + νA(u) νc(u)
0 (1 + z∂z ) + d − D∂2

z

)(
δc0

δA

)
. (A8)
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For the trivial fixed point of (0,
μ

d ), and deviation with
spatial wave number q, i.e., δA ∼ eiqz, the eigenvalues of the
Jacobian matrix in (A8) can be calculated to be −(d + Dq2)
and ν(2P ( μ

d ) − 1). Hence the trivial fixed point will be stable
for all wavelengths if P ( μ

d ) < 1
2 and becomes unstable for

P ( μ

d ) > 1
2 . Since P (A) is a monotonic decreasing function,

this implies that the trivial state is unstable for small values
of μ

d but becomes stable for sufficiently large μ

d . In addition,
a stable trivial fixed point of c0 = 0 corresponds to the con-
trolled growth of the tissue whose size approach a final-state
saturated value. The saturation rate of final-state growth tissue
is given by the rate of c0 approaching the trivial USS fixed
point and can be estimated from the corresponding Jacobian
matrix whose eigenvalues and eigenvectors can be calculated
to give

λ = −d, (0, 1), (A9)

λ = −ν

[
1 − 2P

(
μ

d

)]
,

(
ν̃
[
1 − 2P

(
μ

d

)] − 1
μ

d (1 + ν̃)
, 1

)
. (A10)

Since the eigenvector corresponding to λ = −d has no com-
ponent along the c0 axis, thus the asymptotic dynamics of
c0 relaxing to the stable c0 = 0 final state is governed by
the other eigenvalue. Hence the corresponding saturation
timescale (τs) for the final-state growth is then given by

τ−1
s = ν

[
1 − 2P

(
μ

d

)]
. (A11)

For the nontrivial fixed point of (c∗
0 �= 0, A∗), with δc0 and

δA ∼ eiqz, the Jacobian matrix from (A8) is

J∗ =
[−νc∗

0 (1 + iqz) 2νc∗
0P ′(A∗)

−μ − νA∗ −νc∗
0 (1 + iqz) − d − Dq2

]
. (A12)

Careful analysis reveals that the real part of the eigenvalue
of J∗ is independent of the imaginary term iqz, and hence
the stability of the nontrivial USS is determined by J∗|iqz=0,
whose trace and determinant are given by

Tr = −2νc∗
0 − d − Dq2, (A13)

det = νc∗
0[νc∗

0 + d + Dq2 + 2(μ + νA∗)P ′(A∗)]. (A14)

Since Tr < 0 and hence the nontrivial USS is stable (unstable)
if det > 0 (<0). From (A7) and (A14), it follows that at
μ = μ0 is always a stability boundary since c∗

0 (and hence the
determinant also) changes sign on it.

2. Fixed points of the uniform steady states and stability
analysis for P (A) = p

1+(γA)m

Hereafter, we shall consider the case with P (A) = p
1+(γ A)m ,

where m > 0 and is usually taken to be positive integer as
a Hill coefficient. First, for p < 1

2 , the trivial USS of (0,
μ

d )
is the only fixed and there is no nontrivial fixed point of
c∗

0 > 0. Notice that for nontrivial uniform state with c∗
0 > 0

[hence 1 � P (A∗) > 1
2 ], 1 � p > 1

2 . Equations (A3) and (A5)
reveal that c∗

0 and γ A∗ are determined only by the following
four positive parameters: μ̃ ≡ γμ

d , ν̃ ≡ ν
d , m > 0, and p > 1

2 .
In fact, it is also clear that the behavior of the dynamical
system (1) (by choosing the time and space in units of 1/d

and
√

D/d , respectively) is also governed solely by these four
dimensionless parameters. In particular, varying the parameter
μ̃ leads to interesting bifurcation behavior as will be shown in
Fig. 2.

a. Trivial uniform steady state and its stability

The trivial fixed point (c0, A) = (0, μ/d ) always exists and
is independent of the form of P (A), but the Jacobian matrix
depends on P (A) and in this case is simply

