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Port-Hamiltonian neural networks for learning explicit time-dependent dynamical systems
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Accurately learning the temporal behavior of dynamical systems requires models with well-chosen learning
biases. Recent innovations embed the Hamiltonian and Lagrangian formalisms into neural networks and demon-
strate a significant improvement over other approaches in predicting trajectories of physical systems. These
methods generally tackle autonomous systems that depend implicitly on time or systems for which a control
signal is known a priori. Despite this success, many real world dynamical systems are nonautonomous, driven by
time-dependent forces and experience energy dissipation. In this study, we address the challenge of learning from
such nonautonomous systems by embedding the port-Hamiltonian formalism into neural networks, a versatile
framework that can capture energy dissipation and time-dependent control forces. We show that the proposed
port-Hamiltonian neural network can efficiently learn the dynamics of nonlinear physical systems of practical
interest and accurately recover the underlying stationary Hamiltonian, time-dependent force, and dissipative
coefficient. A promising outcome of our network is its ability to learn and predict chaotic systems such as the
Duffing equation, for which the trajectories are typically hard to learn.
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I. INTRODUCTION

Neural networks (NNs), as universal function approxima-
tors [1], have shown resounding success across a host of
domains including image segmentation [2], machine trans-
lation [3], and material property predictions [4,5]. However,
their performance in learning and generalizing the long-term
behavior of dynamic systems governed by known physical
laws from state data has often been limited [6,7]. New re-
search in scientific machine learning, a field that tackles
scientific problems with domain-specific machine learning
methods, is paving a way to address this challenge. Con-
cretely, it has been shown that physically informed learning
biases embedded in networks, such as Hamiltonian mechanics
[6,8] and Lagrangians [9,10], Ordinary differential equations
(ODEs) [11], physics-informed networks [12,13], generative
networks [14], and graph neural networks [15,16] can sig-
nificantly improve learning and generalization over vanilla
neural networks in complex physical domains. The perfor-
mance uplift arises primarily because learning biases are able
to constrain networks to learn physically meaningful repre-
sentations from data that are crucial to generalization.

Despite extensive research on learning biases, there is yet
no method that accounts for nonautonomous systems, i.e.,
systems with explicit time dependence. Nonautonomous dy-
namics feature prominently in settings with externally driven
or controlled time-dependent forces as well as in systems with
energy dissipation, for example, interacting materials, forced
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oscillators and charge-discharge cycles. Defining a network
to accurately learn and predict the dynamics of such systems
from position and momentum data is therefore of critical
practical interest. We address this challenge by embedding
the port-Hamiltonian formalism [17–21] into neural networks.
We show that the structure of this formulation can be used
to uncover the underlying Hamiltonian, force, and damping
terms given position and momentum data and as such, can be
used to accurately predict the long-range trajectories of many
forced or damped systems. We extensively benchmark our
network on a range of tasks including a simple mass-spring
system with damping and external force, a Duffing system
in both the nonchaotic and chaotic regimes, and a relativistic
Duffing system. Our proposed network consistently outper-
forms other approaches while accurately recovering both the
driving force and the damping coefficient. Furthermore, using
minimal data, we show that our network can visually recover
the Poincaré section of the Duffing system in a chaotic regime,
emphasizing how our network can be used to identify and
understand chaotic trajectories.

II. BACKGROUND

A. Hamiltonian neural networks

Recently, the authors of Ref. [6] demonstrated that the
dynamics of an energy conserving autonomous system can
be accurately learned by guiding a neural network to predict
a Hamiltonian, an important representation of a dynami-
cal system. Considering a dynamical system of M objects,
the Hamiltonian H is a scalar function of a position
vector q(t ) = [q1(t ), q2(t ), . . . , qM (t )] and momentum vec-
tor p(t ) = [p1(t ), p2(t ), . . . , pM (t )] that obeys Hamilton’s
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equations,

q̇ = ∂H
∂p

, ṗ = −∂H
∂q

, (1)

where q̇ = dq
dt and ṗ = dp

dt .
Using the Hamiltonian formalism, Ref. [6] showed that a

NN with parameters θ can be used to learn a Hamiltonian
Hθ (q, p) given q and p as inputs to the network. The time
derivatives are recovered from Eq. (1) by differentiating Hθ

with respect to its inputs using automatic differentiation. The
resulting system has the form,

ẋ = s(x), (2)

where x = (q, p) and s is determined by Eq. (1) after dif-
ferentiating the trained NN. Equation (2) can be discretized
using a time integrator to determine the trajectory of an ini-
tial state. Moreover, since s is the symplectic gradient of
the Hamiltonian, energy conservation is embedded into the
method by construction. Given these advantages, Hamiltonian
neural networks (HNNs) outperform traditional approaches
that directly predict the state time derivatives from the input
state. However, this formulation does not readily generalize to
damped or forced time-varying systems.

