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Conjugate distribution laws in cultural evolution via statistical learning
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Many cultural traits characterizing intelligent behaviors are now thought to be transmitted through statistical
learning, motivating us to study its effects on cultural evolution. We conduct a large-scale music data analysis
and observe that various statistical parameters of musical products approximately follow the beta distribution and
other conjugate distributions. We construct a simple model of cultural evolution incorporating statistical learning
and analytically show that conjugate distributions emerge at equilibrium in the presence of oblique transmission.
The results demonstrate that the distribution of a cultural trait within a population depends on the individual’s
model for cultural production (the conjugate distribution law), and reveal interesting possibilities for theoretical
and experimental studies on cultural evolution and social learning.
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I. INTRODUCTION

Cultural transmission and evolution are essential to the
development of human society [1]. The common approach
to studying these processes is to analyze dynamical systems
or stochastic processes that incorporate the transmission, se-
lection, and mutation processes of cultural traits [2,3]. The
well-developed theories of genetic evolution and population
dynamics can be applied for understanding the dynamics of
some cultural traits such as an individual’s native language
(English, French, etc.) [2,4,5]. However, many cultural traits
characterizing intelligent behaviors such as speech (accent,
speech speed, etc.) are transmitted in a manner quite different
from gene replication. Studies on information and cognitive
sciences have provided accumulating evidence that such in-
telligent behavior often involves a stochastic data production
process. It has also been indicated that statistical parameters
controlling the process are transmitted from individuals to in-
dividuals through statistical learning of the generated cultural
products (e.g., Refs. [6–8]). This motivates us to study the
signatures and consequences of statistical learning from the
perspectives of cultural evolution and social learning [9–14].

Signatures of the underlying dynamical process in complex
biological and social systems are often presented as distribu-
tion laws that characterize the collective behavior of a system.
If found, then these distribution laws can serve as nontrivial
constraints in model building and facilitate the theoretical
understanding of the process. Examples of such distribution
laws include Zipf’s law for the mobile dynamics of interact-
ing individuals [15] and for chemical reaction dynamics in
self-reproducing cells [16], and Taylor’s law for the random
diffusion process of traffic networks [17].

There are ongoing projects on the big-data analysis of
cultural products [18–20], and it has been found by analyzing
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classical music data that the frequencies of certain musical
elements characterizing music styles exhibit approximate beta
distributions [21]. The beta distribution is known in Bayesian
statistics as an instance of conjugate distributions; a conjugate
distribution is defined as a distribution that can parametrize
both the prior and posterior distributions of some statistical
model [22]. This observation suggests a connection between
the distribution form of a cultural trait and the statistical learn-
ing process involved in the transmission of the trait. However,
a theoretical foundation for understanding this connection has
not yet been established.

The purpose of this study is to quantitatively understand
how the distribution of a cultural trait evolves through a trans-
mission process involving statistical learning. First, a number
of statistical traits in music data are analyzed to extract empir-
ical distribution laws. We analyze various frequency statistics
in music data created in different societies, which extends
the observations in Ref. [21]. In addition, global musical
statistics such as the note density and scale of pitch intervals
were analyzed. These analyses suggest a general relationship
between trait distribution and the underlying statistical model
for cultural production. Next, a model of cultural evolution
incorporating statistical learning is studied and a relationship
between the data production model and the equilibrium dis-
tribution of the corresponding trait is derived under simple
and general assumptions regarding the transmission process.
The theoretical results explain the empirical distribution laws
and extend them to a large class of cultural data production
processes. We also explore two applications of the present
theory: (i) an efficient method for estimating trait distributions
from small-size data and (ii) reproducing the evolution of
some musical features in classical music data.

II. EXPERIMENTAL OBSERVATION

To extract empirical distribution laws in cultural data and,
in particular, examine the ubiquity of the beta distribution
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FIG. 1. Within-corpus distributions of within-song frequencies
of pitch-class intervals (PCIs) and note-value ratios (NVRs) with
fitted beta distributions. (a) Wikifonia PCI 9, (b) J-pop NVR 1:4,
(c) Classical PCI 8, (d) Irish NVR 1:2, (e) Classical PCI 6, (f) J-pop
PCI 5, (g) Irish PCI 10, (h) Wikifonia NVR 1:3, and (i) Irish NVR 1:1
(“PCI i” represents PCIs of i semitones). Numbers in panels indicate
ranks of fitting quality (ordered in cumulative difference of data and
fitted distributions).

law, we analyzed four datasets of music created in different
societies and observed the distributions of frequencies of pitch
and rhythm elements. Musical pieces in these datasets are
represented as symbolic musical scores in the musical instru-
ment digital interface (MIDI) or MusicXML format, where
the pitches of musical notes are represented as integers in
units of semitones. In a MusicXML file, one can also extract
note durations (values) relative to a quarter note, as well as
the barline information with which we can segment the note
sequence into subsequences corresponding to measures.

The classical music dataset consists of pieces in various
instrumentations [21], from which we can extract the pitch
information. All other datasets consist of melody data, from
which we can extract information about pitches and note
durations. The Wikifonia dataset contains popular Western
songs and jazz songs mainly composed in the early to mid-
20th Century [23]. The J-pop dataset contains popular songs
created in Japan after 1950 [24]. The Irish song dataset con-
tains Irish folk songs collected from a public website [25].
All datasets contained O(103–104) musical pieces created
by various composers. As cultural traits, we extracted the
within-song frequencies of the intervals of consecutive pitches
modulo 12 (pitch-class intervals; PCI) and those of the ratios
of consecutive note durations (note-value ratios), and ob-
served their distributions within each dataset. See Appendix A
for details of the data and analysis method.

As shown in Fig. 1, approximate beta distributions
were observed for various musical elements across different
datasets, which extensively generalize the previous observa-
tion of beta distributions in classical music data [21]. We
note that the beta distributions have only two parameters;
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FIG. 2. Complementary cumulative distribution functions of p
values of KS statistics for fittings with beta, lognormal, and Gaussian
distributions.

for example, when the parameters are adjusted to match the
mean and the variance, the third moment or skewness can no
longer be freely adjusted. Two-thirds of the 77 distributions
analyzed had a fitting quality (measured by the cumulative
difference of the data and fitted distributions) similar to or
better than that of the example in Fig. 1(h). As exemplified in
Fig. 1(i), distributions that significantly deviated from the beta
distribution were typically widespread and had multiple peaks
corresponding to distinct music styles (e.g., duple rhythm
versus dotted rhythm).

To quantify the fitting quality more formally and compare
it with alternative hypotheses, the distribution of the p values
of the Kolmogorov-Smirnov (KS) statistics is shown in Fig. 2.
As alternative hypotheses, the lognormal and Gaussian distri-
butions are compared in the figure; these distributions have
two adjustable parameters, similar to the beta distribution. The
gamma distribution, which also has two parameters, is not
compared here because it is a limiting distribution of the beta
distribution for small values and fits the analyzed data equally
well as the beta distribution in most cases. Although the
proportion of distributions that are statistically consistent with
the beta distribution is not high (14% at the 95% confidence
level), the beta distribution has a considerably higher fitting
quality than the other distributions. Therefore, the data sup-
port that the beta distribution is the best approximation among
the simple candidate distributions with two parameters.

