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Membrane-mediated interaction of intercellular cylindrical nanoparticles
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Nanoparticles in intercellular gaps, junctions, or seals could have close contact with neighboring cells
simultaneously. Understanding the interaction between intercellular nanoparticles and confining cell membranes
is of fundamental importance, not only to the unravelling of endocytic mechanisms but also to implications
such as controlled drug delivery in tumor tissues. Here we theoretically examine the mechanical behaviors
of adhesive cylindrical nanoparticles confined between two lipid membrane patches of finite size. As the size
of the particle-membrane contact region or wrapping degree increases, neighboring cylindrical nanoparticles
become separated and the nanoparticle distance increases first and then decreases until the particles are fully
trapped by adjacent membrane patches. Depending on the nanoparticle size, adhesion energy, membrane bending
rigidity and tension, and intermembrane distance, three characteristic particle-membrane interaction phases are
determined as no wrapping, partial trapping, and full trapping, and the corresponding interaction phase diagram
is established. Further energy comparison indicates that multiple nanoparticles undergoing the two-membrane
trapping process do not exhibit cooperative effects. Analytical estimations on the system energy and configura-
tions at equilibrium are performed based on the force balance of the membranes at small deformation and match
well with numerical solutions. The results shed light on the mechanical behaviors of multiple nanoparticles in
cell junctions or gaps and may have implications for drug delivery in tumor tissues.

DOI: 10.1103/PhysRevE.104.034403

I. INTRODUCTION

Cellular interaction with nanoparticles has been the sub-
ject of renewed focus for decades owing to its fundamental
necessity in many fields of physical and molecular biology of
cells, nanomedicine, and safe applications of nanotechnology,
such as endocytosis, drug delivery, and nanomaterial safety
[1–3]. Once the nanoparticles come into contact with a cell,
the overall adhesive force arising from either specific binding
or nonspecific interaction between the nanoparticle and cell
membrane, or both, lowers the free energy of interaction,
and leads the membrane curving and wrapping around the
nanoparticle at the cost of elastic deformation energy from
membrane bending and tension as well as possible particle
deformation. The free-energy reduction from the energetic
competition mentioned above drives the wrapping process
until the nanoparticle is fully wrapped by the cell mem-
brane. Nanoparticles attaching on a cell surface or in a dilute
cell cluster are interacting with a single cell membrane, and
it has become well-known that the single-membrane wrap-
ping around nanoparticles exhibits dependence of particle
size, shape, elasticity and surface functionalization [1–4]. For
example, the cell uptake of nanoparticles is regulated not
only by the particle stiffness [5] but also the substrate stiff-
ness [6]. In cases of two identical spherical nanoparticles
binding to a membrane, the membrane-mediated interaction
between particles on the same membrane side could be at-
tractive or repulsive, depending on the wrapping degree [7];
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while the interaction between spherical particles on the oppo-
site membrane sides is always attractive [8]. Two-dimensional
theoretical studies on the interaction between two rigid
cylindrical nanoparticles on a membrane indicate repulsive
(attractive) interaction for particles on the same (opposite)
membrane side [8–11].

Other intriguing theoretical works on the membrane-
mediated interaction between anisotropic nanoparticles at-
taching on the membrane [12] or inclusions such as membrane
proteins embedded in the membrane [13–17] have also been
performed. For nanoparticles attaching on the membrane, the
membrane surface is intact as a simply connected region
and the membrane-particle contact zone evolves as the mem-
brane deforms and wraps around the nanoparticles, while
in the case of membrane inclusion interaction the mem-
brane is multiply connected and it could be adopted that
the membrane-inclusion interface geometry and associated
contact angles are fixed by the inclusion shape and central
hydrophobic region.

In contrast to the single-membrane wrapping, nanoparti-
cles confined between intercellular gaps, junctions, or seals
could form tight contact with neighboring cell membranes
simultaneously [18,19]. Understanding mechanical behaviors
of confined nanoparticles and their interaction with confining
membranes is of importance to deep drug delivery in tumor
tissues, whose microenvironment is structurally heteroge-
neous and contains dense interstitial structures with separation
distances as short as a few or tens of nanometers [20]. So far
little work has been done in exploring the interaction between
intercellular nanoparticles and confining cell membranes, par-
ticularly from a theoretical viewpoint [21,22]. A recent work
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FIG. 1. Schematics of two (a) and three (b) identical parallel rigid adhesive cylindrical nanoparticles confined between two adjacent cell
membranes. The vertical intermembrane distance between the membrane ends is fixed at D. A two-dimensional Cartesian coordinate rz is
adopted such that these two initially flat membranes are located at z = ±D/2 and the system is of mirror symmetry about the plane r = 0 and
z = 0. Red curves represent regions of contact between the nanoparticles and membranes, and black and blue curves represent free parts of
the membranes and particles, respectively. The distance between centers of neighboring nanoparticles is denoted by Lp. The arclength of each
outer free membrane is measured from the contact edge. For the inner free membrane, its arclength is measured from the z axis in panel (a) and
from the inner contact edge in panel (b).