B. Port-Hamiltonian framework

The port-Hamiltonian [17–21] is a well-studied formalism
that generalizes Hamilton’s equations to incorporate energy
dissipation and an external control input to a dynamical sys-
tem. Hamilton’s equations in the port-Hamiltonian framework
are represented as:[

q̇
ṗ

]
=

([
0 I

−I 0

]
+ D(q)

)[
∂H
∂q

∂H
∂p

]
+

[
0

G(q)

]
u, (3)

where D(q) is a damping matrix, u is a temporal control input,
G(q) is a nonlinear scaling of the position vector, I is the
identity matrix, and 0 the zero matrix. The damping matrix is
semipositive definite. This general formalism readily reduces
to the standard Hamiltonian system when D = 0 and u = 0.
The port Hamiltonian has been used in control applications
where explicit knowledge of the control term u is known and
was recently shown to reveal promising results in NNs [22].
Note that in Ref. [22], the vector [q, p, u] is provided as input
to the network. However, in many applications the control
force u is unknown and it is therefore of interest to uncover
the underlying forcing term from the data of the state vector,
where no explicit knowledge of the control input and damping
term is available.

C. Related work

While Hamiltonian mechanics presents one way to ad-
dress learning dynamical systems, numerous recent methods
highlight how incorporating other physically informed in-
ductive biases into neural networks can improve learning.
Functional priors, for example, embed the full functional form
of an equation into the NN. Physics-informed neural networks
(PINNs) [12] and Hamiltonian networks [8] are two such
approaches that look at directly embedding the equations of
motion into the loss function. While PINNs are data-driven

approaches that rely on AUTOGRAD [23] to compute partial
derivatives of a hidden state, Hamiltonian networks are data-
independent approaches that prespecify the full functional
form of a system-specific Hamiltonian in the loss function.

Many recent methods have also sought to embed integra-
tors into the training process. Indeed doing so induces an
effectively continuous depth neural network able to perform
large time-step predictions. NeuralODE [11] presents one way
to tackle back-propagating through this continuous depth net-
work more efficiently.

More recent work has looked at generalizing this approach
to different and more complex data structures and topologies
that standard NeuralODEs cannot represent [24]. Other work,
such as Zhu et al. [25], theoretically shows the importance
of using symplectic integrators over Runge-Kutta methods to
evolve Hamiltonian systems in NNs.

In Ref. [15], the authors detailed how a graph neural net-
work, designed to capture the relational structure of systems,
can be used to learn dynamics of interacting particles. This
work has been exploited in numerous advances [9,26,27] and
emphasizes how a relational inductive bias can significantly
improve learning.

In Refs. [9] and [6] it has been shown that by learning the
Hamiltonian or the Lagrangian of a system, it is possible to
accurately predict the temporal dynamics and conserve en-
ergy. The work of Ref. [10] also showed that by exploiting the
Euler-Lagrange equation, it is possible to predict a controlled
double pendulum, a system pertinent for controlled robots.
A recent advance shows that Hamiltonian and Lagrangian
NNs can be drastically improved if they are optimized over
Cartesian coordinates with holonomic constraints [28].

Despite the significant breakthroughs, there is no existing
method that investigates explicit time dependence and damp-
ing in dynamical systems, two elements that are often found
in real world problems. As such, we outline a technique to
address this challenge.

III. METHOD

A. Theory

In this section we introduce port-Hamiltonian neural net-
works (pHNNs). We begin by illustrating how a NN takes
the form of the port-Hamiltonian formulation of Eq. (3) with
two modifications. First, our approach exploits the fact that
many damped systems consist of a nonzero, state-independent
damping term in the bottom right quadrant, so we replace
the damping matrix D(q) with a state-independent matrix for
which only the bottom right term is nonzero and represented
by N. Second, in order to generalize to time-dependent forc-
ing, we replace G(q)u with the force field F(t ). The resulting
representation,[

q̇
ṗ

]
=

([
0 I

−I 0

]
+

[
0 0
0 N

])[
∂H
∂q

∂H
∂p

]
+

[
0

F(t )

]
, (4)

is general enough to handle many well-known forced systems
but also specific enough to tackle learning in physical domains
of practical importance such as Duffing equation.