We also analyzed song-level global statistics that obey cer-
tain statistical distributions using the same datasets. Figure 3
shows the results for the J-pop dataset. First, we observe
the distribution of pitch intervals I , which are defined as the
absolute values of the differences between two consecutive
pitches, within individual songs. The overall contour of this
distribution is approximated by an exponential distribution
P(I ) ∝ e−λI in the range 1 � I � 12, whereas the fine struc-
ture reflects the rarity of dissonant intervals [Fig. 3(a)]. The
rate parameter λ of the exponential distribution can be esti-
mated as λ = 1/〈I〉 for each song, where, in this section, 〈 · 〉
denotes the average within a song. This statistic represents the
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FIG. 3. Distributions of global musical statistics (J-pop data).
(a) Left: Distributions P of pitch intervals within songs (fine line
segments), that within the dataset (bold line segments), and fit-
ted exponential distribution (straight line). Right: Distribution �

of songwise statistics (reciprocals of means) of pitch intervals and
fitted gamma distribution. (b) Similar results for note value ratios
of the form 1:R, where the global distribution is fitted by the Pareto
distribution. (c) Similar results for measurewise note densities, where
the global distribution is fitted by the Poisson distribution.

overall scale of the pitch intervals of the song. The within-
corpus distribution � of the rate parameters λ of the individual
songs approximately follows the gamma distribution.

Second, we observe the distribution of note value ratios
1:R of integer values R, where note value ratios are defined
as the ratio of two consecutive note values, within individual
songs. The overall contour of this distribution can be approx-
imated by a Pareto (power-law) distribution P(R) ∝ R−α in
the range 1 � R � 10. The shape parameter α of the Pareto
distribution can be estimated as α = 1/〈ln R〉 for each song.
This statistic represents the overall proportion of contrasted
rhythms used in the song. The within-corpus distribution �

of the shape parameter α also roughly follows the gamma
distribution [Fig. 3(b)].

Last, we observe the distribution of the number of notes
in a measure (measurewise note density) K within individual
songs. This distribution approximately obeys a Poisson dis-
tribution P(K ) ∝ ρK/K! in the range 2 � K � 12. The rate
parameter ρ of the Poisson distribution can be estimated as
ρ = 〈K〉 for each song. This statistic represents the overall
note density of the song. The within-corpus distribution � of
the rate parameters ρ roughly follows the gamma distribution
[Fig. 3(c)]. The results for the other datasets are similar (see
Appendix A).

An analysis using the KS statistics showed that the quali-
ties of the gamma distribution fittings were lower than those of
the beta distribution fittings for the frequency statistics. Only
one of the 10 fitted gamma distributions had a p value greater
than 5%. Comparisons with the alternatives (lognormal and
Gaussian distributions) indicated that the gamma distribution
fits the data better than the others on average; it was the
best-fitting distribution for 5 of the 10 samples. Therefore, the

global statistics data often suggest that the gamma distribution
is the best approximation among simple choices, even though
the fitting quality is not very high.

The observed gamma distributions are conjugate distribu-
tions for the exponential, Pareto, and Poisson distributions
with respect to the analyzed parameters. Together with
the beta distribution law, the observations suggest a gen-
eral conjugate relation between the within-product statistical
distribution and the within-population distribution of the sta-
tistical cultural traits, which we call the conjugate distribution
law. The fact that this relation is observed in music data
corresponding to various societies and time periods indicates
an underlying general mechanism.

III. MODEL

A. Formulation of dynamical system

To explore a possible origin of the conjugate distributions,
we consider an evolutionary model called the statistical learn-
generate (SLG) system. Suppose that at each generation t
there are N individuals that generate cultural products X t

n
(n = 1, . . . , N). Each product (e.g., a musical piece) X t

n =
(xt

n�)L
�=1 consists of L samples (e.g., musical notes) xt

n� that are
independently generated by a probability distribution φ(x; θ t

n).
This is called a data production model, where parameters θ t

n
are considered as cultural traits. For simplicity, the set of all
products created by an individual is treated as a single product
of the same size L. We assume that the distributions of all
individuals are identical, but their parameter values can be
different. For example, if φ is a Bernoulli distribution, then
sample xt

n� takes 0 or 1, and θ is the probability of obtaining
1. Usually, 1 represents the presence of a specific element we
focus on (e.g., a PCI of 6 semitones), and 0 represents the
other cases. When φ is Poisson distributed, sample xt

n� takes a
nonnegative integer, and θ represents the rate. Individual n is
often identified with its cultural trait θ t

n.
In general, we can incorporate a selection process for the

individuals to produce cultural offspring in the next gener-
ation. As the process and strength of selection of cultural
products are still uncertain [26,27], we here consider a simple
case without selection to focus on the effect of the transmis-
sion process. In addition, each individual θ t+1

n is assumed to
have one dominant cultural parent (the primary parent) θ t

n.
For simplicity, each parent θ t

n is assumed to have one cultural
offspring θ t+1

n , which gives the same analytical result as the
random selection case in the limit of an infinite population
size. It is likely in cultural transmission that products by other
individuals (the secondary parents) in the parent generation
will also be used for learning (oblique transmission [2]). In
this case, the set of products (training data) used for learning
the cultural trait is composed of the primary parent’s product
and the products of the secondary parents.

As will be validated later [below Eq. (4)], we assume
that each parameter of θ t+1

n is obtained by calculating the
expectation value of some statistic extracted from the training
data. We denote the expectation value calculated from product
X t

n as θ̂ t
n. If the offspring use only their primary parent’s

product for learning (vertical transmission), then θ t+1
n = θ̂ t

n
holds. When the products of secondary parents are also used,

034309-3



EITA NAKAMURA PHYSICAL REVIEW E 104, 034309 (2021)

FIG. 4. Statistical learn-generate (SLG) system with oblique
transmission.

these products contribute to the calculation of the expectation
value, and parametrization θ t+1

n is given as a weighted sum of
θ̂ t

n and θ̂ t
n′ of the secondary parents n′. If the secondary parents

contribute equally, then the effect of oblique transmission can
be represented as

θ t+1
n = (1 − u)θ̂ t

n + uζ , ζ = 1

N ′
∑

n′
θ̂ t

n′ , (1)

where the summation is taken over the secondary parents, N ′
is their total number, and u represents the strength of their
influence (Fig. 4). When the secondary parents are randomly
chosen and N ′ is large, as assumed in the following analysis,
we have ζ � θ̄ = (1/N )

∑
n θ t

n (population average), and ζ is
effectively a constant.

When φ is Bernoulli distributed, the SLG system is equiv-
alent to the (asexual) Wright-Fisher (WF) model used in
population genetics [28]. The neutrally selective WF model
consists of a population of Ng individuals, each having a gene
with two alleles (0 and 1). In each generation, all individ-
uals are replaced by new individuals, and the genes of the
randomly chosen parents are inherited. The gene frequency
follows the same stochastic process as a vertically transmitted
trait of the SLG system with L = Ng; thus, the SLG system
is equivalent to a set of N populations of the WF model.
Moreover, the effect of oblique transmission in Eq. (1) with a
constant ζ is equivalent to the linear pressure representing the
effect of constant migration (from outside) or mutation [29].