J0 = d

[
ν̃
( 2p

1+μ̃m − 1
)

0

−γ μ̃(1 + ν̃) −1

]
. (A15)

Hence for p < 1
2 , the trivial fixed point is always stable. And

for 1
2 � p � 1, the trivial USS will be stable (unstable) if 1 +

μ̃m > 2p (<2p), or the stability boundary of the trivial USS is

μ̃ = μ̃0(p) ≡ (2p − 1)
1
m . (A16)

b. Number of nontrivial uniform steady states

For P (A) = p
1+(γ A)m , it is convenient to define X ≡ γ A∗,

and from (A3) the nontrivial fixed point γ A∗ is given by the
root of

F (X ) ≡ (1 − ν̃)X m+1 − 2μ̃X m + (1 − ν̃ + 2pν̃ )X

− 2μ̃(1 − p) = 0. (A17)

For positive integer values of m, F (X ) is a polynomial of
degree m + 1 (or degree m if ν̃ = 1), and we shall examine the
possible number of positive roots below. Direct calculations
give F (0) = −2μ̃(1 − p)� 0 and F ′(0) = 1 + (2p− 1)ν̃ > 1
(since p > 1

2 ). Furthermore, one has

F ′(X ) = (1 − ν̃)(m + 1)X m − 2mμ̃X m−1 + 1 − ν̃ + 2pν̃,

(A18)

F ′′(X ) = mX m−2[(m + 1)(1 − ν̃)X − 2(m − 1)μ̃]. (A19)

There will be an inflexion point (i.e., F ′′ = 0) for X at X =
2(m−1)μ̃

(m+1)(1−ν̃ ) . Hence there is a single inflexion point on the
positive x axis for ν̃ < 1, while there is no inflexion point
for ν̃ � 1. Therefore it follows that there can only be one
or three nontrivial positive root(s) for ν̃ < 1 and none or 2
nontrivial positive root(s) for ν̃ � 1. Remarkably, the number
of positive roots depends on the range of values of μ̃ and
can be calculated analytically as follows. The critical value,
μ̃t at which the number of positive roots changes from 1 to
3 (for ν̃ < 1) or 0 to 2 (for ν̃ � 1) can be obtained from
the solution of F (Xt ) = 0 and F ′(Xt ) = 0, where Xt is the
corresponding value of the root at μ̃t . Using (10) and (A18),
with Y ≡ X m

t and after some algebra, one can show that Y
satisfies a quadratic equation

(1 − ν̃)Y 2 − [mp(1 + ν̃) + (2 − 3p)ν̃ + p − 2]Y

+ (1 − p)(1 − ν̃ + 2pν̃ ) = 0, (A20)
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whose solution Y± is given by

2(1 − ν̃)Y± = [mp(1 + ν̃) + (2 − 3p)ν̃ + p − 2] ±
√

[mp(1 + ν̃) + (2 − 3p)ν̃ + p − 2]2 + (1 − p)(1 − ν̃ + 2pν̃ ) (A21)

with the corresponding μ̃t given by

2μ̃±
t = m(1 − ν̃)Y

1+ 1
m±

(m − 1)Y± − 1 + p
. (A22)

Further analysis reveals that for the case of ν̃ < 1, there are
three positive roots for μ̃+

t < μ̃ < μ̃−
t and one positive root

otherwise. μ̃+
t and μ̃−

t approach each other as p decreases and
there is a threshold pt (ν̃) below which the three-root regime
vanishes. pt (ν̃) can be calculated by setting the square root in
(12) to zero to give

pt (ν̃) = 4m(1 − ν̃)

(1 + m2)(1 + ν̃) + 2m(1 − 3ν̃)
. (A23)

For ν̃ � 1, there are two positive roots for μ̃ < μ̃−
t , and

no positive root otherwise. The number of positive roots for
the special case of m = 1 can also be figured out directly.
The results for the number of positive roots in F (X ) with the
corresponding conditions on the values of μ̃ are summarized
in Table I.