combining experimental studies, theoretical modeling and
molecular dynamics simulations demonstrates that spherical
nanoparticles could be trapped in narrow intercellular seals
with impeded cell uptake [21]. Further theoretical investiga-
tion reveals shape-dependent cell interaction with intercellular
nanoparticles, that is, confined cylindrical nanoparticles are
trapped between two neighboring membranes and confined
spherical nanoparticles could undergo a state transition from
two-membrane trapping to single-membrane wrapping as the
wrapping degree increases [22]. It remains unclear how mul-
tiple confined nanoparticles interact with each other.

Here we perform a theoretical study on the membrane-
mediated interaction of parallel infinitely long cylindrical
nanoparticles confined between two adjacent lipid membranes
of finite sizes. The system energy at equilibrium and cor-
responding trapping configurations at different values of the
membrane tension and intermembrane distance are deter-
mined. The nanoparticle distance increases first and then
decreases as the wrapping degree increases. It is also found
that there is no visible cooperative trapping for these con-
fined nanoparticles. The nanoparticle-membrane interaction
phase diagram describing transition between states of no
wrapping, partial trapping, and full trapping is established.
Moreover, analytical attention is devoted to the system energy
and configurations at small membrane deformation. Our work
provides mechanistic insight into the mechanical behaviors of
multiple intercellular nanoparticles, and may aid the develop-
ment of deep drug delivery in tumor tissues.

II. MODEL AND METHODS

To investigate the mechanical interplay between multiple
identical rigid cylindrical nanoparticles and two cell mem-
branes of a fix intermembrane distance D, a theoretical
model as shown in Fig. 1 is built in which the particle-
membrane system configuration is assumed to be of mirror
symmetry about the planes r = 0 and z = 0 in the adopted
two-dimensional Cartesian coordinate rz. Here we concern
the case of nanoparticle radius a > D/2. Due to the specific
configuration symmetry, our theoretical analysis hereinafter is

focused on the right lower quarter of the system. At a < D/2,
the cylindrical nanoparticles are assumed to interplay with a
single membrane, and the corresponding membrane-mediated
particle interaction is repulsive as previous theoretical analy-
ses indicate [8–11].

In the case of two parallel cylindrical nanoparticles
[Fig. 1(a)], the membrane is divided into three portions:
inner free, outer free, and contact regions. Quantities per-
taining to the inner and outer free membrane regions are
identified by subscripts 1 and 2, respectively. Adopting the
Canham-Helfrich membrane theory [23,24], the membrane
elastic energy per unit length in the out-of-plane direction is
[5,9,11,12]

Eel = 4 ×
[

κ

2

∑
i=1,2

∫ li

0

(
dψi

dsi

)2

dsi + σ�L + πκ

2a
f

]
, (1)

where κ and σ represent the bending rigidity and a con-
stant lateral tension of the membrane, respectively; ψi, si,
and li denote the tangent angle, arclength, total arclength of
the free membrane region, respectively. �L = ∑

i=1,2

∫ li
0 (1 −

cos ψi )dsi + a[π f /2 − (sin α + sin β )] is the excess length
induced by membrane wrapping, where α and β denote
the contact angles between the cylindrical nanoparticle and
the inner and outer free membrane regions, respectively.
The wrapping degree is f = (α + β )/π as the length ratio
between the contact region and the circumference of the cylin-
drical nanoparticle. Zero membrane spontaneous curvature is
assumed. In Eq. (1), the assumption of the constant membrane
tension σ presupposes a membrane area reservoir. The mem-
brane tension σ , characterizing the energetic cost of pulling
excess area from the reservoir, can also be understood as a
chemical potential for the total membrane area in the sense of
a constant area per lipid [25]. Values of the membrane tension
could vary in a wide range from 0.003 mN/m to 2 mN/m [26].
For example, the membrane tension of neurons falls in a range
from 0.003 mN/m to 0.04 mN/m [27]. Within the brackets in
Eq. (1), the first term denotes the membrane bending energy
of the free regions, the second term is the membrane tension
energy, and the third term represents the membrane bending
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energy of the contact region. The prefactor 4 arises from equal
energy contribution from four quarters of the system.

By introducing a new variable ti ≡ si/li and converting the
integral interval [0, li] for si to a unit interval [0,1] for ti,
Eq. (1) can be expressed as

Eel

4κ/a
=

∑
i=1,2

a

2li

∫ 1

0

(
dψi

dti

)2

dti + 2σa2

κ
× �L

2a
+ π

2
f .