B. Equilibrium distribution

We now consider the time evolution of the within-
population distribution �(θ, t ) = P(θ t

n = θ ) of cultural traits
in the large N limit. This problem is well understood for
the WF model, and accordingly, for the case in which φ is
Bernoulli distributed [30]. In the case of pure vertical trans-
mission, the variable θ t

n fluctuates statistically until it becomes
0 or 1, and the equilibrium distribution is given as �(θ,∞) =
(1 − θ̄ )δ(θ ) + θ̄ δ(θ − 1). In the presence of oblique trans-
mission (linear pressure), a nontrivial equilibrium distribution
was found by Wright [29]. To derive an analytical solution,
we take the continuous time limit and a large L limit. Then,
the dynamics can be described by the Fokker-Planck (FP)

equation:

∂�(θ, t )

∂t
= − ∂

∂θ

{
M(θ )�(θ, t ) − 1

2

∂[K (θ )�(θ, t )]

∂θ

}
, (2)

where M(θ ) = u(ζ − θ ), K (θ ) = θ (1 − θ )/L, and the terms
in the curly brackets represent the probability current [30].
The zero-current equilibrium solution of the FP equation is
given by the beta distribution Beta(θ ; 2Luζ , 2Lu(1 − ζ )) [29].
Therefore, the SLG system can explain the evolutionary ori-
gin of the beta distribution law in the presence of oblique
transmission.

To extend the result for cultural traits following more gen-
eral data production models, we consider exponential family
(EF) distributions with one parameter θ :

φ(x; θ ) = exp[F (x)B(θ ) − A(θ ) + U (x)]. (3)

A large class of probability distributions including Bernoulli,
Poisson, Gaussian, and gamma distributions can be repre-
sented by different choices of F (x) and U (x). Functions B(θ )
and A(θ ) specify how the distribution is parametrized. We
have 〈F 〉 = A′(θ )/B′(θ ) from 0 = ∂θ

∫
dx φ(x; θ ). We can ex-

plicitly construct a conjugate distribution for the distribution
in Eq. (3) as

φ̃(θ ; χ, ν) = exp[χB(θ ) − νA(θ ) + C(θ ) + W (χ, ν)], (4)

where C(θ ) is a function, and W (χ, ν) represents the normal-
ization term. The function C does not change the conjugacy
property and the minimal case with C = 0 is usually used
in Bayesian statistics. To fix a parametrization scheme for θ ,
we note that it is natural to use the expectation value 〈F 〉
as a parameter. It is known that the Cramér-Rao bound can
be attained only with this parametrization [31], meaning that
it is the most efficient one for statistical learning. Thus, we
assume the relation 〈F 〉 = A′(θ )/B′(θ ) = θ . The estimation
variance of F is given by D(θ ) ≡ 〈(F − θ )2〉 = 1/B′(θ ), and
distribution �(θ, t ) follows Eq. (2) with K (θ ) = D(θ )/L.

With the oblique transmission effect M(θ ) = u(ζ − θ ), the
zero-current equilibrium solution �∗(θ ) of Eq. (2) satisfies the
following equation:

2Lu(θ − ζ )�∗ = − d

dθ
(D�∗). (5)

The solution of this equation can be written as

�∗(θ ) ∝ 1

D(θ )
exp

[∫ θ 2Lu(ζ − η)

D(η)
dη

]
. (6)

Using D(θ )−1 = B′(θ ) and θ = A′(θ )/B′(θ ), we obtain

�∗(θ ) ∝ exp[2LuζB(θ ) − 2LuA(θ ) + ln B′(θ )]. (7)

Comparing with Eq. (4), this is a conjugate distribution with
C = ln B′, which shows the origin of the general conjugate
distribution law in the presence of oblique transmission. Equa-
tions (6) and (7) show how the equilibrium distribution form
of cultural traits in the population depends on the statistical
model for cultural production; �∗ is essentially determined
by the estimation variance D.

We can further say that the solution Eq. (7) is the mini-
mal conjugate distribution if ln B′(θ ) is a linear combination
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TABLE I. Examples of exponential family distributions satisfy-
ing Eq. (8) and their conjugate distributions.

Individual’s generative Cultural Trait
model φ trait θ distribution �

Bernoulli Mean Beta
Poisson Mean Gamma
Gaussian Mean Gaussian
Gaussian Variance Inverse gamma
Gamma Mean Inverse gamma

of B(θ ) and A(θ ) up to a constant term: ln B′(θ ) = c0 +
c1B(θ ) + c2A(θ ) for some constants ci. We obtain an equiv-
alent condition by differentiating both sides as B′′(θ )/B′(θ ) =
(c1 + c2θ )B′(θ ), where we have used A′(θ )/B′(θ ) = θ . Since
D(θ ) = 1/B′(θ ), this is equivalent to the condition that D′(θ )
is linear in θ , or, D(θ ) is quadratic in θ . Therefore, the equilib-
rium distribution is the minimal conjugate distribution if and
only if the estimation variance D(θ ) = 1/B′(θ ) is quadratic:

D(θ ) = d0 + d1θ + d2θ
2, (8)

where di are constants. We can also confirm this result by
substituting Eq. (4) with C = 0 into the zero-current equation,
and obtain an explicit solution with

χ = 2Luζ − d1, ν = 2Lu + 2d2. (9)

Table I lists examples of probability distributions that sat-
isfy Eq. (8). It can be shown that if φ(x; θ ) satisfies Eq. (8),
so does the distribution for variable y = f (x) obtained by a
transformation function f (D remains unchanged). For exam-
ple, the Pareto distribution satisfies Eq. (8) with respect to
the logarithmic mean statistic because the gamma distribution
does with respect to the mean statistic. EF distributions with
quadratic estimation variances cover a wide range of well-
known distributions [32], including those shown in Fig. 3 (see
Appendix B), indicating that the conjugate distributions found
in cultural products are often minimal. Not all EF distributions
satisfy Eq. (8): a counterexample is the gamma distribution
with respect to the logarithmic mean statistic.

C. Properties of equilibrium distribution

Some properties of the equilibrium distribution can be
derived from further analyses. First, under a regular condi-
tion that is usually met, the relation 〈θ〉∗ ≡ ∫

dθ θ�∗(θ ) = ζ

holds (even when ζ is an external parameter). This is consis-
tent with the assumption of a constant population mean ζ = θ̄ .
Second, with the condition Eq. (8), one can show that

V∗(θ ) =
∫

dθ (θ − 〈θ〉∗)2�∗(θ ) = D(ζ )

2Lu − d2
, (10)

indicating that when individuals of the SLG system trans-
mit different cultural traits θ simultaneously, the values
V (θ )/D(θ̄ ) at equilibrium are independent of θ̄ and depend
only on Lu and d2. The derivation of these results is provided
in Appendix C.

Next, the relaxation time is of order u−1, which is physi-
cally expected as the oblique transmission pushes a proportion

FIG. 5. Simulation results for SLG system with Bernoulli dis-
tributed production models. Parameters were set as N = 20 000,
L = 1000, u = 1/50 = 0.02, and ζ = 0.1. Fitted distribution is
Beta(θ ; 4, 36). (a) Initial distribution concentrated at θ = 0.2. (b) Ini-
tial distribution uniformly distributed in range [0, 0.6].

u of the trait toward ζ in unit time. For the distributions
listed in Table I, the relaxation time can be explicitly calcu-
lated by analyzing the time-dependent FP Eq. (2) using the
eigenfunction method (see Appendix C). This result is also
confirmed by the numerical calculation in Fig. 5, whereby we
conducted simulation experiments for the SLG systems with
Bernoulli-distributed production models (with constant ζ ).
We see that the relaxation time is of the order u−1 for the two
extreme initial distributions. The details of the simulation and
results for other production models are given in Appendix D.
This result indicates that the conjugate distribution can be
maintained even under selective pressure as long as its effect
is small on a time scale of order u−1.