It should be noted the nontrivial states given by the positive
roots in Table I need to comply with the physical requirement
of c∗

0 > 0, namely X < μ̃. As the value of μ̃ changes, the
possibility of the emergence of new fixed points in pairs (via
saddle-node bifurcations) can lead to interesting transition for
new states, as will be explored below.

c. Stability of the nontrivial uniform steady states

Next, we examine the stability of the uniform nontrivial
states which is governed by the determinant of the Jacobian
J∗|q=0 in (A12)

det = νc∗
0[d + νc∗

0 + 2(μ + νA∗)P ′(A∗)]. (A24)

With P (A) given by (2), c∗
0 = 2P (A∗) − 1 and X ≡ γ A∗, one

has

det = d2ν̃c∗
0

[
1 + ν̃c∗

0 − 2mp(μ̃ + ν̃X )
X m−1

(1 + X m)2

]
. (A25)

X satisfies F (X ) = 0 from which one can express X in terms
of Y ≡ X m as

X = 2μ̃(1 − p + Y )

(1 − ν̃)Y + 1 − ν̃ + 2pν̃
. (A26)

On substituting (A26) in (A25) and after some algebra, the
determinant can be written as

det = d2ν̃c∗
0(Y + 1)

1 − p + Y
{(1 − ν̃)Y 2 − [mp(1 + ν̃) + (2 − 3p)ν̃

+ p − 2]Y + (1 − p)(1 − ν̃ + 2pν̃ )}. (A27)

It is clear that det contains the same quadratic factor in Y as in
(A20) and hence the boundaries for the emergence of new pair
of roots, μ̃±

t in (11) are also the stability boundaries det = 0.
In addition, for the special value of μ̃ = μ̃0(p) ≡

(2p− 1)
1
m [which is the stability boundary of the trivial USS

(9)], F (X ) in (10) becomes

F (X ) = (1 − ν̃)X m+1 − 2μ̃X m + (1 + ν̃μ̃m)X − μ̃(1 − μ̃m).

(A28)

It is easy to verify directly in (A28) that F (X = μ̃) = 0,
and hence X = μ̃ is always a nontrivial root on the μ̃ =
μ̃0(p) curve for arbitrary values of ν̃. Furthermore, since c∗

0 =
2p/(1 + X m) − 1 = 0, thus the corresponding det vanishes
[see Eq. (A8)] on the μ̃0(p) line, regardless of the values of
ν̃. This result also agrees with (A7). Hence the μ̃0(p) line is
also the stability boundary for one of the nontrivial roots.

APPENDIX B: NUMERICAL METHODS

Since the dynamics of the regulatory molecules is much
faster than that of the tissue growth rate, it is reasonable to
assume the quasistatic condition (with V = 0 and ∂t A = 0, but
∂zV �= 0) for the dynamics of A in the numerical computation.
By choosing the time and space in units of 1/d and

√
D/d ,

respectively, from (3) the steady-state distribution of A in a
fixed spatial domain of [0, Lm] obeys{

∂2
z − [

1 + ν̃c0(z)
]}

A + s(z) = 0, (B1)

where s(z) = μ

d [1 − c0(z)], together with the no flux bound-
ary conditions at z = 0 and z = Lm,

∂zA|0 = ∂zA|Lm = 0. (B2)

Equation (B1) with boundary conditions (B2) can be solved
using the Green’s function approach. In particular, for the
case of c0 → 0 or ν̃ = 0, the Green’s function can be derived
analytical to be

G(z, z′) = cosh z< cosh(Lm − z>)

sinh Lm
, (B3)

where z> (z<) denotes the greater (lesser) of z and z′. The
quasistatic solution of A is then given by

Aν→0(z) = μ/d

sinh Lm

{ ∫ z

0
dz′ cosh z′ cosh(Lm − z)[1 − c0(z′)]

+
∫ Lm

z
dz′ cosh z cosh(Lm − z′)[1 − c0(z′)]

}
.