The total system energy is Etot = Eel − γ × 4πa f , where
γ (>0) is the nanoparticle-membrane adhesion energy. In a
dimensionless form, one has

Etot (σ̄ , γ̄ , ψi, dψi/dti, li/a)

κ/a
= Eel

κ/a
− 2π f γ̄ ,

where σ̄ = 2σa2/κ and γ̄ = 2γ a2/κ .
In the case of three nanoparticles [Fig. 1(b)], the membrane

is divided into four portions: inner and outer free membrane
regions, and inner and outer contact regions. Subscripts 1 and
2 are used to identify quantities associated with the inner and
outer free membrane regions, respectively, unless stated oth-
erwise. Therefore, the membrane elastic energy of the system
is

Eel = 4 ×

⎡
⎢⎢⎢⎣

κ

2

∑
i=1,2

∫ li

0

(
dψi

dsi

)2

dsi

+ σ�L + πκ

4a
f1 + πκ

2a
f2

⎤
⎥⎥⎥⎦, (2)

or

Eel

4κ/a
=

∑
i=1,2

a

2li

∫ 1

0

(
dψi

dti

)2

dti

+ 2σa2

κ
× �L

2a
+ π

4
( f1 + 2 f2),

where f1 = 2θ/π and f2 = (α + β )/π represent the
wrapping degrees of the inner and outer nanoparticles,
respectively, and the wrapping-induced excess length is
�L = ∑

i=1,2 li
∫ 1

0 (1 − cos ψi )dti + a[π ( f1 + 2 f2)/4 −
(sin α + sin β + sin θ )]. The total system energy is

Etot = Eel − γ × 2πa( f1 + 2 f2)

or in a dimensionless form as

Etot (σ̄ , γ̄ , ψi, dψi/dti, li/a)

κ/a
= Eel

κ/a
− π ( f1 + 2 f2)γ̄ .

With Eqs. (1) and (2) and geometric relations dri/dti =
li cos ψi and dzi/dti = li sin ψi, the system energy and con-
figurations can be characterized as functions of ψi = ψi(ti )
with ti ∈ [0, 1] (i = 1, 2). In our numerical calculations, the
tangent angle ψi is approximated by a cubic B-spline curve
ψi = ∑n

j=0 c(i)
j N (i)

j (ti ), where c(i)
j are coefficients of the basis

functions N (i)
j defined recursively on a knot vector of ti. A

typical choice of the knot vector of ti in a cubic B-spline fitting
is {t (0)

i , t (1)
i , t (2)

i , . . . , t (n+4)
i } with t (k)

i = 0 (k = 0, 1, 2, 3) and
t (k)
i = 1 (k = n + 1, . . . , n + 4).

At a given intermembrane distance D and wrapping de-
gree f (or fi), the minimum energy state of the system is
determined using the interior-point approach in constrained

nonlinear optimization. During energy minimization the fol-
lowing boundary and constraint conditions provide either
input parameters or equality constraints for the determination
of variables c(i)

j and li.
In the case of two cylindrical nanoparticles, the center

of the right nanoparticle is located at (Lp/2, 0) with Lp

as the prescribed distance between centers of neighboring
nanoparticles. The tangent angles ψ1 = 0 at the mirror plane
r = 0 (s1 = 0 or t1 = 0) and ψ2 = 0 at the remote boundary
s2 = l2 (or t2 = 1) are required to enforce the membrane flat-
ness there. At the contact edges, the continuities of r and
z coordinates and tangent angles of the membrane are re-
quired. With the relations r2(l2) = r2(0) + l2

∫ 1
0 cos ψ2dt2 and

z2(l2) = z2(0) + l2
∫ 1

0 sin ψ2dt2, the r and z coordinates of the
end of the right lower membrane is constrained at r2(l2) = R
and z2(l2) = −D/2. We take R = 20a in our calculations,
unless stated otherwise. The prescribed total wrapping degree
f with a partition of f = (α + β )/π with positive α and β

acts as an equality constraint. For three nanoparticles with the
prescribed particle distance Lp, the boundary and constraint
conditions are quite similar to the case of two particles.

