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Role of bacterial persistence in spatial population expansion
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Bacterial persistence, tolerance to antibiotics via stochastic phenotype switching, provides a survival strategy
and a fitness advantage in temporally fluctuating environments. Here we study its possible benefit in spatially
varying environments using a Fisher wave approach. We study the spatial expansion of a population with
stochastic switching between two phenotypes in spatially homogeneous conditions and in the presence of an
antibiotic barrier. Our analytical results show that the expansion speed in growth-supporting conditions depends
on the fraction of persister cells at the leading edge of the population wave. The leading edge contains a small
fraction of persister cells, keeping the effect on the expansion speed minimal. The fraction of persisters increases
gradually in the interior of the wave. This persister pool benefits the population when it is stalled by an antibiotic
environment. In that case, the presence of persister enables the population to spread deeper into the antibiotic
region and to cross an antibiotic region more rapidly. Further we observe that optimal switching rates maximize
the expansion speed of the population in spatially varying environments with alternating regions of growth
permitting conditions and antibiotics. Overall, our results show that stochastic switching can promote population
expansion in the presence of antibiotic barriers or other stressful environments.

DOI: 10.1103/PhysRevE.104.034401

I. INTRODUCTION

Population expansion in space facilitates evolutionary di-
versification and survival of species [1,2]. Recent experiments
using microfluidics have demonstrated the role of spatial
structures on population expansion using microbes as model
organisms, providing insight into several eco-evolutionary
[3–6] and medically relevant questions [7–10]. For example,
in spatial environments, cooperative behaviors are sustained
[5], positively frequency-dependent selection can persist [11],
and the rapid emergence of antibiotic resistance is facilitated
[12]. Population survival and competitive strategies are the
major driving factors for many of these intriguing behaviors
[5,9,13].

A prime example of a population-level survival strategy
is bacterial persistence, where the population benefits from
a subpopulation with the persister phenotype that is more
tolerant to stresses such as antibiotics [14–16]. However,
persisters incur a cost due to their slow division rate in
growth-supporting conditions [17]. In a temporally changing
environment, the interplay between cost and benefit deter-
mines the circumstances where persistence is advantageous
[18–21]. A population expanding in space could encounter
such temporally varying conditions by moving through dif-
ferent environments in space. Therefore, we ask here how
bacterial persistence affects the expansion of a population in
space and whether a similar cost-benefit trade-off exists in
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spatially modulated environments as in temporally varying
conditions.

To this end, we study the effect of bacterial persistence in
a population spatially expanding in a homogeneous growth-
favorable environment and in a scenario where growth is
halted by an antibiotic region. We make use of the approach
introduced by Fisher [22] and Skellam [23] which has been
extensively used to describe the spatial spread of invading
species, insects, epidemic agents, and others [24]. This for-
malism allows us to write a set of wave equations for a
population of cells that reversibly switch between the nor-
mal growing state and the slow-growing persister state. We
determine the cost of persistence during growth conditions
by computing the population expansion speed as well as the
fitness advantage due to persisters in crossing an antibiotic
barrier. The scenarios studied here can be considered idealized
descriptions of real environments, for example, in the body of
a patient, but more importantly they can directly be realized
experimentally with current methods such as spatially struc-
tured environments on solid surfaces [7] or in microfluidic
devices [8,9,25].

II. MODEL FOR SPATIAL EXPANSION OF A
PHENOTYPICALLY HETEROGENEOUS POPULATION

The expansion of populations in space can be described
by the Fisher equation (or Kolmogorov-Petrovsky-Piskunov
equation)

∂n

∂t
= D

∂2n

∂x2
+ μ[1 − n]n. (1)
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FIG. 1. (a) The model equations display traveling waves moving with a constant expansion speed. The total population density (black
line) wave has contributions from two subpopulation waves corresponding to normal (red broken line) and persister cells (blue dashed line).
We have used the following parameters for numerical calculations: μn = 1 h−1, μn = 0.1 h−1, Dn = Dp = 100 μm2 h−1, a = b = 0.02 h−1.
(b) The subpopulation ratio (p/n) at the leading edge and back of the wave follows the theoretically predicted ratios for the exponential growth
(dark gray dashed line) and stationary phase (gray dashed line), respectively. (c) Expansion speed (open squares) and persister fraction at
the leading edge (closed squares) as functions of the phenotype switching rates (for a = b). The solid lines show the corresponding analytical
results. (d) The decrease in the expansion speed with the increase in persister fraction at the leading edge (open squares) follows the constitutive
relation given by Eq. (4).