(B4)

For ν̃ > 0 and c0 > 0, (B1) with boundary conditions (B2)
are solved numerically for given c0(z). Space is discretized
into grid points of mesh size �x in the range of 0.1 to 0.2.
Since (B1) is a linear ordinary differential equation and hence
using the finite different method, the discretized system can be
solved conveniently by linear algebra with a home-made code
using the LAPACK package [28]. For given initial profile of
c0(z) and A(z), which are usually taken to be step functions,
time is marched forward with a fixed time step δt = 10−3–
10−4. At a given time t with given c0(z, t ) and Lm(t ), A(z)
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is numerically solved from (B1) on the grid points. Then
Lm(t + δt ) at the next time step is advanced forward using (6)
and (15), and c0(z, t + δt ) computed from (4). From the initial

c0(z, 0), the above calculations are repeated for each forward
time step and hence the numerical solutions for the dynamics
can be obtained.

[1] B. Alberts et al., Molecular Biology of the Cell, 5th ed. (Garland
Science, New York, 2007).

[2] K. Kretzschmar and F. M. Watt, Lineage tracing, Cell 148, 33
(2012).

[3] A. D. Lander, K. K. Gokoffski, F. Y. M. Wan, Q. Nie, and A. L.
Calof, Cell lineages and the logic of proliferative control, PLoS
Biol. 7, e1000015 (2009).

[4] M. B. Miller and B. L. Bassler, Quorum sensing in bacteria,
Annu. Rev. Microbiol. 55, 165 (2001).

[5] W. Y. Chiang, Y. X. Li, and P. Y. Lai, Simple models for quorum
sensing: Nonlinear dynamical analysis, Phys. Rev. E 84, 041921
(2011).

[6] J. Gou, W. Y. Chiang, P. Y. Lai, M. Ward, and Y. X. Li, A theory
of synchrony by coupling through a diffusive chemical signal,
Physica D 339, 1 (2017).

[7] A. S. Alvarado and S. Yamanaka, Rethinking differentia-
tion: Stem cells, regeneration, and plasticity, Cell 157, 110
(2014).

[8] R. Nusse and H. E. Varmus, Wnt genes, Cell 69, 1073
(1992).

[9] C. S. Chou, W. C. Lo, K. K. Gokoffski, Y. T. Zhang, F. Y. Wan,
A. D. Lander, A. L. Calof, and Q. Nie, Spatial dynamics of
multistage cell lineages in tissue stratification, Biophys J. 99,
3145 (2010).

[10] W.-T. Yeh and H.-Y. Chen, A minimal spatial cell lineage model
of epithelium: Tissue stratification and multi-stability, New J.
Phys. 20, 053051 (2018).

[11] A. D. Lander, L. Zhang, and Q. Nie, A reaction-diffusion
mechanism influences cell lineage progression as a basis
for formation, regeneration, and stability of intestinal crypts,
BMC Syst. Biol. 6, 13 (2012).

[12] S. Kunche, H. Yan, A. L. Calof, J. S. Lowengrub, and A. D.
Lander, Feedback, lineages and self-organizing morphogenesis,
PLoS Comput. Biol. 12, e1004814 (2016).

[13] N. L. Komarova, Principles of regulation of self-renewing cell
lineages, PLoS ONE 8, e72847 (2013).

[14] W. C. Lo, C. S. Chou, K. K. Gokoffski, F. Y. M. Wan, A. D.
Lander, A. L. Calof, and Q. Nie, Feedback regulation in multi-
stage cell lineages, Math. Biosci. Eng. 6, 59 (2009).

[15] M. X. Wang, Y. J. Li, P. Y. Lai, and C. K. Chan, Model on
cell movement, growth, differentiation and de-differentiation:
Reaction-diffusion equation and wave propagation, Eur. Phys.
J. E 36, 65 (2013).

[16] M. X. Wang, Y. Q. Ma, and P. Y. Lai, Regulatory effects on
the population dynamics and wave propagation in a cell lineage
model, J. Theor. Biol. 393, 105 (2016).

