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Higher-order percolation processes on multiplex hypergraphs
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Higher-order interactions are increasingly recognized as a fundamental aspect of complex systems ranging
from the brain to social contact networks. Hypergraphs as well as simplicial complexes capture the higher-order
interactions of complex systems and allow us to investigate the relation between their higher-order structure and
their function. Here we establish a general framework for assessing hypergraph robustness and we characterize
the critical properties of simple and higher-order percolation processes. This general framework builds on the
formulation of the random multiplex hypergraph ensemble where each layer is characterized by hyperedges of
given cardinality. We observe that in presence of the structural cutoff the ensemble of multiplex hypergraphs
can be mapped to an ensemble of multiplex bipartite networks. We reveal the relation between higher-order
percolation processes in random multiplex hypergraphs, interdependent percolation of multiplex networks,
and K-core percolation. The structural correlations of the random multiplex hypergraphs are shown to have a
significant effect on their percolation properties. The wide range of critical behaviors observed for higher-order
percolation processes on multiplex hypergraphs elucidates the mechanisms responsible for the emergence of
discontinuous transition and uncovers interesting critical properties which can be applied to the study of epidemic
spreading and contagion processes on higher-order networks.
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I. INTRODUCTION

Higher-order networks [1–5] and multilayer networks
[6–8] are generalized network structures that capture the
topology of complex systems beyond the single network
framework.

Higher-order networks include both hypergraphs and
simplicial complexes and encode the set of higher-order in-
teractions present in systems as different as social [9–13],
ecological [14], and brain networks [15]. Multilayer networks
represent complex systems in which interactions of differ-
ent nature and connotation can exist forming networks of
networks. As such multilayer networks and in particular mul-
tiplex networks are becoming the new paradigm to describe
social, financial as well as biological networks [6–8].

Higher-order networks and multilayer networks display a
very rich interplay between their structure and their dynamics
[6]. Notably multilayer networks are characterized by very
relevant correlations [16,17] that have the ability to modify the
critical properties of the dynamics defined on these structures.
On their turn, higher-order networks reveal unexpected phe-
nomena in the context of synchronization transitions [18–22],
diffusion [23–26], and spreading processes [10–13,27–29].

In this work we investigate the interplay between struc-
ture and the dynamics of higher-order networks providing a
comprehensive multilayer framework to study higher-order
percolation processes on hypergraphs.

Percolation [30–33] is a fundamental dynamical process
defined on networks that predicts the fraction of nodes in
the giant component of a network. Having a nonzero giant

component is the minimal requisite for observing collective
phenomena on networks, emerging from epidemic spreading,
diffusion, and opinion dynamics. Therefore, studying perco-
lation of a given network has important consequences for
investigating a wide range of dynamical properties defined on
networks.

Percolation theory has been extensively studied in single
networks since the early days of network science [30–33]. In
particular, node and link percolation have been investigated
in random networks with arbitrary degree distribution. In
node percolation nodes are initially damaged with probability
1 − p, in link percolation links are initially damaged with
probability 1 − p. In both percolation models the fraction of
nodes in the giant component is studied as a function of p
characterizing how the network is dismantled/disconnected
by increasing the entity of the initial damage. Interestingly,
it has been found that the critical properties of percolation are
strongly affected by the network topology of the underlying
network. In particular, a classic result of percolation theory
is that scale-free networks are robust to random damage and
in the infinite network limit can sustain a nonzero fraction
of nodes in the giant component for any nonzero value of p
[34,35]. While percolation on single networks is a continuous
second order transition, K-core percolation [36,37], studying
the emergence of the K-core with K � 2 in complex networks
can display a discontinuous hybrid transition if the degree
distribution of the network has finite second moment.

With the recent surge of interest on generalized net-
work structures percolation theory has further expanded
thanks to the formulation of the interdependent percolation in
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multiplex networks that displays a discontinuous hybrid tran-
sition in correspondence of large avalanches of failure events
[6,38–40]. In interdependent percolation the order parameter
is the fraction of nodes in the mutually connected giant com-
ponent that is the giant component formed by nodes connected
by at least one path in each layer of the multiplex network.
Interdependent percolation on multiplex networks is highly
affected by the correlations [16,17,41] of the underlying
multiplex network structure. Indeed, both interlayer degree
correlations [16] and link overlap [42–44] have been shown
to have a very significant effect on the critical properties of
interdependent percolation. This field has been growing at a
very fast pace and many results related to the robustness and
resilience of multiplex networks have been obtained including
the formulation of interdependent percolation in network of
networks [45], weak percolation [46,47], optimal percolation
[48,49], combinatorial optimization problems [50], K-core
multiplex percolation [51], and percolation with redundant
interdependencies [52].

This very important subject in network theory has con-
tributed to a much deeper theoretical understanding of the
mechanisms leading to discontinuous percolation transitions
in complex networks (see recent review articles [53,54]).