Here n(x, t ) is the density of a population at position x at time
t . To keep the model simple, we consider spatial expansion
in one dimension. The two terms on the right-hand side of
the equation describe the diffusive spread of the population
in space (with a mobility or diffusion coefficient D) and
its local logistic growth with growth rate μ. Note that the
population size is normalized to the carrying capacity of the
logistic growth, i.e., to the maximum population size that can
be achieved in the spatially homogeneous conditions. In the
following we extend this equation to the case of a population
with two distinct phenotypes using bacterial persistence as
a concrete example. Bacterial persistence in the presence of
antibiotics is associated with an intrinsic phenotypic hetero-
geneity in the bacterial population. This heterogeneity arises
from the stochastic transition between the normal growing
cell state and the drug-tolerant persister state at the single-
cell level [17]. The two phenotypic states are characterized
by different growth (in growth conditions) and death rates
(in the presence of antibiotics). To include such phenotype
switching into the model, we describe the normal cells and
the persister cells by densities n(x, t ) and p(x, t ), respectively.
They are characterized by different growth rates μn and μp

and are subject to a common carrying capacity, such that the
constraint on the population size due to the logistic growth
acts on the sum n + p. In addition, we allow for different

mobility parameters Dn and Dp. A difference in mobility
can be expected if movement is due to self-propulsion; if,
however, movement is driven by external driving forces, the
two parameters will likely be the same. Finally we include
phenotype switching: A cell in the normal state can switch to
the persister state with a rate a and vice versa with a rate b.
These rates are typically small compared to the growth rate
[17].

Taking these considerations together, the dynamics of the
population composed of normal cells (n) and persister cells
(p) can be described by the following coupled differential
equations:

∂n

∂t
= Dn

∂2n

∂x2
+ μn[1 − (n + p)]n − an + bp,

∂ p

∂t
= Dp

∂2 p

∂x2
+ μp[1 − (n + p)]p + an − bp. (2)

Like the well-known Fisher equation, these equations dis-
play a traveling wave solution. The numerical solution of the
above equations is shown in Fig. 1(a) and exhibits a traveling
wave for both subpopulations. The numerical solution shows
that the fraction of persister cells is small at the leading
edge and increases progressively towards the interior of the
wave. Far from the leading edge, the subpopulation sizes
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are determined by phenotype switching alone and given by
p ≈ a/(a + b) and n ≈ b/(a + b) [in Fig. 1(b), we use equal
switching rates (a = b), which results in equal subpopulation
densities, n = p = 0.5, in the interior of the wave]. Next, we
compute the speed of the population wave as a function of the
switching rates. We find that the wave speed decreases with
increasing switching rate, while concurrently the persister
fraction at the leading edge of the wave increases as shown
in Fig. 1(c).

III. RESULTS

A. Characteristic features of the population front

The characteristic features of the population front as pre-
sented in Fig. 1 can be understood based on the subpopulation
balance during exponential growth and stationary phase in
nonmoving conditions. In the absence of movement (diffu-
sion rates are Dn = Dp = 0), during the exponential growth
phase when the population size is below the carrying capac-
ity (where n + p � 1), the ratio of persisters to the normal
subpopulation is approximately given by p/n ≈ a/(μn − μp)
[20]. The latter expression follows from a balance of two
effects: normal cell outgrow persisters with a rate μn − μp,
but also regenerate them through switching. In the stationary
phase when the population size is near the carrying capacity
(n + p ≈ 1), the ratio of persisters to the normal subpopula-
tion is p/n ≈ a/b [20]. In a spatially expanding population
(i.e., for finite diffusion rate), the front of the population
exhibits the exponential scenario, while the population is
in the stationary phase far behind the population front [shown
in Fig. 1(b)].