III. NUMERICAL RESULTS AND DISCUSSION

A. Membrane interaction with two confined
cylindrical nanoparticles

We first probe how two cylindrical nanoparticles mechan-
ically interact with confining membranes. As an example, we
perform case studies of different values of f and σ̄ at D/a =
1.4 (Fig. 2). It is found that the two cylindrical nanoparti-
cles are energetically favorable to stay in contact with both
membranes and be trapped between them, similar to the case
of one intercellular cylindrical nanoparticle at D/a < 2 [22].
At f = 0 (no-wrapping state), the energy minimum state is at
Lp = 2a with two nanoparticles staying in contact with each
other. Similar to this phenomenon that cylindrical nanoparti-
cles are in tight contact at the no-wrapping state with small
intermembrane distance D < 2a, confined spherical nanopar-
ticles at the no-wrapping state in a membrane nanotube of a
diameter D < 2a stay in contact [28–30]. As f increases, two
neighboring nanoparticles gradually become separated and
the nanoparticle distance Lp increases first and then decreases
until the nanoparticles are fully trapped by the adjacent mem-
branes with both inner and outer regions staying in touch. In
the full-trapping state [marked by the symbols in Fig. 2(c)],
the nanoparticles have no exposure to external environments.
For a given intermembrane distance D, the maximum value
of Lp decreases as σ̄ increases. During the transition from
the partial-trapping state to full-trapping state, the inner mem-
branes form contact first and then outer membranes come into
contact [Figs. 2(d) and 2(e)] with a further decrease in Lp

[Fig. 2(c)]. In addition to numerical calculations, theoretical
predictions of the energy, particle distance, and system con-
figuration based on small deformation assumption have also
been performed in the Appendix. It is shown that the small
deformation assumption works very well for the profile of
particle distance versus the wrapping degree f and system
configuration [see dashed lines in Figs. 2(b)–2(e)].
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FIG. 2. Two rigid cylindrical nanoparticles interacting with confining membranes. (a) Elastic energy Eel as a function of the particle
distance Lp for different values of the wrapping degree f at σ̄ = 1 and D/a = 1.4. (b), (c) Eel and Lp/a as functions of f for different
σ̄ at D/a = 1.4. (d), (e) Selected system configurations at σ̄ = 1 and 4. Square symbols in (a) mark the minimum energy states. Dashed
lines in panels (b) and (c) represent results based on Eq. (A12), and the particle-membrane interaction states marked by symbols in panels
(b) and (c) correspond to the full-trapping states with the outer membranes just in touch. Configurations in panels (d) and (e) from top to
bottom correspond to five states, no-wrapping with Lp = 2a, partial-trapping with maximum nanoparticle distance, partial-trapping after the
maximum nanoparticle distance and before inner membranes in touch, partial-trapping with inner membranes in touch, and full-trapping with
both inner and outer membranes in touch. The particle-membrane interaction states marked by symbols in panels (b) and (c) correspond to the
full-trapping states with the outer membranes just in touch. Dashed lines in panels (d) and (e) denote the system configuration based on small
membrane deformation assumption.

Effects of the intermembrane distance D on the elastic
energy profiles Eel( f ) and nanoparticle distance Lp( f ) at
σ̄ = 4 are analyzed in Fig. 3. It is shown that Eel( f ) is
not sensitive to D [Fig. 3(a)]. At D/a = 2, Lp varies mildly
with f . At D/a < 2, there is a peak in the Lp( f ) profile,
and the maximum nanoparticle distance Lmax

p slightly de-
creases but the corresponding f significantly increases as D
decreases.

Having knowledge of Eel( f ) in Figs. 2 and 3, the profile
of total system energy Etot = Eel − γ × 4πa f can be deter-
mined. Depending on the value of γ̄ , three interaction states
can be reached (Fig. 4). At small γ̄ , Etot increases mono-
tonically with f and the no-wrapping state with f = 0 is
adopted as the equilibrium state. As γ̄ increases, the stable
state changes from no wrapping to partial trapping. Further
rise in γ̄ leads to a stable state of full trapping. In the cases
of partial trapping, there exist two kinds of system config-
urations, in one configuration there is no contact between
two adjacent membranes, in the other configuration there is
tight contact between the inner portions of two membranes. In

the full-trapping state, both inner and outer membranes form
contact, and the particles are fully enveloped.

Based on the energy profile Etot ( f ) in Fig. 4, at equilibrium
state the relationship between f and γ̄ with given σ̄ and D/a
and further the phase diagram of the nanoparticle-membrane
interaction for two confined cylindrical nanoparticles with
respect to γ̄ and σ̄ at given D/a can be obtained and are
selectively shown in Fig. 5. It is found that the minimum
adhesion energy γ̄min for partial trapping of two confined
cylindrical nanoparticles is almost equal to 1, similar to the
result for trapping of a single nanoparticle between adjacent
membranes [22]. At γ̄ < γ̄min, f = 0 and two particles stay in
contact. As γ̄ exceeds γ̄min, finite f is reached and increases
with increasing γ̄ until the full-trapping state marked by the
symbol is achieved [Fig. 5(a)]. At a given γ̄ (> γ̄min), the
wrapping degree f increases as σ̄ or D decreases. Summa-
rizing the relationship between f and γ̄ , one can determine
phase boundaries between the no- and partial-wrapping states
as well as partial- and full-trapping states [Fig. 5(b)]. At a
given D/a, γ̄ required for full trapping is almost linearly
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FIG. 3. Effects of the intermembrane distance D on the evolution
of the elastic energy Eel ( f ) and nanoparticle distance Lp( f ) in the
case of two confined nanoparticles at σ̄ = 4. The particle-membrane
interaction states of symbols are the full-trapping states with the
outer membranes just in touch.

proportional to σ̄ . The dash-dotted lines in the partial-trapping
regime denote the boundaries between the configurations
with and without contact between inner membrane parts
[Fig. 5(b)].