The architecture for the proposed pHNN model and a
summary of comparable existing approaches are shown in
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(a) (b)

(c) (d)

(e)

FIG. 1. Architectures used in this study to learn dynamical sys-
tems. The naive extension of a standard feed forward NN [outlined
in (a)] to incorporate time as an additional variable is shown in
(b) and considered as the baseline network. The standard HNN in
(c) is extended to receive time as an input and demonstrated by (d).
Our innovation is presented in (e), which exploits port Hamiltonians
and explicitly learns the force Fθ2 , the damping term Nθ3 and the
Hamiltonian Hθ1 to predict the state-time derivatives.

Fig. 1. A standard feed forward NN in Fig. 1(a) and an
HNN in Fig. 1(c) [6] take q and p as inputs and are trained
to yield the time derivatives of the input, with the HNN
learning an intermediate Hamiltonian and employing back
propagation to compute the final output. A natural way to
extend these architectures for time-varying nonautonomous
systems is to include time as an additional input. This gives
rise to the baseline network (baseline NN) represented by
Fig. 1(b) and a time-dependent HNN (TDHNN) shown by
Fig. 1(d).

Although the baseline NN and TDHNN incorporate time,
they do not provide information for the underlying dynamics
of the system. On the other hand, the pHNN is able to extract
and provide information about the stationary Hamiltonian, the
driving force, and the damping term. Moreover, the pHNN
consistently outperforms all the network architectures shown
in Figs. 1(a)–1(d) across the applications investigated in this
study.

B. Network optimization

The training of the pHNN consists of feeding the inputs
[q, p, t] into the model. The first component, Hθ1 , consists
of three hidden layers designed to predict a stationary Ĥθ1

from [q, p] input data. The second component, N̂θ3 , consists
of a single weight parameter (i.e., θ3 is a single node) de-
signed to learn the damping. The third neural-network unit
F̂θ2 solely depends on t and consists of three hidden layers
designed to predict a time-varying force. The output of each
component is transformed through Eq. (4) to obtain predic-
tions of the state time derivatives [ ˆ̇q, ˆ̇p]. Using these predicted
quantities we construct the loss function for optimizing

the pHNN:

L = || ˆ̇qt − q̇t ||22 + || ˆ̇pt − ṗt ||22
+ λF ||F̂θ2 ||1 + λN ||N̂θ3 ||1, (5)

where [q̇, ṗ] are known ground truth data. The first two
components of the left-hand side of Eq. (5) minimize the
difference between the predicted and ground truth state time
derivatives with a squared error loss. The last two components
in Eq. (5) are the forcing and damping terms that are added
to the loss function with an L1 penalty when using pHNN.
Using an L1 penalty on these terms encourages the network
to learn simpler models. We empirically found that this tech-
nique prevents the pHNN from learning spurious force and
damping terms in unforced and undamped systems compared
to an L2 penalty. The regularization parameters λF and λN

were determined via grid search (see Supplemental Material,
Appendix A [29]). We use 200 nodes per hidden layer and
find that most activation functions, including tanh(·), sin(·)
and cos(·) yield comparable results.

We generate our data using an RK4 integrator given some
initial conditions for each system. We use a small �t to evalu-
ate the integral and ensure ground truth data is generated with
rtol = 10−10. The gradients of the state at each integration step
are computed using the underlying differential equation. De-
tails about the sampling of the initial conditions are described
independently for each system in Sec. IV.

We note that in some settings it might be hard to obtain
the ground truth state time-derivatives [q̇, ṗ] for training. A
natural way to address this problem is to embed an integrator
into the training, similar to NeuralODE [11]. As such, we also
run our study with an embedded RK-4 integrator. Our method
is still the most performant when all the methods incorporate
an embedded RK-4 integrator (see Appendix in Supplemental
Material [29]) and the loss function is ([q̂, p̂]t+1 − [q, p]t+1)2.
In other words, our system can learn from either state time
derivative data or directly from state data given an embedded
integrator. We were motivated to use gradient data since HNN
is trained in this way and we wanted a fair comparison.