For the classical Fisher wave, the expansion speed is de-
termined by the growth and diffusion via the relation v =
2
√

Dμ. In our case, the growth rate is modulated by the pres-
ence of persister cells. This can be demonstrated by deriving
an equation for the total population density (P = n + p) as

∂P

∂t
= D

∂2P

∂x2
+ μavP(1 − P), (3)

where μav = μn − (μn − μp) fp and fp = p/(n + p) is the
fraction of persisters. Hence, in the presence of phenotype
switching, the expansion speed is modulated due to a finite
fraction of persisters at the tip of the population wave. We
validated this numerically by measuring the wave speed and
persister fraction simultaneously at the tip of the wave [as
shown in Fig. 1(c)]. The wave speed (denoted by c) and
persister fraction ( fp) at the wave front follow the relation
[shown in Fig. 1(d)]

c = 2
√

D[μn − (μn − μp) fp]. (4)

For small phenotype switching rates, the subpopulation
ratio at the leading edge can be approximated by that for the
exponential growth phase, fp ≈ a/(μn − μp), and the wave
speed is given by c ≈ 2

√
D(μn − a). In the limit (a → 0),

one recovers the maximal expansion speed (corresponding to
a single population without persisters). For our chosen param-
eters used in Fig. 1, the maximum wave speed is ≈20 μm h−1,
which is in the range of measured colony expansion speeds for
Escherichia coli [26]. Thus, since typically switching rates are
small compared to the growth rate, the effect of persisters on

the expansion speed is very small, even if a large subpopu-
lation of persisters exists in the stationary phase situation far
from the expansion front.

B. Exact expansion speed

Next, we use standard traveling wave analysis to ob-
tain an analytical expression for the expansion speed over a
large range of parameters (for the complete analysis see the
Appendix). This method is based on the observation that
at long times these traveling waves propagate with constant
speed and fixed front shape. This reduces the partial differ-
ential equations into an ordinary differential equation with
a single variable z = (x − ct ), the moving frame of refer-
ence. This approach has been used to estimate the expansion
speed in reaction-diffusion equations describing popula-
tion expansion, e.g., in bacterial colony expansion models
[3,27–29], in the dynamics of horizontally transmitted traits
[30] and cooperative alleles [31] in expanding population
waves. Specifically, we use the following ansatz for the sub-
population densities, n(x, t ) = n(x − ct ) and p(x, t ) = p(x −
ct ) in Eq. (2) and use the resulting equations to determine the
stability of the fixed point (n = 0, p = 0). The eigenvalues
around the fixed point provide a condition for the existence
of non-negative and nonoscillatory solutions that determines
the minimal value for the wave speed c. Our analysis revealed
that traveling waves exist when the following condition (from
the requirement that eigenvalues must be real) is satisfied:

c2

2D
� (μn + μp − a − b)

±
√

(μn − μp − a + b)2 + 4ab. (5)

Here the equality provides the minimum wave speed that
matches with the numerically computed speed values shown
in Fig. 1(c). For equal rates of phenotype switching (a =
b), the condition for the expansion speed simplifies to c2 =
2D(μn + μp − 2a ± √

4a2 + (μn − μp)2). The above condi-
tion leads to two distinct values for the expansion speed for
which a traveling wave solution exists. We call these the slow
and the fast mode, respectively. The slow mode corresponds
to a population that contains mostly persister cells, while the
fast mode corresponds to a population consisting mostly of
normal cells. This can be seen in the limit a = b = 0, when
the two subpopulation waves decouple with marginal speed
cfast = √

2Dμn and cslow = √
2Dμp. In the coupled case (i.e.,

with finite switching), the expansion speed is given by the
faster one of the two moving fronts, i.e., the positive root of the
above expression. However, in some cases, the slow mode will
also be relevant. An example is a population after crossing an
antibiotic zone. Such a population consists almost exclusively
of persisters. It will therefore first expand as a slow-mode
wave, which will eventually be taken over by a faster wave of
normal cells (generated from persister cells that switch to the
normal phenotype). This behavior is shown in Fig. 2(a) where
the simulation is started with a finite number of persister cells
and no normal cells. As the population size increases, the
fraction of normal cells increases [shown in Fig. 2(b)], and
the whole population advances with the fast mode.
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FIG. 2. (a) Expansion speed transitions from a slow (persister-dominated) to a fast (normal cell-dominated) mode as seen in our numerical
simulations (cross points) that start with a high persister fraction. The front position as a function of time exhibits the two linear regimes with
slopes that match the analytic expressions for the fast (solid line) and slow (broken line) expansion speed. (b) During the speed transition, the
fractions of the two phenotypes change; the population shifts from a persister-dominated (broken line) to a normal-cell dominated (solid line)
wave.