The interaction phase diagram, except the boundaries
marking inner membrane touching, in Fig. 5(b) for two cylin-
drical nanoparticles confined between membranes is almost
the same quantitatively as that for a single cylindrical nanopar-
ticle confined between membranes (Fig. 6 in Ref. [22]). As the
interaction phase diagram is a reflection of the energy profile,
the above observation suggests that the presence of a second
nanoparticle does not save the system elastic energy per par-
ticle and there is no visible cooperative trapping in the sense
of system energy evolution. These two nanoparticles simply
undergo individual trapping but in a synchronized manner of
system deformation. This conclusion is also confirmed by ob-
serving that the elastic energy profiles Eel( f ) per nanoparticles
is almost the same as that for the case of a single cylindrical
nanoparticle confined between membranes [22].

A related phenomenon is the wrapping of multiple con-
fined spherical nanoparticles by soft membrane nanotubes

FIG. 4. Total energy change Etot of three nanoparticle-membrane
interaction states as a function of the wrapping degree f for different
values of γ̄ at σ̄ = 4 and D/a = 1.4. Solid symbols and the dotted
red curve linking them correspond to the global minima at dif-
ferent γ̄ .

[28–30]. In the case of two identical spherical nanoparticles of
radius a in a tense lipid membrane nanotube of finite length,
the particle distance Lp increases from 2a to a maximum
value and then decreases as the adhesion energy increases
or equivalently the wrapping degree increases [28], similar to
the trends observed in Figs. 2(c) and 3(b). In another case of
packing multiple nanoparticles in a membrane nanotube with
an infinite periodic pattern, it is revealed that there are two
fundamental modes of interaction between these nanoparticles
and the soft nanotube, the cooperative wrapping and individ-
ual wrapping [30]. At relatively small membrane tension, the
cooperative wrapping is preferred [29,30]. At relatively large
membrane tension, confined spherical nanoparticles at small
and large wrapping degrees are cooperatively wrapped by the
membrane nanotube, and particles are wrapped individually
at intermediate wrapping degree [30].

In the preceding calculations, R = 20a is taken and it
is shown that there is a finite maximum value of Lp/a as
f varies. Recalling that the membrane-mediated interaction
of two cylindrical nanoparticles of circular [8–11] or ellip-
tical [12] cross-sections attaching on the same side of an
infinitely large membrane is always repulsive, one might
wonder whether two cylindrical nanoparticles confined be-
tween adjacent membranes would always repel each other at
an infinity R/a. To understand the effects of the membrane
size on the nanoparticle-membrane interaction and indirect
particle-particle interaction, profiles of elastic energy Eel( f )
and nanoparticle distance Lp( f ) are investigated at different
values of R/a (Fig. 6). As a larger membrane leads to easier
and larger deformation, the upper and lower membranes of
larger size come into contact at smaller f in the full-trapping
state [Fig. 6(a)]. In comparison with Eel( f ) in Fig. 6(a)
showing insensitivity to R/a, the membrane size has stronger
effect on Lp( f ). As R/a increases, the distance between the
nanoparticles at equilibrium increases. One could anticipate

034403-5



ZEMING WU AND XIN YI PHYSICAL REVIEW E 104, 034403 (2021)

FIG. 5. (a) Wrapping degree f as a function of γ̄ at different values of σ̄ and D. (b) Nanoparticle-membrane interaction phase diagram
with respect to γ̄ and σ̄ for two cylindrical particles confined between membranes at D/a = 0.6, 1, 1.4, 1.8, and 2. Symbols in panel (a) mark
the full-trapping states.

that Lp/a would approach infinity as the membranes become
infinitely large, that is, the membrane-mediated interaction of
two confined cylindrical nanoparticles between two infinity
membranes at D/a < 2 is always repulsive.