Without experimentally knowing the value of u, which is
difficult at present, it is not possible to estimate the actual time
necessary to reach equilibrium. We can expect, however, that
once the (quasi)equilibrium distribution is realized in some
culture in a society (e.g., Western classical music), a descen-
dant culture in that society (e.g., Western popular music) is
likely to reach equilibrium quickly, as far as many of the
traditions are retained in the new culture. For example, the
existence of universal features in music worldwide indicates
that many aspects of music are inherited over a long time [33].

In relating the theory with experiments, it is important to
note that the creator’s trait θ can only be observed through
actual products. When θ is estimated from a product with
Lp samples, a variance of D(θ )/Lp is expected, and the
productwise statistical parameters (as in Figs. 1 and 3) will
have a distribution �p distorted from that of θ . Nonetheless,
since this distortion process is the same as the transmission
process, �p approximately follows the same conjugate dis-
tribution as �∗ with a variance increased from Eq. (10) by
D(ζ )/Lp. This explains the empirical conjugate distribution
laws observed in Figs. 1 and 3. This argument also indicates
the difficulty of applying Eq. (10) for estimating the value
of Lu directly from product data if Lu 
 Lp. The values of
D(θ̄ )/V (θ ) obtained from the distributions in Fig. 1 were
29.5 (mean) ± 9.11 (s.d.) for the Wikifonia data (excluding
distributions poorly fitted by beta distributions), which are
relatively consistent among different musical elements and
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significantly smaller than the mean Lp = 107. Since an ex-
tremely small u is unlikely, these small values probably reflect
statistical dependence of the samples due to frequent repeti-
tions in music. Similar results were obtained for the other data
(see Appendix A).

D. Generalization for multiparameter case

We can extend the SLG system for EF distributions with
more than one parameter and show that a conjugate dis-
tribution emerges at equilibrium in the presence of oblique
transmission. An exponential family distribution with multi-
ple parameters θ = (θi )K

i=1 is given as

φ(x; θ ) = exp

[
K∑

k=1

Fk (x)Bk (θ ) − A(θ ) + U (x)

]
, (11)

where Fk are independent statistics and x = (xk )K ′
k=1 denotes

a set of stochastic variables. In the following, we write ∂i =
(∂/∂θi ) and omit the summation symbol for paired indices.
From 〈∂iφ〉 = 0, we obtain ∂iA = 〈Fk〉∂iBk = Gik〈Fk〉, where
Gik ≡ ∂iBk . We assume that Gik is invertible: G−1

�i Gik = δ�k

and GikG−1
k j = δi j . In the expectation value parametrization,

the following equations hold:

〈Fk〉 = G−1
ki ∂iA = θk, ∂iA = Gikθk . (12)

From 〈∂i∂ jφ〉 = 0, after some calculation, we obtain the esti-
mation covariance matrix as

Dk� ≡ 〈(Fk − θk )(F� − θ�)〉 = G−1
k� . (13)

Since the estimation covariance matrix Dk� is symmetric, so
is Gk� in the expectation value parametrization.

The FP equation for the case with multiple parameters is
given as

∂�(θ, t )

∂t
= − ∂

∂θi

{
Mi(θ )�(θ, t ) − 1

2

∂[Ki j (θ )�(θ, t )]

∂θ j

}
.

(14)
By substituting Mi(θ ) = u(ζi − θi ) (the oblique transmission
effect) and Ki j (θ ) = Di j/L, we obtain the zero-current equa-
tion as

2Lu(ζi − θi )� − (∂ jDi j )� − Di j∂ j� = 0. (15)

We assume the following conjugate distribution: � ∝
exp[χkBk (θ ) − νA(θ ) + C(θ )]. This is a solution of Eq. (15)
if the following equations are satisfied:

ν = 2Lu, χi = 2Luζi, ∂ jDi j + Di j∂ jC = 0. (16)

After some calculation, we find that the last equation is equiv-
alent to ∂kC = G−1

i j ∂kGji, which can be solved as C = ln det G
using Jacobi’s formula. Therefore, the equilibrium solution is
given as

�∗ ∝ exp[2LuζkBk (θ ) − 2LuA(θ ) + ln det G(θ )]. (17)

Details of the derivation are given in Appendix E.
As an example, we consider a discrete (categorical)

distribution. A (K + 1)-dimensional discrete distribution is
described by a variable x = (xi )K+1

i=1 , where xi is either 0 or
1 and

∑K+1
i=1 xi = 1 (one-hot vector). The parameters form

a probability vector θ = (θi )K+1
i=1 (

∑K+1
i=1 θi = 1). Because of

the normalization conditions, the last element can be rep-
resented by the other elements as xK+1 = 1 − ∑K

i=1 xi and
θK+1 = 1 − ∑K

i=1 θi, and the parameter space is in fact K-
dimensional. The data production model is an exponential
family distribution:

φ(x; θ ) =
K+1∏
i=1

θ
xi
i = exp

[
K∑

i=1

xi(ln θi − ln θK+1) + ln θK+1

]
.

We have Fi = xi, Bi = ln θi − ln θK+1, and A = −ln θK+1, and
thus Gi j = δi j/θi + 1/θK+1 and ∂iA = 1/θK+1. The estimation
covariance matrix is Di j = G−1

i j = θi(δi j − θ j ). We can show
det G = (det D)−1 = (θ1 · · · θK+1)−1 by mathematical induc-
tion on K . Substituting this into Eq. (17), we obtain

�∗(θ ) ∝ exp

[
K+1∑
i=1

(2Luζi − 1)ln θi

]
,

where ζK+1 ≡ 1 − ζ1 − · · · − ζK . Therefore, the equilibrium
distribution is a Dirichlet distribution Dir(θ ; α) with Dirichlet
parameters αi = 2Luζi (i = 1, . . . , K + 1). It is not easy to
find other examples where the minimal conjugate distribution
is the equilibrium solution due to the nondiagonal elements of
the estimation covariance matrix.

IV. APPLICATIONS

Here, we explore two applications of the theory developed
in Sec. III. In the first application, we examine how the con-
jugate distribution law can be used to efficiently estimate trait
distributions from small-sized data. The details of trait distri-
butions are important inputs for building and testing models
of evolution, and it becomes a challenging task when there
are only a limited number of cultural products available for
analysis. In such a case, prior knowledge about the approxi-
mate form of trait distributions can be a useful guide as it can
effectively reduce the number of parameters that need to be
inferred from the data.

As a specific problem, we used the data from the 77
frequency statistics analyzed in Fig. 1 and considered the
estimation of skewness and kurtosis for each trait distribution.
These are the most important characteristics of a probability
distribution next to the mean and variance. If there is no
prior knowledge about the trait distribution, then these four
quantities (mean, variance, skewness, and kurtosis) should
be estimated independently because we cannot assume any
relationship between any two of them. A standard method
for estimating the skewness and kurtosis is to use the sam-
ple statistics for the third and fourth moments. If the traits
follow the conjugate distribution (the beta distribution in this
case), however, then the trait distribution has only two in-
dependent parameters and after fitting these parameters, the
skewness and kurtosis (and in fact all other moments) can
be analytically calculated. Specifically, we use the moment
matching method, where the beta distribution parameters are
determined by the sample mean and variance.