C. Testing

Once trained, each of the networks in Fig. 1 can approx-
imate [q̇, ṗ]. As such, these networks can be used in a time
integrator to evolve initial conditions in the test set. We re-
fer to the integration for t ∈ (0, Tmax) as the state roll out.
We measure the performance of the network by comparing
the predicted state roll out with the ground truth. Specifi-
cally, we assess the networks performance by computing the
mean-squared error (MSE) of the predicted state variables and
predicted energy (Hamiltonian) across the integration time,

MSEstate = 1

N

N∑
i=1

(qi − q̂i )
2 + 1

N

N∑
i=1

(pi − p̂i )
2 (6)

MSEenergy = 1

N

N∑
i=1

(H(qi, pi ) − H(q̂i, p̂i ))
2, (7)

where N = Tmax/�t , with �t the time step size. These terms
are computed for multiple initial conditions during inference
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and averaged across them. A guide to the training process is
outlined in Appendix B (see Supplemental Material [29]).

IV. RESULTS

We benchmark the performance of pHNNs against the
other networks shown in Fig. 1. We evaluate the methods
over datasets that cover simple time-independent systems to
complex chaotic damped and driven dynamical systems. The
results are presented in order of increasing complexity from a
model perspective.

A. Simple mass-spring system

We begin our analysis with a simple mass-spring system
(harmonic oscillator), obeying Hooke’s law from classical
physics with no force or damping. The Hamiltonian that de-
scribes such a system reads:

H = 1

2
kq2 + p2

2m
, (8)

where k is the spring constant and m denotes the mass. In
this one-dimensional system the position and momentum are
scalar functions of time.

Training. Without loss of generalization, we set k = m = 1
for our experiments. We randomly sample 25 initial training
conditions [q0, p0] that satisfy q2

0 + p2
0 = r2

0 where 1 � r0 �
4.5, which corresponds to sampling initial conditions with
energies in the range [1, 4.5]. We evolve each initial state
using a RK-4 integrator with �t = 0.05 and Tmax = 3.05.

Testing. We evaluate the performance of the NNs by sam-
pling 25 random initial conditions in the same way as training.
We investigate the simple harmonic oscillator system and
show that learning a separate, regularized forcing term re-
sults in better state and energy predictions in comparison to
TDHNN and the baseline NN. Learning a separate forcing
term and regularizing pHNN keeps the time component inde-
pendent of the Hamiltonian and therefore allows us to closely
match the performance of the standard time-implicit HNN.

In particular, in Fig. 2(a) we show the state and energy
MSE for an initial state from the testing set. Figure 2(b)
presents the predicted force (blue solid line) and damping over
time ν ∂H

∂ p (red solid curve), while black dots corresponds to
ground truth observations. We observe that the error in the
predictions is of the order of 10−5 for recovering the force
function and of 10−8 for the damping term. In Fig. 2(c) we
report the state and energy MSE averaged along all the testing
initial states, where the black lines in the histograms represent
the error bars of the statistics.

B. Damped mass-spring system

We extend the simple mass-spring system to include a
damping term that reduces the initial energy of the system
over time. The inclusion of this term violates energy con-
servation and therefore we cannot write a scalar Hamiltonian
for such a system (see Supplemental Material, Appendix C
[29] for details). Knowing this a priori already gives us an
indication that the HNN will perform poorly on such a system.

Training. We have 20 initial training conditions, with po-
sition and momentum uniformly sampled in [−1, 1]2. Each

trajectory is evolved until Tmax = 30.1 with a �t = 0.1. We
fix the damping coefficient ν = 0.3 without loss of generality.

Testing. At inference, we compute the average roll-out
MSE of 25 unseen initial conditions sampled in the same
manner as the training data. Figure 3(a) outlines the pre-
dicted force and damping for an arbitrary initial state, while
in Fig. 3(b) we report the average state and energy roll-out
MSE.

We observe in Fig. 3 that both baseline NN and pHNN
recover the dynamics well, whereas th HNN (as expected)
and TDHNN struggle to learn the dynamics of the damped
system. This failure happens because there is no direct way
of writing a scalar Hamiltonian with damping and thus, both
the HNN and TDHNN cannot learn the underlying dynamics.
This observation indicates that a partial inductive bias is not
enough to make a network robust at predicting the dynam-
ics well. A second observation shows that the pHNN learns
a nonzero oscillating force. That implies a possible leaking
of the information from the predicted Hamiltonian into the
predicted force and vice versa. This arises because there is
an identifiability challenge inferring the damping and force
exclusively from the state data we provide. In spite of this
challenge, we find that the pHNN converges to forcing and
damping terms consistent with the ground truth generating
terms and sufficient to inform us about the underlying dy-
namics as well as to evolve initial states with small numerical
error.