B. Membrane interaction with three confined
cylindrical nanoparticles

To gain more insight into the mechanical interplay between
cylindrical nanoparticles and adjacent membranes, we now
perform case studies of three confined cylindrical nanoparti-
cles. As γ̄ increases, both the wrapping degrees of the inner
( f1) and outer ( f2) particles increase; as σ̄ increases, the
maximum values of f1 and f2 increase [Fig. 7(a)]. Moreover,
f1 reaches its maximum first, that is, the inner nanoparti-
cle reaches the full-trapping state first, as demonstrated in
Fig. 7(c). Similar to the case of two confined cylindrical
particles, at the no-wrapping state the nanoparticles stay in
contact with each other (Lp = 2a). As f increases, neigh-
boring nanoparticles become separated and Lp increases first
and then decreases until all nanoparticles are fully trapped
[Figs. 7(b) and 7(c)]. At a given D, the maximum value of
Lp decreases as σ̄ increases. Comparing Fig. 7(b) (symbols
therein) and Fig. 5, one can see that more adhesion energy is

required for all three nanoparticles reaching the full-trapping
state in comparison with the two-nanoparticle case. Confined
cylindrical nanoparticles undergo individual trapping rather
than cooperative trapping.

IV. FURTHER REMARKS

Our theoretical results indicate that the mode of in-
teraction between confined cylindrical nanoparticles and
adjacent membranes is two-membrane trapping. Adoption of
the two-membrane trapping mode suggests that intercellular
cylindrical nanocarriers of anticancer drugs can undergo ther-
apeutic diffusion laterally within the membrane confinement.
Our recent theoretical studies indicate that intercellular spher-
ical nanoparticles at large adhesion energy and intermembrane
distance could detach from one membrane and be wrapped
by the other membrane [22]. Therefore, intercellular cylin-
drical nanoparticles might have a better chance of spreading
throughout solid tumors rather than being engulfed nearby the
tumor surface.

In the present model, the cylindrical nanoparticles are
assumed to be parallel. Though this parallel alignment is
only one limiting case of general mutual particle orien-
tations, this specific orientation assumption is consistent

FIG. 6. Profiles of elastic energy Eel ( f ) (a) and nanoparticle distance Lp( f ) (b) for σ̄ = 4 and D/a = 1.4 at different values of the
membrane size R. Insert in panel (b) shows profiles of Lp( f )/R.
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FIG. 7. Membrane interaction with three confined rigid cylindrical nanoparticles at R/a = 20. The wrapping degrees for inner ( f1) and
outer ( f2) nanoparticles (a) and nanoparticle distance Lp (b) as functions of adhesion energy γ̄ at different values of σ̄ and D/a. (c) Selected
system configurations for σ̄ = 1 and D/a = 1.4 at different values of γ̄ . Configurations in panel (c) from top to bottom correspond to the state
of no wrapping with Lp = 2a, partial-trapping state with maximum Lp, partial-trapping state with inner membranes in touch, and full-trapping
with both inner and outer membranes in touch, respectively. Symbols in panels (a) and (b) refer to the full-trapping states with the outer
membranes just in touch.

with a recent theoretical study of membrane-mediated in-
clusion interaction which shows that two strongly elongated
anisotropic membrane inclusions prefer a parallel mu-
tual orientation via free-energy analysis [17]. A thorough
and firm study on the veiled orientational distribution of
confined nanoparticles with minimal assumptions is chal-
lenging and further detailed investigations are being called
for.

The particle interaction mediated by the deformed mem-
branes depends on the membrane size and wrapping degree.
For infinitely large adjacent membranes at D/a < 2, the
confined nanoparticles always repel each other. A simi-
lar repulsive membrane-mediated interaction between two
cylindrical particles attaching on the same side of a single
membrane holds [8–12]. For adjacent membrane patches of
finite size, the distance between confined nanoparticles in-
creases and then decreases as the wrapping degree increases,
that is, there exists a maximum particle distance for finite-
size membranes. The finite value of the particle distance at

the full-trapping state implies that the intercellular cylindrical
nanoparticles could be distributed throughout the tumor.

A circumstance related to cylindrical nanoparticle interac-
tion is the membrane-mediated interaction between spherical
nanoparticles either attaching on the membrane [7,8] or con-
fined between adjacent membranes [21]. For the former case,
theoretical studies and molecular dynamics simulations indi-
cate that the interaction between two spherical nanoparticles
adhering to the same membrane side can be attractive or repul-
sive depending on the extent of membrane deformation which
is regulated by the membrane bending and stretching as well
as nanoparticle binding strength [7,8]. For the case of multi-
ple intercellular spherical nanoparticles, molecular dynamics
simulations demonstrate particle aggregation and so far no
devoted theoretical studies have been performed. Whether the
interaction is always attractive for confined spherical particles
is not answered, let alone confined ellipsoidal or irregu-
lar nanoparticles. A minimal system for the confinement of
nanoparticles between lipid membranes is the particle-loaded
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multilayered vesicles or capsosomes with liposomal subcom-
partments. Understanding the interaction between membranes
and confined nanoparticles is fundamentally beneficial to the
development of therapeutic drug carriers.