To examine the efficiency of the method using beta distri-
bution fitting for small-size data, we simulated the reduction
of data size by randomly constructing a subset of samples and
compared the estimated values of the skewness and kurtosis
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FIG. 6. Estimation errors of skewness and kurtosis.

using the reduced data and those using the original data.
To obtain the estimation errors, the following procedure was
applied for each dataset and for each particular reduced num-
ber of samples: iterate 10 times the random data reduction and
calculation of the absolute deviations of the estimated statis-
tics from the sample statistics computed by using all of the
data, and average the deviations. In Fig. 6, the average estima-
tion errors for the standard method and the method using beta
distribution fitting are plotted for varying numbers of samples.
As expected, the latter method becomes more efficient as the
number of samples decreases, and for the music data analyzed,
the method was more efficient when the number of samples
was less than 70, for both the estimations of the skewness
and kurtosis. The same method can be applied when the trait
distribution approximately follows the conjugate distribution.

In the second application, we used the SLG system to
reproduce the evolution of musical features in classical music
data. Reference [21] analyzed the evolution of the distribu-
tions of the frequencies of two musical elements that represent
two major aspects of tonal music, tritones and nondiatonic
motions. As reproduced in Fig. 7, the dynamics of these fea-
tures have common patterns: the features are approximately
beta distributed in each time period, and the mean and vari-
ance evolve significantly during the time period analyzed. A
model was developed in that study to account for the observed
data, assuming that the traits follow the beta distribution at
every time during the evolution and that selection pressures
depending on the trait distribution drive the evolutionary
process [21].

We use the SLG system to reproduce dynamic patterns,
without manually imposing beta distributions in the dynamics.
We assume a simple (Wrightian) fitness with a log potential:
w(θ ) ∝ eβ ln θ . A Monte Carlo simulation was conducted to
compute the predictions of the model, and the parameters β

and u were optimized to best fit the data.
The simulation results are shown in Fig. 7, where we set

N = 10 000 and L = 3 000, and the initial populations were
sampled from the beta distributions fitted to the initial distri-
butions (in the 1500s). The time unit was taken to be 10 years.
The optimal values of β and u found by a grid search in the
ranges β ∈ [0, 1] and u ∈ [0, 50/L] are shown in the figures.
For both data, the optimal value of u was positive, and the SLG
system reproduced the overall pattern of evolution. Therefore,
the SLG system serves as a candidate model for explaining
the evolution of classical music, an alternative to the model in
Ref. [21]. Although it is difficult to determine which is more
appropriate solely from these data, the present model has the
advantage that it does not constrain the distribution form for
the traits by hand.

FIG. 7. Evolution of frequency distribution of (a) tritones and
(b) nondiatonic motions in classical music dataset. Real data and
simulation results.

V. DISCUSSION

We have shown that the distribution of cultural traits trans-
mitted through statistical learning converges to an equilibrium
distribution determined by the estimation variance of the trait,
when oblique transmission is present and selective pressure
is absent. The equilibrium distribution becomes the conjugate
distribution of the individuals’ data production model when it
is an exponential family (EF) distribution, and quantitatively
depends on the product Lu of the sample size L of cultural
products used for learning and the strength u of oblique trans-
mission. The derived distribution forms were supported by
empirical distributions extracted from music data.

In the present model, the existence of one primary cultural
parent and a number of secondary parents has been assumed
for simplicity, where the influence of the secondary parents
was treated as a “mean field.” We can extend Eq. (1) to a
case with multiple primary parents by replacing the term θ̂ t

n
with the arithmetic mean of the expectation values of their
products. If the primary parents are randomly chosen, then
the model is similar to the blending model of a continuous
trait [2], and we can roughly estimate the variance of the
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trait distribution at equilibrium as O(D(θ̄ )/L). In such a case,
oblique transmission is expected to have a small effect when
u is small. By contrast, when there is a tendency to choose
individuals with similar traits as primary parents, the multi-
parent model becomes similar to the one-parent model, and
the effect of oblique transmission becomes more relevant. In
general, we can consider a network of influences, similar to
Ref. [9], and extend the weights in the sum of Eq. (1) to
the distribution over the network. It would be interesting to
systematically study how the impact of oblique transmission
changes according to the network structure using such models.

When selectively neutral, the asymptotic behavior of the
SLG system is similar to that of iterated learning models
with Bayesian agents [10,13], in which the prior distribu-
tion is maintained at equilibrium. This suggests the necessity
of studying the dynamics under selection to discriminate
between the different transmission mechanisms. From the
model-building perspective, the SLG system removes reliance
on prior distributions and allows for flexible extensions with
selective pressures.

Our findings indicate a significant link between statistical
learning and cultural evolution, and connect them with statisti-
cal theory in an intriguing way. Equations (7) and (8) indicate
a nontrivial relationship between oblique transmission and
Bayesian learning that reflects the geometric structure of the
data production models [34]. Many statistical theories, includ-
ing Bayesian estimation theory and limit theorems, can be
developed for EF distributions that satisfy Eq. (8) [32,35] and
can now be applied to analyze cultural traits of a statistical na-
ture. Importantly, our results provide a theoretical background
for choosing suitable parametric models for cultural traits. For
example, the widely applied Gaussian assumption [2,3] can be
an inappropriate approximation.

As demonstrated in Sec. IV, the SLG system opens new
possibilities and questions for studying the dynamic aspects
of culture and intelligence. For example, the dynamic relation
μt ∝ σt between the mean μt and standard deviation σt ob-
served in classical music data [21], as opposed to σt ∝ √

μt

expected from Eq. (10), implies that if the process is in a
quasiequilibrium state, then the factor Lu is time-varying,
similar to an evolving mutation rate [36,37]. Finally, it will
be interesting to apply the presented analysis method to other
cultural domains, such as language [18,38], fine art [20], and
cooking [39], and to investigate the universal properties of
cultural evolution.
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APPENDIX A: DATA ANALYSIS: METHOD AND
SUPPLEMENTAL RESULTS

1. Datasets

For the analysis in Sec. II we used four music datasets.
The classical music dataset consists of 9727 musical pieces in

various instrumentations written by various composers [21].
The data contents are represented in the MIDI format, and
we extracted integer pitches in units of semitones for the
analysis. We did not use the rhythm information since it is
unreliable due to the nature of the MIDI format. The musical
notes are ordered according to the onset time and the musical
instruments in each file and we obtained the sequence of
pitches in this order. The Wikifonia dataset contains Western
popular songs and jazz songs mainly composed in the early
to mid-20th Century and was compiled in Ref. [23]. The
dataset contains 6388 songs (mostly vocal melodies). The
J-pop dataset contains 1596 popular songs in Japan composed
between 1946 and 2010 whose transcriptions are published
in Ref. [24]. The Irish song dataset contains Irish folk songs
collected from a public website and was compiled in Ref. [25].
We used 6345 songs in G major key and in 4/4 time for
the analysis. The contents of the Wikifonia, J-pop, and Irish
song datasets are represented in the MusicXML format and
we extracted the pitch and rhythm information. The pitch in-
formation was extracted as a sequence of integer pitches. The
rhythm information was extracted as sequences of onset and
offset times, both represented in beat units. The score-notated
duration (note value) of a musical note was defined as the
difference between its onset and offset times.