C. Forced mass-spring system

We complete the investigation of the simple mass-spring
problem by including a driven time-dependent force that con-
trols the system. To understand the effect of the force we
consider an undamped driven oscillator system. Typically,
while we cannot write the Hamiltonian for a damped system,
we can write one for a forced system. We study two cases
of forced mass-spring systems. The first has the following
Hamiltonian form:

H = 1

2
kq2 + p2

2m
− qF0 sin(ωt ). (9)

The second has a more complex force described by the Hamil-
tonian:

H = 1

2
kq2 + p2

2m
− qF0 sin(ωt ) sin(2ωt ), (10)

where F0 and ω is the amplitude and frequency of the external
force term. The forced mass-spring system is typically used
to study resonance effects, e.g., in material science, and plays
an important role in a wide range of applications including
music, bridge design, and molecular excitation making it an
important system to investigate.

Training. In both systems of Hamiltonian Eqs. (9) and (10),
we use 20 initial conditions, where the initial state [q0, p0]
is sampled such that q2

0 + p2
0 = r2

0 where 1 � r0 � 4.5. For
the force term we set F0 = 1 and ω = 3, and without loss
of generality we set k = m = 1. The states are rolled out to
Tmax = 10.01 at a �t = 0.01.

Testing. At inference, we compute the roll out of 25
unseen initial conditions in the same range as the training
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(a)

(b)

(c)

FIG. 2. The simple mass-spring system has no explicit time dependence. We see that the pHNN can almost recover the dynamics as well
as the HNN. While the pHNN does learn a non-zero force and damping term, their contribution to d p

dt is small. (a) State and energy MSE as a
function of time of an initial condition in the test set, (b) Learnt force and damping terms by pHNN, and (c) State and energy MSE averaged
across 25 initial test states (error bars showing ±1σ ).

data. Figures 4(a) and 5(a) demonstrate the predicted forces
and dissipation terms for the systems of Eqs. (9) and (10),
respectively. Accordingly, in Figs. 4(b) and 5(b) we re-
port the average state and energy roll-out MSE for each
system.

We study both systems to illustrate that while the baseline
NN performs relatively well in comparison to the pHNN when
a simple force is considered such as in the system of Eq. (9),
a more complex force significantly hurts its performance in
terms of state or energy MSE shown by Fig. 5(b). More
importantly, we read in Figs. 4(a) and 5(a) that for both sys-
tems pHNN can recover the ground truth force quite precisely
while it learns very small spurious damping terms that do not
significantly contribute to the dynamics; the contribution to d p

dt
term is of the order 10−5, which is practically negligible.

D. Duffing equation

Another problem that we investigate is given by the Duff-
ing equation, a nonlinear dynamical system that includes both
forcing and damping. The unforced and undamped stationary
Hamiltonian Hstat of the Duffing system is given by:

Hstat = p2

2m
+ α

q2

2
+ β

q4

4
. (11)

Unlike the simple mass-spring system, the Duffing equation
has an additional quadratic function of q that makes the sys-
tem nonharmonic. The shape of the potential function can be
tuned to be a double well or a single well based on the coeffi-
cients α and β. The general Duffing equation includes a time
variant force and a damping term proportional to ∂Hstat/∂q.
Typically the Duffing nonlinear equation of motion is written
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(a)

(b)

FIG. 3. Damped mass-spring setting: The baseline NN and pHNN recover the underlying dynamics well. pHNN is also able to accurately
learn the damping coefficient since the predicted damping is indistinguishable from the ground truth. (a) Learned force and damping terms by
pHNN and (b) State and energy MSE averaged across 25 initial test states(error bars showing ±1σ ).

as:

q̈ = −δq̇ − αq − βq3 + γ sin(ωt ). (12)

Different combinations of parameters α, β, δ, γ , ω make the
Duffing system either chaotic or nonchaotic. We study both
regimes. The Duffing equation reveals numerous phenomena
of practical importance including frequency hysteresis (e.g.,
in magnets), elasticity, and chaos theory.