V. CONCLUSIONS

Adopting the Canham-Helfrich membrane theory, a the-
oretical analysis has been performed on the membrane-
mediated mechanical interaction of parallel cylindrical
nanoparticles confined between two adjacent lipid mem-
branes. The cylindrical nanoparticles are trapped therein and
have contact with both membranes. The system energy at
equilibrium and corresponding trapping configurations are
determined using the interior-point method for constrained
optimization. As the wrapping degree increases, neighbor-
ing cylindrical nanoparticles gradually become separated and
the nanoparticle distance increases first and then decreases
until the nanoparticles are fully trapped by adjacent mem-
brane patches of finite size. Comparing the energy profiles
per nanoparticle in the cases of single and multiple confined
cylindrical nanoparticles, it is found that there is no visible
cooperative trapping for multiple cylindrical nanoparticles,
different from the possible cooperative wrapping of spherical
nanoparticles in a membrane nanotube. The nanoparticle-
membrane interaction phase diagram describing transition
between states of no wrapping, partial trapping, and full trap-
ping is determined at different intermembrane distances. It
is shown that the normalized adhesion energy required for
full trapping is almost linearly proportional to the normalized
membrane tension. Moreover, analytical predictions on the
system energy and configurations based on the force balance
of the membranes at small deformation are obtained and agree
well with numerical solutions. Our results provide mechanis-
tic insight into the mechanical behaviors of multiple cylindri-
cal nanoparticles in cell junctions or gaps, and may serve as
design guidelines for rational drug delivery in tumor tissues.
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APPENDIX: ANALYTICAL SOLUTIONS AT SMALL
MEMBRANE DEFORMATION

In this Appendix, we analytically investigate the particle-
membrane interaction based on force balance of the deformed
membranes. Taking the lower membrane as example, the sub-
scripts 1 and 2 are ignored unless they are necessary.

At zero spontaneous curvature, the local membrane force
per unit length can be given as [10,31]

�s = σ − κ

2
c2 = σ − κ

2

(
dψ

ds

)2

,

�n = −κ
dc

ds
= −κ

d2ψ

ds2
, (A1)

where c = dψ/ds is the curvature of the deformed membrane,
�s denotes the in-plane membrane force along the arclength,
and �n is the out-of-plane shear force along with the normal
direction.

Equations of the force balance along the vertical and
horizontal directions read �s sin ψ + �n cos ψ = Fz and
�s cos ψ − �n sin ψ = Fr , respectively, with Fz and Fr as
components of force on the particle along the z axis and r
axis by the deformed membrane of concern. With Eqs. (A1)
one has

Fz(s)

κ
= σ

κ
sin ψ − 1

2

(
dψ

ds

)2

sin ψ − d2ψ

ds2
cos ψ, (A2)

Fr (s)

κ
= σ

κ
cos ψ − 1

2

(
dψ

ds

)2

cos ψ + d2ψ

ds2
sin ψ. (A3)

Since the outer free membrane cannot freely adjust its config-
uration vertically with its fixed remote end, one has Fz �= 0 for
the outer free membrane. In contrast, for the inner membrane,
one has Fz = 0 before the upper and lower inner membranes
form contact, and the corresponding membrane configuration
is exactly depicted by [10]

ψ1(s1) = −π − 2am

[
s1

√
Fr

κm
− K (m), m

]
, (A4)

where m = 2Fr/(Fr + σ ), am(s, m) is the Jacobi amplitude
with parameter m, and K (m) is the complete elliptic integral
of the first kind.

At small membrane deformation, one has

sin ψ ≈ dz

dr
, cos ψ ≈ 1,

dψ

ds
≈ d2z

dr2
,

d2ψ

ds2
≈ d3z

dr3
. (A5)

With Eq. (A5), Eqs. (A2) and (A3) become

d3z

dr3
− σ

κ

dz

dr
+ Fz

κ
= 0, (A6)

d3z

dr3

dz

dr
− 1

2

(
d2z

dr2

)2

+ σ − Fr

κ
= 0. (A7)

The general solution of Eq. (A6) is

dz

dr
= B1er

√
σ/κ + B2e−r

√
σ/κ+Fz

σ
,

where B1, B2, and Fz could be determined from the following
boundary conditions.