2. Analysis of frequency statistics

For the analysis in Fig. 1, we extracted the within-song
frequencies of the intervals of consecutive pitches modulo
12 (pitch-class intervals; PCI) and those of the ratios of
consecutive note durations (note-value ratios; NVR). Given
a sequence of pitches (pn)N

n=1, the sequence of PCI (qn)N−1
n=1

is obtained by qn ≡ pn+1 − pn (mod 12), where 0 � qn � 11.
For each PCI 1 � q � 11, the within-song PCI frequency was
calculated by dividing the number of appearance of q by the
total number of musical notes in a song. Following Ref. [21],
we did not use the zero PCI for the analysis since it describes
a continuation of the same tone (up to octave equivalence) and
has little information. The PCI probabilities are independent
of musical key and commonly used for analyzing music styles.
The within-song frequencies of NVRs are similarly defined by
counting the number of times the ratio rn:rn+1 of consecutive
note values is a specific ratio. We calculated the frequencies of
the most common ratios: 1:1, 1:2, 2:1, 1:3, 3:1, 2:3, 3:2, 1:4,
4:1, 1:6, and 6:1 (11 statistics in total).

The within-corpus distribution of the within-song frequen-
cies was obtained for each of the four datasets. The zero
frequency samples were not used in the analysis of these
distribution, as in Ref. [21], since those samples can be con-
taminated with different styles/genres of music. Since the 11
PCI statistics were calculated for all the datasets and the 11
NVR statistics were calculated for the datasets other than the
classical music dataset, we analyzed 77 distributions in total.

For each distribution, the beta distribution was fitted by
the moment-matching method using the mean and variance.
To quantitatively measure the “goodness of fit” we computed
the cumulative difference �CD of the data and fitted beta
distributions defined as

�CD =
∫

dθ |Cdata (θ ) − Cfit (θ )|, (A1)
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FIG. 8. Cumulative differences of the data and fitted beta dis-
tributions (representing the “goodness of fit”) sorted by rank. The
alphabetical labels represent the corresponding panels in Fig. 1.

where Cdata (θ ) denotes the data cumulative distribution func-
tion (CDF) and Cfit (θ ) denotes the CDF of the fitted beta
distribution. In numerical analysis, the data distribution was
represented by a histogram and the integral in Eq. (A1) was
approximated by a summation. The CDF was used here in-
stead of the probability distribution function to reduce the
dependence on the histogram bin width (0.005 in our anal-
ysis). The distribution of the values of �CD is shown in Fig. 8.

For the estimation of D(θ̄ )/V (θ ) discussed in Sec. III C,
we used the distributions with �CD < 0.004 that included 51
(about two thirds) of the 77 distributions. The (min, mean,
max, s.d.) were (40.5, 58.3, 76.1, 13.1) (classical), (17.1, 29.5,
46.6, 9.11) (Wikifonia), (39.3, 47.5, 57.4, 5.0) (J-pop), and
(24.7, 39.0, 61.6, 11.0) (Irish). The average numbers of notes
Lp within each corpus were 2300 (classical), 107 (Wikifonia),
148 (J-pop), and 115 (Irish). For all datasets, the values of
D(θ̄ )/V (θ ) were similar among different statistics and signif-
icantly smaller than Lp.

3. Analysis of global statistics

For the analysis in Fig. 3, we calculated the songwise
global statistics as follows. The probabilities of pitch inter-
vals I within songs were obtained by calculating the relative
frequencies of pitch intervals |pn+1 − pn|. The rate parameter
of the exponential distributions used to fit the contours of
these distributions were calculated by the probability values
in the range 1 � I � 12. To deal with missing samples and
deviations due to the rareness of dissonant intervals, we used
the method of least squares (the linear regression was applied
in the logarithmic domain of I). Similarly, the contour of the
distribution of note-value ratios 1:R was fitted by a Pareto

10-4

10-3
10-2
10-1
100

 0  2  4  6  8  10  12  14
Pitch interval I

Y∝exp(-0.093 X)
 0

 0.05

 0.1

 0.15

 0  0.1  0.2  0.3  0.4  0.5
Songwise 1/<I >

Gamma fit

P
(I

)

Ψ
(1

/<
I>

)

FIG. 9. Distributions of pitch-interval statistics in the classical
music data. The left panel shows the distributions of pitch intervals
within songs (fine line segments), that within the whole dataset (bold
line segments), and a fitted exponential distribution (straight line);
the right panel shows the distribution of songwise statistics (recipro-
cals of the means) of pitch intervals and a fitted gamma distribution.
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FIG. 10. Distributions of global musical statistics in the Wikifo-
nia data. (a) The left panel shows the distributions of pitch intervals
within songs (fine line segments), that within the whole dataset (bold
line segments), and a fitted exponential distribution (straight line);
the right panel shows the distribution of songwise statistics (recipro-
cals of the means) of pitch intervals and a fitted gamma distribution.
(b) Similar results for note value ratios of the form 1:R, where the
global distribution is fitted by a Pareto distribution. (c) Similar results
for measurewise note densities, where the global distribution is fitted
by a Poisson distribution.

distribution in the range 1 � R � 10 by applying the linear
regression in the log-log domain. The probability distribu-
tion P(K ) of the measurewise note density K was fitted by
a Poisson distribution by applying the linear regression for
ln[K!P(K )] in the range 2 � K � 12.

The results for the classical music, Wikifonia, and Irish
song datasets are shown in Figs. 9, 10, and 11, respectively.
The pitch interval distributions for the classical music data in
Fig. 9 significantly differ from the other cases because this
dataset contains musical pieces by various instrumentations
(including ensemble music) whereas the other three datasets
contain (mostly vocal) melodies. Despite this difference,
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FIG. 11. Distributions of global musical statistics in the Irish
song data. See the caption to Fig. 10.
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the tendencies that the contour is approximately exponential
distributed and the within-population distribution is approxi-
mately gamma distribution are same as the other cases. The
results for the Wikifonia data in Fig. 10 are quantitatively
similar to the results for the J-pop data in Fig. 3, indicating that
the general tendencies are similar for popular music developed
in different regions. The within-song distributions of the note-
value ratios for the Irish music data in Fig. 11(b) clearly differ
from the other cases, reflecting the characteristic of the Irish
music that note value ratios 1:R with R greater than 4 are much
rarer compared to the other cases. The within-population dis-
tribution of the shape parameter has a noticeable excess in
the small regime in comparison to the fitted gamma distribu-
tion. As small shape parameters correspond to large values of
〈ln R〉, the fact that data samples are sparse for large R may
have caused unreliable estimation in this regime. While there
are some quantitative and qualitative differences, the feature
that the conjugate gamma distributions appear in the within-
corpus distributions is found universally for all the analyzed
datasets from different musical genres.