Recently the rich interplay between network geometry
and topology and the critical properties of the percolation
transition on higher-order networks has also gained increas-
ing attention. Hyperbolic simplicial complexes which can be
treated within the real-space renormalization group [55–59],
have been shown to reveal a rich phase diagram includ-
ing discontinuous transitions for standard link percolation.
Moreover, homological percolation [60,61] has been show
to characterize the emergence of a nontrivial homology for
higher-order network topologies.

The critical properties of higher-order percolation process
on random hypergraphs which do not display an hyperbolic
network geometry have not yet been explored exhaustively
despite some interesting results related to core percolation
in hypergraphs have been recently published in Ref. [62].
Indeed, so far the investigation of percolation on random
hypergraphs has been restricted to very simple cases of hy-
pergraphs whose hyperedges have fixed cardinality [63,64].

In this paper we relate higher-order percolation on hy-
pergraphs to generalized percolation processes in multiplex
networks. Random hypergraphs can have a nontrivial under-
lying multiplex topology leading to the definition of random
multiplex hypergraphs in which each layer captures the set
of hyperedges of a given cardinality [12,13]. In this work
we will demonstrate that multiplex hypergraphs are ideal
statistical mechanics tools to study a large variety of higher-
order percolation processes of hypregraphs with a wide
range of applications. Moreover, multiplex hypergraphs can
admit also a physical interpretation when different layers
characterize interactions of different nature. For instance a
multiplex hypergraph containing pairwise interactions and
higher-order interactions can be used to study the inter-
play between blood-vessel pairwise connectivity between
brain regions [65] and their higher-order functional brain
interactions [15]. Similarly in social networks pairwise inter-
actions can be associated to pairwise communication such as
mobile-phone communications [66] or friendships in online

social networks while higher-order interactions can describe
higher-order face-to-face communication or group discus-
sions around information posted online [67,68]. In this work
we define ensembles of random multiplex hypergraphs in
which each node i is assigned nonscalar generalized degree
ki = (k[1]

i , k[2]
i , . . . , k[m]

i , . . . , k[M]
i )� where k[m]

i indicates the
number of hyperedges of cardinality m incident to node i.
As such multiplex hypergraphs are characterized by important
interlayer generalized hyperdegree correlations. Interestingly,
we note that a multiplex hypergraph ensemble is, in general,
distinct from a multiplex bipartite network where each factor
node corresponds to an hyperedge. However, it is possible to
map one ensemble in the other in presence of a structural
cutoff. Here we show that standard percolation is affected
by the nontrivial topology of multiplex hypergraphs and by
their interlayer correlations that can be tuned to increase or
decrease the percolation threshold of the hypergraph. Most
importantly our work reveals how the multiplex nature of the
multiplex hypergraph ensembles can be exploited to propose
higher-order percolation problems displaying a rich interplay
between higher-order topology and dynamics and a rich set
of phenomena, including discontinuous hybrid transitions and
multiple percolation transitions.

The paper is structured as follows: in Sec II we present
the random multiplex hypergraph model and we compare the
model with the already widely used model of random hyper-
graphs; in Secs. III and IV we investigate the properties of
standard node and link percolation on the random hypergraphs
and on the random multiplex hypergraphs, respectively; in
Sec. V we provide a general framework to study higher-order
percolation processes on random multiplex hypergraphs; fi-
nally, in Sec. VI we provide the concluding remarks.

II. HYPERGRAPHS MODELS

A. Random hypergraphs

In this paragraph we introduce random hypergraphs used
widely in the literature. This model will be subsequently
compared with the model of random multiplex hypergraph
which allows us to capture more rich hypergraphs topologies.
Hypergraphs H = (V, H ) are formed by a set V of N nodes
and a set H of hyperedges of different cardinality m � M. The
number of hyperedges incident to a node is also called its hy-
perdegree. Therefore, if all hyperedges have cardinality m =
2, i.e., all hyperedges are essentially links describing pairwise
interactions, then the hypergraph reduces to a network, and the
definition of hyperdegree reduces to the definition of degree.
In general, in hypergraphs containing hyperedges of different
cardinality, the hyperdegree counts the number of hyperedges
incident to a node regardless of their cardinality.

The simplest model of hypergraph here called the ran-
dom hypergraph model is a maximum entropy hypergraph
model with given hyperdegree distribution P(k) and distribu-
tion P̂(m) of hyperedge cardinalities. Therefore, as far as a
node has a given hyperdegree k drawn from the hyperdegree
distribution P(k), the model is agnostic on the cardinality of
its incident hyperedges.