For the outer free membrane, dz2/dr2 = tan β at the con-
tact edge s2 = 0 (r2(0) = Lp/2 + a sin β ), and dz2/dr2 = 0
and

∫ R
r2(0) (dz/dr)dr = D/2 − a(1 − cos β ) at the remote end

r = R.
Introducing ω = √

σ/κ , the above boundary conditions
lead to

B1 = [(eωR − eωr2(0) )1 + eωr2(0)3]/4,

B2 = − eω[r2(0)+R][(eωR − eωr2(0) )2 + eωR3]/4,

Fz = − σ [eωR1 − eωr2(0)2][eωR − eωr2(0)]/4,
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where

1 = −Hω + tan β, 2 = Hω + tan β,

3 = −ω[R − r2(0)] tan β,

4 = −2[eωR − eωr2(0)]2 + ω[e2ωR − e2ωr2(0)][R − r2(0)],

H = D/2 − a(1 − cos β ).

Here H is introduced as the height of the outer free membrane
part.

The shape of the outer free membrane is then determined
as

z2 = z2(0) + Fz

σ
[r2 − r2(0)] + B1

ω
[eωr2 − eωr2(0)]

+ B2

ω
[e−ωr2(0) − e−ωr2 ], (A8)

where z2(0) = −a cos β is the z coordinate of the outer mem-
brane at the contact edge.

For the inner free membrane of Fz = 0, from Eq. (A6) we
have a general solution as

dz1

dr1
= C1eωr1 + C2e−ωr1 . (A9)

From boundary conditions dz1/dr1 = − tan α at r1 = r1(s1 =
l1) = Lp/2 − a sin α and dz1/dr1 = 0 at r1 = r1(0) = 0, C1,
and C2 in Eq. (A9) are determined as

C1 = −C2 = − 1
2 tan α csch[ωr1(l1)],

and the inner membrane shape is

z1 = z1(0) + tan α

ω
[1 − cosh(ωr1)] csch[ωr1(l1)], (A10)

with z1(0) = ω−1 tan α tanh[ωr1(l1)/2] − a cos α as the z co-
ordinate of the inner membrane at s1 = 0.

Substituting Eqs. (A8) and (A10) into Eq. (A7), the balance
of horizontal forces Fr at r1 = 0 and r2 = R requires(

d2z1

dr2
1

)2
∣∣∣∣∣
r1=0

=
(

d2z2

dr2
2

)2
∣∣∣∣∣
r2=R

. (A11)

At given particle distance Lp and wrapping degree f =
(α + β )/π , contact angles α and β can be determined from
Eq. (A11) numerically.

The particle distance Lp at a given f is determined by
minimizing the total elastic energy Eel. The elastic energy of
the membrane parts in contact regions is

Ec = 4 ×
[
πκ

2a
f + σa(π f − sin α − sin β )

]
.

For the right lower outer free membrane, the bending energy
is

E (2)
bend = κ

2

∫ l2

0

(
dψ2

ds2

)2

ds2 ≈ κ

2

∫ R

r2(0)

(
d2z2

dr2
2

)2

dr2,

and the tension energy is

E (2)
ten = σ

∫ l2

0
(1 − cos ψ2)ds2 ≈ σ

2

∫ R

r2(0)

(
dz2

dr2

)2

dr2,

where cos ψ ≈ 1 − (dz/dr)2/2 is used.
Then we have

E (2)
bend = κω(A1 + A2)

4
, E (2)

ten = A3 + 2σ 2(A1 − A2)

8ωσ
,

where

A1 = [e−2ωr2(0) − e−2ωR]
(
B2

1e2I1 + B2
2

)
, A2 = 4B1B2I2,

A3 = − 4F 2
z I2 + 8σFz[e

−ωr2(0) − e−ωR](B2 + B1eI1 ),

I1 = ω[r2(0) + R], I2 = ω[r2(0) − R].

The energy of the outer membrane is Eouter = 4 × (E (2)
bend +

E (2)
ten ).

Similarly, the bending and tension energy of the right lower
inner free membrane are

E (1)
bend = κ

2

∫ r1(l1 )

0

(
d2z1

dr2
1

)2

dr1

and

E (1)
ten = σ

2

∫ r1(l1 )

0

(
dz1

dr1

)2

dr1,

respectively. Then we have

E (1)
bend = κω tan2 α csch2[ωr1(l1)]

8

{
2ωr1(l1)
+ sinh[2ωr1(l1)]

}
,

E (1)
ten = σ tan2 α

4ω
{coth[ωr1(l1)] − ωr1(l1) csch2[ωr1(l1)]},

and the elastic energy of the inner membrane is Einner = 4 ×
(E (1)

bend + E (1)
ten ).

The total elastic energy at given Lp and f is

Eel(Lp, f ) = Ec + Eouter + Einner,

and the system at given f in equilibrium and corresponding
Lp are then determined by locating

Eel( f ) = min{Eel(Lp, f )} with Lp ∈ [2a, 2(R − a)]. (A12)

Comparison between theoretical results and numerical
solutions and in Figs. 2(b)–2(e) shows that the small deforma-
tion assumption works very well for the profile of Lp- f and
system configuration.
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