Comparison of the positive root of the equality in Eq. (5)
with Eq. (4) also provides an expression for the persister
fraction at the leading edge:

fp = μn − μp + a + b − √
(μn − μp − a + b)2 + 4ab

2(μn − μp)
. (6)

The expressions for the expansion speed c and the persis-
ter fraction fp show excellent agreement with the respective
numerically calculated values [shown in Fig. 1(c)]. The per-
sister fraction fp reduces to a/(μn − μp) for small switching
rates (where ab ≈ 0) in agreement with the fractions expected
in exponential phase for spatially homogeneous populations
[20].

C. Extent of penetration of the heterogeneous wave
into an antibiotic region

The above results show that spatial expansion results in a
small fraction of persisters at the tip of the wave and a larger
fraction in the wave interior. This serves as an advantageous
trait in the absence of stresses such as antibiotics, as the
population expansion is not negatively impacted by persis-
ters, while a persister pool is build up behind the expanding
front. If such an expanding population encounters a region
that is detrimental to growth, e.g., because of the presence
of an antibiotic, the expansion will stall. Population stalling
at the interface of an unfavorable environment is known to
play a crucial role in the emergence of antibiotic resistance
[7], where a key determinant is population survival inside
antibiotic environment [32]. Under such stalling conditions,
the persister fraction will slowly increase, and cells from
the stalled population will enter the unfavorable environment,
where the population density decays.

To quantify the effect of bacterial persistence in such
scenario, we consider a two-compartment environment con-
taining nutrients permitting growth in one region followed

by a region with bactericidal antibiotics leading to death
[7,32,33]. We study the decay of the population density in
the antibiotic region [as shown in Fig. 3(a)]. In that region,
the population dynamics is described by Eq. (2) with growth
terms replaced by death terms (with negative growth rates
−μs

n and −μs
p for the normal and persister subpopulation, re-

spectively). We consider the extent to which the wave spreads
into the unfavorable environment by calculating the penetra-
tion distance xe into the antibiotic compartment. The extent of
the wave is shown for different values of the switching rates
in Fig. 3(b). For fixed rate b, the largest extent is seen for the
fastest rate of switching from normal to persister state (rate
a). Over the full parameter space, the maximum extent occurs
for the lowest b and highest a values. Low b values delay the
switch back of persisters back to the normal cell state inside
the antibiotic region, which contributes effectively to their
death rate, and thereby increase the penetration depth. Low
values of the switching rate a to the persister state decrease
the fraction of persisters at the interface, and thus the pene-
tration depth is increased by high values of a. This situation
is analogous to a temporal shift between growth and antibi-
otic conditions, where faster switching rates to the persister
state lead to prolonged survival in the antibiotic conditions.
Typically, wild-type strains have low persister fractions with
rate a � b [19,34] (e.g., a ≈ 10−6 h−1 and b ≈ 10−1 h−1 for
E. coli wild-type [19]), whereas for high-persistence strains
a � b (e.g., a ≈ 10−3 h−1 and b � 10−4 h−1 for E. coli hipQ
mutant [19]). We also note that persister fractions in other
bacteria can be much higher than in E. coli, implying larger
switching rates (e.g., Staphylococcus aureus have a ≈ 10−3

and b ≈ 10−1 [35]). We find maximum (≈143 μm) and mini-
mum (≈45 μm) penetration depth at the opposite ends of the
parameter space where the persister fraction is highest (a = 1
and b = 10−5) and lowest (a = 10−5 and b = 1), respectively.
In general, the penetration depth is determined by the model
parameters such as diffusion rates (Dn,p), death rates (−μs

n,p),
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FIG. 3. (a) Steady-state profile of the total population inside an
antibiotic region (gray area) for different phenotype switching rates,
a = b = 10−1 h−1 (solid red line), 10−2 h−1 (black broken line), and
10−3 h−1 (dashed blue line). The inset shows that the population
decay is the slowest for an intermediate phenotype switching rate.
We have used μs

n = −1 h−1, μs
n = −0.1 h−1 and other parameters

are the same as in Fig. 1. (b) The penetration depth of the popula-
tion wave into the antibiotic region as a function of the switching
rates a and b. It is computed as the distance of the position where
n(xe) + p(xe) = Ntip (Ntip = 0.005 in the simulations). (c) For equal
rates a = b, the plot shows the existence of a phenotype switching
rate, for which the extent of the wave into the antibiotic region is
maximal.

population density detection limit (Ntip), etc., that depends
on the experimental conditions. When all the parameters ex-
cept switching rates are similar between different strains, our
analysis predicts that a high persistence strain will show a
larger penetration depth than a wild-type strain. Interestingly,
using a tolerance detection test, Gefen et al. [33] recently
demonstrated that, in a gradient of antibiotic concentration, a
high persistence strain is found deeper into the high antibiotic
concentration region than the wild-type strain as detected after
replenishing with nutrients. This situation differs from our
case in two respects: it is based on a smooth gradient of antibi-
otic rather than a sharp threshold and an already established
population grows and reacts to the addition of an antibiotic
addition in a certain region. Nevertheless, our simulations
show that the steady-state population density profile would
be identical for both types of dynamics, i.e., for a spatially
expanding population and for space-dependent selection in a
previously established population (Fig. 8 below).