1. Nonchaotic regime

Given a set of initial parameters for the Duffing equa-
tion: α = −1, β = 1, δ = 0.3, γ = 0.2, ω = 1.2 we can ob-
tain training data in a nonchaotic regime of the Duffing
system.

Training. We uniformly sample initial conditions in
[−1, 1]2 and use 25 initial conditions for training, rolled out
to Tmax = 10.01 with �t = 0.01.

(a)

(b)

FIG. 4. Forced mass-spring of Eq. (9): Standard HNN cannot learn the underlying dynamics as it has no explicit-time dependence. pHNN
shows the best performance as it explicitly learns a time-dependent force. (a) Learned force and damping terms by pHNN and (b) Roll-out
state and energy MSE averaged across 25 initial test states (error bars showing ±1σ ).
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(a)

(b)

FIG. 5. Forced mass-spring system of Eq. (10): pHNN is able to recover a nonharmonic force and evolves testing initial states better than
the other models. (a) pHNN recovers force and damping and (b) Roll-out state and energy MSE averaged across 25 initial test states (error bars
showing ±1σ ).

Testing. We integrate 25 unseen initial conditions at in-
ference using the same Tmax and �t used to generate the
training set. We evaluate all the neural network models on
this testing set and present the results in Fig. 6. We observe
in Fig. 6(a) that pHNN accurately recovers the underlying
force and damping. Moreover, Fig. 6(b) indicates the pHNN

outperforms the other models used in this study. We further
assess the network performance by inspecting the predicted
Hamiltonian. In Fig. 7 we outline the learned Hstat as a func-
tion of q and p that comprise the phase space. We observe that
pHNN can learn the functional form of Hstat, outperforming
the other architectures.

(a)

(b)

FIG. 6. Duffing system (nonchaotic): pHNN significantly outperforms the other methods and is able to extract the ground truth force and
damping coefficient. (a) Learned force and damping terms of pHNN and (b) State and energy MSE averaged across 25 initial test states (error
bars showing ±1σ ).
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FIG. 7. Nonchaotic Duffing setting: Learned Hstat in q-p plane (phase space) across different network architectures. HNN and TDHNN
learn distorted Hamiltonians that strongly depend on the input time-variable, whereas pHNN is able to recover a nondistorted Hamiltonian.

2. Chaotic regime

The choice of the parameters: α = 1, β = 1, δ = 0.1, γ =
0.39, ω = 1.4, yields chaotic behavior in the Duffing system.
Chaotic trajectories are highly sensitive to initial conditions
and thus, it is much more difficult to learn from a chaotic
system than from a nonchaotic.

Training. 20 initial conditions, sampled uniformly in
[−1, 1]2 each rolled out for one period T = 2π/ω where
�t = T/100 resulting in 2000 training points.

Testing. We test our system by assessing whether it is
visually able to recover the ground truth Poincaré section of
an initial condition and we focus our attention on baseline
NN and pHNN since they are the most performant in the non-
chaotic regime. The Poincaré map (or section) of a trajectory
is measured by plotting the position and momentum values at
regular intervals governed by the period of the forcing term.
For example, a simple mass-spring system will generate a
single point in phase space when measured at regular inter-
vals, while a chaotic system generates a more complex map.
To visually assess the performance of our network through a
Poincaré map, we test the system on a single initial condition,
not used in the training set, rolled out to Tmax = 18000 with
the same �t as in the training phase. In order to integrate our
system to such a large Tmax for this example we work under the
assumption that we have explicit knowledge of the period of
the force, and as such, we normalize the time variable with the
period. We emphasize that while prior knowledge of ω assists
the training, it is only used to extract the Poincaré map. This is
necessary as the models are not explicitly trained on time steps
beyond 2π/ω. The results are demonstrated in Fig. 8. In our
study we find that the visual similarity between the section

generated by pHNN is much closer to the ground truth than
baseline. A simple quantitative measure of this similarity can
be computed using the MSE between the 2D histogram plots.
The pHNN results in 1.61 and bNN in 4.05. The outcome
suggests that the pHNN can indeed be used to model chaos
even after being trained with only a few data points from a
chaotic trajectory. We believe this is a valuable result, since it
implies that the pHNN can be used to model chaotic behavior.