We can estimate the values of D(θ̄ )/V (θ ) for the global
statistics, similarly as for the frequency statistics. The values
estimated from the distributions of (pitch intervals, note value
ratios) were (2.8, N/A) (classical), (7.0, 2.8) (Wikifonia),
(10.9, 3.1) (J-pop), and (7.2, 4.8) (Irish) (measurewise note
density were excluded from the analysis since the units of data
samples are different). These values are significantly smaller
than the corresponding values for the frequency statistics,
suggesting that there is even larger statistical dependence on
the samples (possibly due to global repetitive structure within
songs) for these statistics.

APPENDIX B: EXAMPLES OF EXPONENTIAL FAMILY
DISTRIBUTIONS WITH QUADRATIC

ESTIMATION VARIANCES

We here calculate the estimation variances for the well-
known distributions listed in Table I in the expectation value
parametrization and confirm that they are constant, linear,
or quadratic functions. We also identify the corresponding
conjugate distributions.

(a) Bernoulli. The Bernoulli distribution is defined as

Ber(x; p) = px(1 − p)1−x

= exp[x{ln p − ln (1 − p)} + ln (1 − p)], (B1)

where x takes values in {0, 1} and p is the probability to get 1.
The distribution has the form of Eq. (3) with

F (x) = x, B(p) = ln p− ln (1− p), A(p) = −ln (1− p).

Since the mean and variance of the static F = x are 〈x〉 = p
and V (x) = p(1 − p), respectively, p is the expectation value
parameter (θ = p) and the estimation variance is D(θ ) =
θ (1 − θ ). The conjugate distribution is calculated as

φ̃(θ ; χ, ν) ∝ exp
[
χB(θ ) − νA(θ )

] ∝ θχ (1 − θ )ν−χ ,

and therefore

φ̃(θ ; χ, ν) = 1

B(χ + 1, ν − χ + 1)
θχ (1 − θ )ν−χ

= Beta(θ ; χ + 1, ν − χ + 1). (B2)

(b) Poisson. The Poisson distribution is defined as

Pois(x; λ) = λxe−λ

x!
= exp(x ln λ − λ − ln x!), (B3)

where x takes values in N and λ is the rate parameter. The
distribution has the form of Eq. (3) with

F (x) = x, B(λ) = ln λ, A(λ) = λ.

Since the mean and variance of the static F = x are 〈x〉 = λ

and V (x) = λ, respectively, λ is the expectation value param-
eter (θ = λ) and the estimation variance is D(θ ) = θ . The
conjugate distribution is calculated as

φ̃(θ ; χ, ν) ∝ exp[χB(θ ) − νA(θ )] ∝ θχe−νθ ,

and therefore

φ̃(θ ; χ, ν) = νχ+1

�(χ + 1)
θχe−νθ = Gam(θ ; χ + 1, ν). (B4)

(c) Gaussian parametrized by mean. The Gaussian distri-
bution is defined as

Gauss(x; μ,�) = 1√
2π�

e− (x−μ)2

2�

= exp

[
μ

�
x − x2

2�
− μ2

2�
− 1

2
ln(2π�)

]
,

(B5)

where x takes values in R, and μ and � are the mean and
variance [〈x〉 = μ, 〈(x − μ)2〉 = �]. Focusing on the statistic
x and treating � as a known parameter, the distribution has
the form of Eq. (3) with

F (x) = x, B(μ) = μ

�
, A(μ) = μ2

2�
.

Since the mean and variance of the static F = x are 〈x〉 = μ

and V (x) = �, respectively, μ is the expectation value param-
eter (θ = μ) and the estimation variance is D(θ ) = �. The
conjugate distribution is calculated as

φ̃(θ ; χ, ν) ∝ exp
[
χB(θ ) − νA(θ )

] ∝ exp

[
χ

θ

�
− ν

θ2

2�

]
,

and therefore

φ̃(θ ; χ, ν) =
√

ν

2π�
exp

[
− ν

2�

(
θ − χ

ν

)2]

= Gauss

(
θ ;

χ

ν
,
�

ν

)
. (B6)

(d) Gaussian parametrized by variance. Focusing on the
statistic (x − μ)2 and treating μ as a known parameter, the
Gaussian distribution in Eq. (B5) has the form of Eq. (3), with

F (x) = (x − μ)2, B(�) = − 1

2�
, A(�) = 1

2
ln(2π�).

Since the mean and variance of the static F (x) are 〈F 〉 = �

and V (F ) = 2�2, respectively, � is the expectation value
parameter (θ = �) and the estimation variance is D(θ ) = 2θ2.
The conjugate distribution is calculated as

φ̃(θ ; χ, ν) ∝ exp[χB(θ ) − νA(θ )] ∝ θ−ν/2e−χ/(2θ ),
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and therefore

φ̃(θ ; χ, ν) =
(

χ

2

) ν
2 −1

�
(

ν
2 − 1

) 1

θ
ν
2

e− χ

2θ = InvGam
(
θ ;

ν

2
− 1,

χ

2

)
.

(B7)
(e) Gamma parametrized by mean. The Gamma distribution

is defined as

Gam(x; α, β ) = βα

�(α)
xα−1e−βx, (B8)

where x takes values in [0,∞), and α and β denote the shape
and rate parameters. Focusing on the statistic x and treating α

as a known parameter, the distribution has the form of Eq. (3),
with

F (x) = x, B(β ) = −β, A(β ) = −α ln β.

Since the mean and variance of the static F = x are 〈x〉 =
α/β and V (x) = α/β2, respectively, θ ≡ α/β is the expecta-
tion value parameter and the estimation variance is given as
D(θ ) = θ2/α. The conjugate distribution is calculated as

φ̃(θ ; χ, ν) ∝ exp[χB(θ ) − νA(θ )] ∝ exp
[
−αχ

θ
− αν ln θ

]
,

and therefore

φ̃(θ ; χ, ν) = (χα)να−1

�(να − 1)

e−χα/θ

θνα
= InvGam(θ ; να − 1, χα).

(B9)
With the relation β = α/θ , this means that β is gamma dis-
tributed:

φ̃(β; χ, ν) = Gam(β; να − 1, χ ). (B10)

The exponential distribution is a special case of gamma
distribution and the Pareto distribution can be obtained from
the exponential distribution by a logarithmic conversion.
Therefore, the above calculation shows that the conjugate dis-
tributions for the statistical parameters analyzed in Figs. 3(a)
and 3(c) are gamma distributions.

APPENDIX C: ANALYSIS OF THE SOLUTION OF THE FP
EQ. (2)

We first calculate the mean 〈θ〉∗ ≡ ∫
dθ θ�∗(θ ) for the

zero-current equilibrium solution �∗ to Eq. (2). Integrating
both sides of Eq. (5) gives

2Lu(〈θ〉∗ − ζ ) = −[D�∗]θ+
θ− ,

where (θ−, θ+) represents the domain of θ . If the surface term
on the right-hand side vanishes at both ends of the domain of
θ , as it regularly does, then we have

〈θ〉∗ = ζ .

The physical meaning of this relation is clear: after a long
time the directional effect of the oblique transmission (linear
pressure) term M(θ ) dominates (the effect of the diffusion
term K (θ ) is directionless).

Next, we suppose that data production model φ has a
quadratic estimation variance as in Eq. (8). Using Eq. (5),

we have

2Lu〈(θ − ζ )2〉∗ = 2Lu
∫

dθ (θ − ζ )2�∗

= −
∫

dθ (θ − ζ )
d

dθ
(D�∗)

= −[(θ − ζ )D�∗]θ+
θ− +

∫
dθ D�∗. (C1)

The last integral can be transformed as∫
dθ D�∗ = d0+ d1〈θ〉∗+ d2〈θ2〉∗ = D(ζ )+ d2〈(θ − ζ )2〉∗.