In the specific scenario, where the two rates are varied
together (a = b), the penetration depth of the wave dis-
plays a maximum for intermediate phenotype switching rates

[Fig. 3(c)], which reflects the two opposing requirements on
the two rates. The cost associated with switching back to
normal cells (increased death rate in the antibiotic region)
is balanced by increased survival due to a larger persister
subpopulation entering the antibiotic region only for interme-
diate switching rates. These considerations can be made more
precise by analyzing the steady-state density profile in the
antibiotic region (discussed in the Appendix). The red dashed
line in Fig. 3(c) shows that the population extent estimated
from steady-state density profile agrees well with the corre-
sponding numerical results.

The extended distance over which the population decays
within the antibiotic region due to the presence of persisters
can also support the crossing of such a region of finite width,
i.e., an antibiotic barrier, a scenario we have previously stud-
ied in a model with discrete spatial compartments [21]. We
found that the presence of persister cells can decrease the
mean first arrival time of cells in a growth environment behind
an antibiotic barrier. The same is seen in the continuous-space
model described by the two-subpopulation Fisher equation
that we study here. Specifically, we find a minimum in the
crossing time as the switching rates are varied (discussed in
the Appendix).

D. Population expansion in spatially varying environments
containing growth and antibiotic regions

The above results suggest that the presence of persisters
provides a benefit when a population has to cross an antibi-
otic environment and thus, likely for expansion in spatially
heterogeneous environments that contain antibiotic regions.
Previous theoretical studies [18,19], including ours [20,21],
have shown the existence of optimal switching rates in tempo-
rally varying environments that are tuned to the environment
duration. To investigate if a similar behavior exists in spatially
periodic environments, we next study population expansion in
environments that alternate between growth sustaining condi-
tions and antibiotic conditions.

First, we focus on expansion in environments with identical
widths for the growth and antibiotic regions. For small widths
of the two regions, we did not observe any maximum in the
expansion speed; rather, the maximal speed is in the limiting
case without persisters [Fig. 4(a)]. In this case, for fixed values
of switching rate b (from the persister state back to normal
state), an increase in persister formation rate (a) decreases the
expansion speed. This trend is in contrast to the case for the
extent of the wave in the antibiotic region. This is due to a
large fraction of persister (for high a values) in the antibiotic
region that delays fast expansion in the subsequent growth
region [as discussed in Fig. 2(a)].

For larger widths of both regions, we find a global max-
imum in the expansion speed in a, b space as shown in
Fig. 4(b). The transitions between the two regimes, i.e., with
and without speed maximum, depend on the width of the en-
vironments Fig. 4(a). For our parameter values, this transition
occurs for spatial period, X � 100 μm. Further, the optimal
switching rates decrease with an increase in the environmen-
tal period. This behavior is analogous to temporally varying
periodic environments, but with one difference: the optimal
switching rates are unequal even for equal widths of the two
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FIG. 4. Expansion in symmetric periodic environments. (a) Ex-
pansion speed of the population for different switching rates (a, b)
for a short environmental width (XG = XS = X = 50 μm). The ex-
pansion speed decreases with the increase in b for fixed a values.
The maximum value of the expansion rate lies in the region with the
lowest switching rates. (b) Same as in (a) for a long environmental
width (XG = XS = X = 100 μm). (c) The switching rates (aopt, bopt)
corresponding to the maximal expansion speed (obtained from maps
like in b) varies inversely with the environmental widths (X ). (d) The
ratio between the maximum expansion speed in the presence of
persistence and the speed without persistence for different environ-
mental widths. The benefit (where the ratio is >1) from persistence
exists only after a threshold value for the environment’s width. Note
that the plotted values are based on the maximal expansion speed
observed in the simulated parameter range. Values <1 indicate that
the limiting case without persisters (not included in the simulated
parameter range) gives the maximal expansion speed.