[17] Suppose SC proliferates or differentiates to SC→SC+SC,
SC→SC+TD, and SC→TD+TD with probabilities r, 1 − r − s,
and s, respectively, then it is easy to show that now the
right-hand side of the first and second equations in (1) be-
come νc0(r − s) and νc0(1 − r + s), respectively. Hence by
redefining 2P − 1 ≡ r − s, one effectively has the same model
depicted as in Fig. 1(a). Hence even if the asymmetric division
SC→SC+TD is included, the system can still be described by
the form in (1).

[18] R. Phillips, J. Kondev, J. Theriot, and H. Garcia, Physical Biol-
ogy of the Cell, 2nd ed. (Garland Science, New York, 2013).

[19] S. Kingsland, The refractory model: The logistic curve and the
history of population ecology, Q. Rev. Biol. 57, 29 (1982).

[20] A. Lucas, M. S. Fewtrell, P. S. W. Davies, N. J. Bishop, H.
Clough, and T. J. Cole, Breastfeeding and catch-up growth in
infants born small for gestational age, Acta Paediatr. 86, 564
(1997).

[21] S. Kawauchi, J. Shou, R. Santos, J. M. Hebert, S. K. McConnell,
I. Mason et al., Fgf8 expression defines a morphogenetic center
required for olfactory neurogenesis and nasal cavity develop-
ment in the mouse, Development 132, 5211 (2005).

[22] S. Kawauchi, J. Kim, R. Santos, H. H. Wu, A. D. Lander, and
A. L. Calof, Foxg1 promotes olfactory eurogenesis by antago-
nizing Gdf11, Development 136, 1453 (2009).

[23] G. Buzi, A. D. Lander, and M. Khammash, Cell lineage branch-
ing as a strategy for proliferative control, BMC Biol. 13, 13
(2015).

[24] J. Y. Chang and P. Y. Lai, Uncontrolled growth resulting from
dedifferentiation in a skin cell proliferation model, Phys. Rev. E
85, 041926 (2012).

[25] M. X. Wang and P. Y. Lai, Population dynamics and wave
propagation in a Lotka-Volterra system with spatial diffusion,
Phys. Rev. E 86, 051908 (2012).

[26] H. Zhu, M. X. Wang, and P. Y. Lai, General two-species inter-
acting Lotka-Volterra system: Population dynamics and wave
propagation, Phys. Rev. E 97, 052413 (2018).

[27] J. K. Hall, G. B. Banks, J. S. Chamberlain, and B. B. Olwin,
Prevention of muscle aging by myofiber-associated satellite cell
transplantation, Sci. Trans. Med. 2, 57ra83 (2010).

[28] See, https://www.netlib.org/lapack/.

034405-19

https://doi.org/10.1016/j.cell.2012.01.002
https://doi.org/10.1371/journal.pbio.1000015
https://doi.org/10.1146/annurev.micro.55.1.165
https://doi.org/10.1103/PhysRevE.84.041921
https://doi.org/10.1016/j.physd.2016.08.004
https://doi.org/10.1016/j.cell.2014.02.041
https://doi.org/10.1016/0092-8674(92)90630-U
https://doi.org/10.1016/j.bpj.2010.09.034
https://doi.org/10.1088/1367-2630/aac2ad
https://doi.org/10.1186/1752-0509-6-13
https://doi.org/10.1371/journal.pcbi.1004814
https://doi.org/10.1371/journal.pone.0072847
https://doi.org/10.3934/mbe.2009.6.59
https://doi.org/10.1140/epje/i2013-13065-4
https://doi.org/10.1016/j.jtbi.2015.12.035
https://doi.org/10.1086/412574
https://doi.org/10.1111/j.1651-2227.1997.tb08935.x
https://doi.org/10.1242/dev.02143
https://doi.org/10.1242/dev.034967
https://doi.org/10.1186/s12915-015-0122-8
https://doi.org/10.1103/PhysRevE.85.041926
https://doi.org/10.1103/PhysRevE.86.051908
https://doi.org/10.1103/PhysRevE.97.052413
https://doi.org/10.1126/scitranslmed.3001081
https://www.netlib.org/lapack/