Thus, if the surface term in Eq. (C1) vanishes at both ends of
the domain of θ , as it regularly does, we have

〈(θ − ζ )2〉∗ = D(ζ )

2Lu − d2
, (C2)

which is the same as Eq. (10). This result can be explicitly
checked for the example cases presented in the previous sec-
tion by using the equilibrium solution in Eq. (9) and the known
formulas for the variances of the conjugate distributions.

Given the stationary solution �∗(θ ), the time-dependent FP
Eq. (2) can in general be solved by the eigenfunction method.
Here, we use this method to calculate the convergence time to
the equilibrium. We define the coefficient function Q(θ, t ) by
�(θ, t ) = Q(θ, t )�∗(θ ) and substitute it into Eq. (2) to obtain

∂Q(θ, t )

∂t
=

[
M(θ )

∂

∂θ
+ K (θ )

2

∂2

∂θ2

]
Q(θ, t ).

Thus, the equation for an eigenfunction Q(θ, t ) = e−λt Qλ(θ )
is given as[

K (θ )

2

d2

dθ2
+ M(θ )

d

dθ
+ λ

]
Qλ(θ ) = 0.

Using the method of series expansion Qλ = ∑∞
n=0 anθ

n and
substituting M = u(ζ − θ ) and K = (d0 + d1θ + d2θ

2)/L,
we obtain the following iterative equation for the coefficients:

d0(n + 1)(n + 2)an+2 + {d1n(n + 1) + 2L(n + 1)uζ }an+1

+ {d2n(n − 1) + 2L(λ − nu)}an = 0. (C3)

For all the distributions listed in Table I, one can check that
the series Qλ must have a finite order to be a normalizable
solution. This leads to the condition that the coefficient of an

in Eq. (C3) must vanish for some n, and we obtain discrete
eigenvalues

λm = mu − m(m − 1)

2L
d2 (m = 0, 1, 2, . . .). (C4)

Since the lowest modes are λ0 = 0, λ1 = u, · · · , the lowest
nonzero mode decays as ∝ e−ut . That is, the relaxation time
(convergence time to the equilibrium) is of order u−1, repro-
ducing the physically expected result as explained in the main
text.

APPENDIX D: NUMERICAL ANALYSIS OF THE
SOLUTION OF THE FP EQ. (2)

To confirm the analytical results by numerical calcula-
tion, we conducted simulation experiments for statistical
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FIG. 12. Simulation results for the SLG system with Poisson
distributed production models. Parameters were set as N = 20 000,
L = 25, u = 1/50 = 0.02, and ζ = 5. The fitted distribution is
Gam(θ ; 5, 1). (a) Initial distribution concentrated at θ = 3. (b) Initial
distribution uniformly distributed in the range [1,10].

learn-generate (SLG) systems whose data production models
are one of those listed in Table I. For each SLG system,
we iterate the learning and generation processes with oblique
transmission (with constant ζ ) and observe that the within-
population distribution of the cultural traits (statistical param-
eters) converge to the conjugate distribution with parameters
given in Eq. (9). We also confirm that the relaxation time is of
order u−1.

For simulation, we tested two extreme cases for the initial
within-population distribution, a delta function and a uniform
distribution with a certain value range. The data generation
process was simulated by using the standard methods for sam-
pling from the probability distributions implemented in the
C++ standard library under the header <random> (the 64-bit
Mersenne Twister was used for random number generation).
To get samples from Poisson distributions, we used Knuth’s
algorithm [40].

The results are shown in Fig. 5 (in the main text) and
Figs. 12–15. In all cases, we see that the within-population
distribution converges to the theoretically predicted conju-

FIG. 13. Simulation results for the SLG system with Gaussian
distributed production models and mean value traits with a fixed
variance � = 1. Parameters were set as N = 20 000, L = 50, u =
1/50 = 0.02, and ζ = 0. The fitted distribution is Gauss(θ ; 0, 0.5).
(a) Initial distribution concentrated at θ = 2. (b) Initial distribution
uniformly distributed in the range [−3, 3].

FIG. 14. Simulation results for the SLG system with Gaussian
distributed production models and variance value traits with a fixed
mean μ = 0. Parameters were set as N = 20 000, L = 100, u =
1/50 = 0.02, and ζ = 1. The fitted distribution is InvGam(θ ; 3, 2).
(a) Initial distribution concentrated at θ = 0.5. (b) Initial distribution
uniformly distributed in the range [0.1, 2].

gate distribution regardless of the initial distribution. It can
be also confirmed that the convergence is attained at time
t ∼ 100 = 2u−1.

APPENDIX E: EQUILIBRIUM SOLUTION OF THE FP
EQUATION IN THE MULTI-PARAMETER CASE

We here present the detailed derivation of the result
in Sec. III D. We use the same model and notation de-
scribed there. Differentiating Eq. (12), we have Gi j = ∂i∂ jA −
θk∂i∂ jBk . From 〈∂i∂ jφ〉 = 0, we obtain,

∂i∂ jA − 〈Fk〉∂i∂ jBk = 〈(FkGik − ∂iA)(F�Gj� − ∂ jA)〉.
Multiplying G−1

mi G−1
n j on both sides and summing over i and j,

we obtain Eq.(13) as

Dmn ≡ 〈(Fm − θm)(Fn − θn)〉 = G−1
mi G−1

n j Gi j = G−1
mn .

Next, we solve the zero-current Eq. (15). We assume
the following conjugate distribution: � ∝ exp[χkBk (θ ) −

FIG. 15. Simulation results for the SLG system with gamma dis-
tributed production models and mean value traits θ with a fixed shape
parameter α = 0. The rate parameter is β = 1/θ . Parameters were
set as N = 20 000, L = 50, u = 1/50 = 0.02, and ζ = 1. The fitted
distribution is InvGam(θ ; 3, 2). (a) Initial distribution concentrated
at θ = 0.5. (b) Initial distribution uniformly distributed in the range
[0.1, 2].
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νA(θ ) + C(θ )]. Since

∂ j� = (χk∂ jBk − ν∂ jA+ ∂ jC)� = [Gjk (χk − νθk )+ ∂ jC]�,

Eq. (15) is equivalent to

{2Luζi − χi + (ν − 2Lu)θi − ∂ jDi j − Di j∂ jC}� = 0.

Thus, the conjugate distribution is a solution if the following
equations are satisfied:

ν = 2Lu, χi = 2Luζi, ∂ jDi j + Di j∂ jC = 0.

The last equation is equivalent to

∂kC = −Gki∂ jDi j .

Since D = G−1, ∂ jD = −D(∂ jG)D or ∂ jDk� =
−G−1

kmG−1
n� ∂ jGmn. The right-hand side can be transformed

as

−Gki∂ jDi j = G−1
i j ∂ jGki = G−1

i j ∂ j∂kBi

= G−1
i j ∂k∂ jBi = G−1

i j ∂kGji,

and the equation for C is

∂kC = G−1
i j ∂kGji.

Using Jacobi’s formula this can be solved as C = ln det G.
Therefore, the equilibrium solution is given as in Eq. (17).
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