environments. The optimal rate b is found to be about three
times higher than the optimal rate a. This difference could
come from the fact that in the case of temporal variation,
the two environmental conditions are coupled through initial
conditions only, whereas for spatial variation, the two envi-
ronments are coupled by diffusive flux at the interfaces. The
benefit due to the presence of persistence is shown in Fig. 4(d)
by computing the ratio of expansion speed with the optimal
switching rates and in the absence of phenotype switching.
Notably, the transition between the regimes where absence of
persisters is optimal and the regime with finite optimal switch-
ing rates can be identified here by considering where the speed
ratio crosses from values <1, i.e., no benefit of switching, to
values >1 corresponding to a benefit of phenotype switching.

Next we consider the case of a fixed width of the growth
region (XG = 400, 200 μm) and vary the width of the antibi-
otic region (XA � XG), as shown in Figs. 5(a) and 5(b). For
a fixed growth region width, an increase in the width of the
antibiotic region leads to a transition from no switching to
a finite switching rate as the optimal strategy for maximal
expansion speed. Our results in Fig. 5(a) for XG = 200 μm
(dashed line points) and XG = 400 μm (solid line points)
show that the optimal switching rate bopt decreases inversely

FIG. 5. Expansion in asymmetric periodic environments. (a) Op-
timal switching rates (aopt shown by squares, bopt shown by circles)
as a function of the antibiotic region width for a fixed growth region
width (XG = 400 μm and XG = 200 μm in solid and broken lines,
respectively) (b) Ratio of expansion speed with optimal switching
rates and without any phenotype switching for different antibiotic
region widths. The inset shows the absolute value of the maximum
speed for XA = 200 μm and XA = 400 μm.

with the width of antibiotic region XA, whereas the switching
rate aopt remains almost constant. A similar sharp transition
from no switching to a finite switching rate is also observed in
temporally periodic environments when the duration of antibi-
otic exposure is increased [28]. Further, with the emergence of
(finite-rate) switching as an optimal strategy, the fold change
in expansion rate increases above 1 as shown in Fig. 5(b).
Interestingly the advantage of phenotype switching through
the increased expansion speed is higher for the shorter growth
region.

IV. DISCUSSION

Theoretical and experimental studies have shown stochas-
tic switching between distinct phenotypes in bacterial pop-
ulation as a bet-hedging strategy for temporally varying
environments [18–20,36–39]. A recent study showed bet
hedging is more favorable in spatially varying environments
compared to temporally varying environments [40]. However,
it is unclear how stochastic switching dictates bacterial growth
in spatially varying environment. Here we have used a Fisher
wave approach to investigate the spatial expansion of a bacte-
rial population with stochastic phenotype switching for three
scenarios, a spatially homogeneous environment, an interface
between a growth environment and an antibiotic region and
a spatially periodic environment. The cost of the presence
of persisters during growth-favorable conditions is quantified
by the population expansion speed, for which we obtained
analytical expression. For typical switching rates, this cost is
very small, even if there is a substantial persister fraction in
behind the wave front, because the tip of the population wave
contains a rather small fraction of persister cells. The persister
pool in the back of the wave acts as a reservoir for the case
of encountering stressful environments. The subpopulation
redistribution from the tip to the back of the wave occurs at
a slower rate than the population expansion (discussed in the
Appendix). This contributes to the low cost associated with
persistence. At an boundary to a stress environment such as
an antibiotic barrier, the sub-population structure has to catch
up with the wave tip, which results in transient stalling of
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the expansion. Eventually, the number of persister cells at the
boundary increases due to subpopulation redistribution, help-
ing the population wave to spread into the antibiotic region,
thus providing the fitness advantage conferred by the presence
of persisters. Further, we found optimal switching rates for
spatially varying environments reminiscent of optimal switch-
ing rates for growth in temporally varying environments
[18–20]. In summary, our study reveals an added advantage of
bacterial persistence in spatial environments which may play
an important role in bacterial invasion and in the development
of antibiotic resistance, where persisters may provide a pool
from which resistance can emerge.