E. Relativistic system

In the final experiment presented in this study, we go
beyond nonrelativistic classical mechanics and explore a dif-
ferent form of Hamiltonians. In particular, we investigate the
motion of a driven relativistic particle in a nonlinear double
well potential, which is mathematically represented by the
Duffing equation in a relativistic framework. The Hamiltonian
under consideration is

H = c
√

p2 + m2
0c2 + α

2
q2 + β

4
q4 − qγ sin(ωt ), (13)

where c is the speed of light that typically is set to 1. For
simplicity, we also set the rest mass m0 = 1, though our
framework naturally accounts for other values.

Training. We train on 25 initial conditions, uniformly sam-
pled in [0, 2]2. We consider Tmax = 20.01, �t = 0.01, and the
parameters α = 1, β = 1, δ = 0, γ = 0.2, ω = 1.2.

Testing. Using the same parameters as training, we roll out
25 unseen initial conditions and present the results in Fig. 9.
We observe that pHNN is able to recover the underlying
force and outperforms the other architectures in generating the

FIG. 8. Poincaré sections of a chaotic Duffing oscillator. Baseline NN (left) and pHNN (middle) are trained for 20000 iterations with 2000
data points. The left and middle images indicate the predicted Poincaré map for a initial state not used in networks optimization. The pHNN
significantly outperforms the baseline NN at recovering the ground truth Poincaré section (right).
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(a)

(b)

FIG. 9. Learned dynamics of a relativistic Duffing system. (a) Learned force and damping terms of pHNN amd (b) Roll-out state and
energy MSE averaged across 25 initial test states.

temporal state of previously unknown initial conditions. This
experiment is evidence that pHNN can discover the dynamics
of temporal systems independent of the form of the underlying
Hamiltonian and consistently outperforms the other architec-
tures investigated in this study.

V. DISCUSSION

We have shown that pHNN outperforms other approaches
in learning complex physical systems (details shown in the
Supplemental Material, Appendixes D and E [29]), as well
as being able to recover the underlying stationary Hamilto-
nian, the external time varying force, and the damping term
of non-autonomous systems. One challenge in achieving this
result is fine tuning the λF and λN regularization coefficients
for the force and damping. In the Duffing setting where we
have both terms, it is possible to learn a shifted force, i.e.,
F = F0 + ε. This is possible because the state vectors q, p
do not provide enough information to simultaneously identify
both the Hamiltonian and the force resulting in a leak of
information between H and F . Nevertheless, we find that
a reasonable force and damping term are generally learned,
which are sufficient to reveal the underlying dynamics.

While it may be argued that pHNN is constrained to learn
and predict within the training time horizon, we believe our
method is still versatile at informing us of periodic forcing,
since we can inspect the force over time and, essentially, learn
the period of the underlying force. This, in turn, can readily
be used to renormalize the time variable at periodic intervals
to integrate the system beyond the training time as we showed
in the Poincaré map of Fig. 8.

We also run the entire set of experiments on noisy input
state vectors where the noise is sampled from N (0, σ ) with
σ ∈ [0.01, 0.1, 0.5]. The details of the results can be found in

Appendix F [29]. We find that even with the addition of noise
to the input state vector, pHNN outperforms other methods.

We also carry out a simple study on a two-body coupled
spring system where one of the masses is forced by a co-
sine varying signal. The results indicate that pHNN performs
the best and has potential to scale to larger domains (see
Appendix [29]).

VI. CONCLUSION

We have shown that learning the dynamics of time-
dependent nonautonomous systems can be achieved with
pHNN, a versatile neural network embedded with the Port-
Hamiltonian formulation. Our experimental investigation
demonstrates that pHNN outperforms extensions of existing
methods in numerous settings. Specifically, we outlined that
the proposed network not only learns the underlying dynamics
of a simple mass-spring system, achieving comparable perfor-
mance to the efficient HNN architecture, but it extends to more
complex nonlinear forced and damped physical systems. Fur-
thermore, using pHNN we were able to show, with minimal
training data, the ability to recover the Poincaré section of a
chaotic driven system. Unlike existing methods, pHNN is able
to identify systems where minimal state data is available and
reveal the functional form of the controlling force, damping,
and underlying stationary Hamiltonian. Collectively, these
results form a strong basis for further advances in learning
complex systems including, but not limited to, chemical bond
forces, robotic motion, and more general controlled dynamics
without explicit knowledge of the force and damping.
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