APPENDIX

1. Phenotypic redistribution in interior of the expanding wave

To quantify the change in phenotypic redistribution from
the leading edge to the interior of the wave, we define a
phenotypic flux as J = ( a

a+b n − b
a+b p). The phenotypic flux

balances out in the interior of the wave, i.e., J = 0. In the
moving frame of reference (z = x − ct), the phenotypic flux
increases (and persister fraction decreases) from zero at the
interior of the wave to the front of the wave. The increase
in J inside the fully populated region (with n + p = 1 and
D = Dn = Dp) is governed by a diffusion-decay equation,

∂J

∂t
= D

∂2J

∂x2
− (a + b)J. (A1)

For an expanding population, the phenotypic flux in the mov-
ing frame of reference thus increases as

J = J0 exp
[
z
(√

c2 + 4D(a + b) − c
)]

≈ J0 exp

[
(x − ct )

√
D

μn

(
a + b

2

)]
. (A2)

The above expression shows that subpopulation redistribution

occurs at a slower rate [with rate constant ≈
√

D
μn

( a+b
2 ) for

small ab] and that the subpopulation redistribution process
lags behind the advancing wave as shown in Fig. 6. Therefore
for small switching rates, spatial expansion results in keeping
fraction of persisters at the tip of the wave small despite a large
fraction of persisters in the interior of the wave.

2. Wave speed determination through traveling wave analysis

Using the wave solution ansatz

n(x, t ) = n(x − ct ), p(x, t ) = p(x − ct ) (A3)

and introducing auxiliary variables n′ = dn/dz and p′ =
d p/dz with z = x − ct , Equations (2) can be expressed as the
following set of autonomous first-order differential equations:

dn

dz
= n′,

d p

dz
= p′,

dn′

dz
= − c

Dn
n′ − μn

Dn
(1 − P)n + an − bp,

d p′

dz
= − c

Dp
p′ − μn

Dp
(1 − P)p − an + bp, (A4)
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FIG. 6. Phenotypic flux distribution along the wave in the mov-
ing frame of reference (z). In the populated regions (where n + p =
1), the phenotypic flux J (solid black line) increases exponentially
from the back of the wave to the front, in excellent agreement with
the analytical expression for J (dashed black line).

which can be analyzed by the standard fixed point analysis
for traveling wave solutions. The eigenvalues (λ) of the above
equations near the fixed point n′ = 0, p′ = 0, n = 0, p = 0 is
given by the following fourth-order equation:

DnDpλ
4 + c(Dn + Dp)λ3 + (c2 + Dn(μp − b)

+Dp(μn − a))λ2 + c(μn + μp − a − b)λ

+(μnμp − μnb − μpa) = 0.

For simplicity, we take Dn = Dp = D. The four
roots(λ1,2,3,4) are then given by

λ1,2,3,4= −
c ±

√
c2 − 2D

(
μn + μp − a − b ± √

�
)

2D

with � = (a + b)2 + (μn − μp)2 − 2(μn − μp)(a − b). For
the existence of a stable traveling wave solution, these these
eigenvalues must be real. This leads to the condition

c2 � 2D
(
μn + μp − a − b ±

√
�

)
, (A5)

which for a = b simplifies to

c2 � 2D
(
μn + μp − 2a ±

√
4a2 + (μn − μp)2

)
. (A6)

In the limit a = b = 0, the two conditions result in the
marginal speeds of two uncoupled waves, cfast = √

2Dμn and
cslow = √

2Dμp. In the coupled case, the wave speed is given
by the faster moving wave, i.e., the positive root.

3. Population decay in the antibiotic region

In the absence of phenotype switching, the normal popu-
lation decays exponentially [as n(x) = n0 exp(−x

√
μs

n/D)] in
the antibiotic region, and the penetration depth is given by
xe = √

D/μs
n ln(n0/Ntip ). For finite phenotype switching, the
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FIG. 7. (a) Persister fraction at the boundary of growth and
antibiotic regions as a function of the phenotype switching rate
(a = b, open circles). For large switching rate, the persister fraction
approaches fp,max = 0.5 due to equal switching rates. (b) Two char-
acteristic decay constants of the population density in the antibiotic
region, κ+ (solid line) and κ− (dashed line). Both are decreasing
functions of the switching rate. (c) The impact of the switching rate
on the persister fraction at the boundary and on κ− is sufficient to
explain the maximum in the extent of the wave as a function of
the phenotype switching rate (open circles are from the numerical
calculation). The solid line uses Eq. (A9) together with the numerical
values of f 0

p .

population dynamics in the antibiotic region at the steady state
is given by the following coupled diffusion-decay equations:

0 = D
d2n

dx2
− μs

nn − an + bp,

0 = D
d2 p

dx2
− μs

p p + an − bp. (A7)

These equation can be solved for boundary conditions
n(xb, 0) = n0 and p(xb, 0) = p0, from which we obtain the
following subpopulation profile (for a = b, Dn = Dp = D):

n(x) = 1

(l+ − l−)

×[(2ap0 − l−n0)e−x/κ− + (l+n0 − 2ap0)e−x/κ+ ],

p(x) = 1

(l+ − l−)

×[(2a n0 + l+ p0)e−x/κ− − (l− p0 + 2a n0)e−x/κ+ ]

with l± = D−1[(μn − μp)±√
4a2 + (μn − μp)2] and κ± =√

2D[(2a + μn + μp)±√
4a2 + (μn − μp)2]−1.

FIG. 8. (a) Expanding population stalled by an antibiotic region.
Initial conditions: n + p = 1 with n/p = b/a for x < 5 mm, other-
wise 0. (b) Established population decaying due to the addition of
the antibiotic region. Initial conditions: n + p = 1 with n/p = b/a
for x < 75 mm, otherwise 0. (c) Population density profile for the
case (a) and case (b) overlap each other, indicating that steady state
is independent of initial condition. The switching rates are a = 10−3h
and a = 10−4h.
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The above analytical solution shows that the subpopulation
decays exponentially with two characteristic decay constants
κ±. The slow decay term with decay constant κ− dominates
far into the antibiotic region, where the total population profile
can be approximated as

n + p ≈ [2a (n0 + p0) + l+ p0 − l−n0]

(l+ − l−)
e− x

κ− . (A8)

From this expression of the profile, we obtain the penetration
depth as

xe = κ−(a) ln

(
(n0 + p0)φ

(
f 0

p

)
Ntip

)
, (A9)

where κ− =
√

2D[(μs
n + μs

p + 2a)−
√

4a2 + (μs
n − μs

p)2 ]−1

and

φ( fp(a)) = a + (
μs

n − μs
p

)
f 0

p (a) − l−/2√
4a2 + (

μs
n − μs

p

)2
(A10)

is a function of the parameters of the dynamics and of the
persister fraction at the compartment boundary, f 0

p (a). There-
fore, the decay of the population wave in the antibiotic region
is governed by two factors: the spatial decay constant κ−(a)
and a function of persister fraction f 0

p (a) at the interface
between growth and antibiotic, both of which are a func-
tion of phenotype switching rate. The decay constant κ− is
a decreasing function in a [as shown in Fig. 7(b)] whereas
fp(a) is an increasing function [as shown in Fig. 7(a)]. The
combination of these two opposing behaviors explains the
nontrivial maximum in the extent of the wave with the vari-
ation in phenotype switching rates. In Fig. 7(c) we compare
the analytical expression of the extent of the wave to the
numerically computed value. Further we show that the extent
of the wave is independent of the initial conditions (Fig. 8).

4. Crossing of an antibiotic barrier

To study crossing of an antibiotic region, we numerically
calculate the crossing time of an expanding population fac-
ing a spatially extended antibiotic barrier of finite width (the
schematic is depicted in Fig. 9 inset; we determine the cross-
ing time as the time between the arrival of the tip of the
wave at the first and second interface). We find the crossing

FIG. 9. Antibiotic barrier crossing time of the population as a
function of the phenotype switching rate a for different barrier
widths. The crossing time is normalised with respect to the barrier
width. The inset schematic depicts the simulation setup. A long
growth region is chosen to allow the population to reach a steady
state (for each a value) before facing the antibiotic barrier.

time to show a nonmonotonic behavior as a function of the
increase in the phenotype switching rate, as shown in Fig. 9.
Specifically, we observe a minimum at intermediate switching
rates that reflects the maximum of the penetration depth into
the antibiotic region discussed above. At very low switching
rates, as one would expect for a population with no persisters,
the crossing time scales with the width of the barrier, and their
ratio becomes independent of the width and approaches simi-
lar values as shown in Fig. 9. Similarly for very fast switching
rates, the persister population first crosses the barrier, and
hence the crossing time again scales with barrier width. For
intermediate switching rates, the ratio of crossing time and
barrier width depends both on the rate of phenotype switching
and the width. This is because both normal and persister
subpopulation contribute to barrier crossing but at different
length scales; the normal cells dominate crossing over narrow
barriers, while the persister cells enable crossing of wider
barriers.
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