The maximum entropy ensemble of random hypergraphs is
related to factor graphs. Factor graphs are bipartite networks
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GB(V,U, E ) formed by a set of nodes V and a set of fac-
tor nodes U which do not overlap and a set E of pairwise
interactions with each interaction linking a node to a factor
node. Every hypergraph can be mapped to a factor graph by
the following mapping. The set V of nodes of the hypergraph
maps to the set V nodes of the factor graph. Each hyperedge of
the hypergraph is in correspondence with a factor node in U .
Note however that the opposite is not always true, i.e., a factor
graphs do not always map to (unweighted) hypergraphs as it
is not excluded a priori that two factor nodes connect the same
set of nodes. Despite factor graphs are typically not reducible
to unweighted random hypergraphs, if the factor graph is
sufficiently sparse, i.e., they display a structural cutoff, the
probability that more than one factor node is connected to
the same set of nodes is negligible. In this regime, which
corresponds to the sparse factor graph regime, we can map an
unweighted random hypergraph to a factor graph. In this limit
we have that the hyperdegree distribution P(k) and distribu-
tion P̂(m) of hyperedge cardinalities correspond to the degree
distribution of the nodes and of the factor nodes of the factor
graph, respectively.

In the uncorrelated hypergraph ensemble, as long as the
hyperdegree distribution and the distribution of hyperedge
cardinality have a structural cutoff, the probability that node i
is connected to hyperedge α is given by

p̃iα = kimα

〈k〉N , (1)

where ki indicates the hyperdegree of node i and mα in-
dicates the cardinality of the hyperedge/factor node α.
The corresponding hypergraph includes a hyperedge α =
[i1, i2, . . . , im] with probability [4]

p[i1,i2,...,im] = (m − 1)!

∏m
r=1 kir

(〈k〉N )m−1
. (2)

B. Random multiplex hypergraphs

The random hypergraphs described in the previous para-
graph are maximum entropy ensembles in which we fix the
hyperdegree of each node. Here we consider hypergraphs in
which we assign to each node a set of generalized hyperde-
grees each one fixing the incident number of hyperedges of a
given cardinality. This allows to control the number of hyper-
edges of a given cardinality incident to each node providing a
more refined hypergraph model than the random hypergraph.

As we will see this model can be mapped to a multiplex
network model [6,41], hence we indicate this model as ran-
dom multiplex hypergraph.

In this case, as in the previous case, we consider an ensem-
ble of hypergraphsH = (V, H ) formed by a set V of N nodes
and a set H of hyperedges of different cardinality m � M. The
hypergraphH in the multiplex hypergraph ensemble is deter-
mined by a set tensors of dimension 2 � m � M where the
m-th tensor a[m] determines all the hyperedges of dimension
m, i.e., it has elements a[m]

i1i2...im
= 1 only if α = [i1, i2 . . . , im] ∈

H ; otherwise, a[m]
i1i2...im

= 0. Each node i is assigned a set of
generalized hyperdegrees,

ki = (
k[2]

i , k[3]
i , . . . k[M]

i

)
, (3)

where k[m]
i indicates the number of hyperedges of degree m

incident node i, i.e.,

k[m]
i =

∑
j1, j2,..., jm−1

a[m]
i, j1, j2..., jm−1

. (4)

For these hypergraphs we can define the generalized hyperde-
gree distribution P(k) as the probability that a random node
of the hypergraph has generalized hyperdegrees ki = k with
k = (k1, k2, . . . , km, . . . , kM )�.

The random multiplex hypergraph is the maximum entropy
hypergraph model with given generalized hyperdegree dis-
tribution P(k) and given distribution P̂(m) of cardinality of
the hyperedges. This model can be mapped to a multiplex
network model in which each layer capture interactions of a
given cardinality [12,13]. The random multiplex hypergraph
is a very useful statistical mechanics tool to model unbiased
random hypergraphs with hyperdegree correlations, but it can
also have a very relevant physical interpretation when hyper-
edges of different cardinality are associated to interactions
of different nature and connotation. In particular, this statis-
tical mechanics construction can be useful in brain networks
to distinguish between brain regions connected pairwise by
blood-vessels [65] and higher-order functional brain inter-
actions [15] or can be useful to model social networks in
which we want to distinguish between pairwise interactions
(as phone call interactions) [66] and face-to-face interactions
[67,68] or online interactions between more than two people.

In the hypergraph setting there are no constraints relating
hyperedges of different cardinality. Therefore, the hyperedges
of different cardinality can be drawn independently. This is
different from what happens in the simplicial complex setting
which are closed under the inclusion of subsets of any given
simplex. Despite this difference, simplicial complex models
can be very efficiently used to model hypergraphs. Indeed, the
maximum entropy hypergraph with given generalized hyper-
degree sequences can be constructed starting from the well
establish configuration model of pure simplicial complexes
[4,69] by mapping the hypergraph to a multiplex network
[12,13] in which every layer indicates the interactions de-
scribed by hyperedges of a given size m.

The algorithm to construct a random multiplex hypergraph
(see Fig. 1) is as follows:

(1) Consider a multiplex networks with M − 1 layers m
with 2 � m < M and N nodes corresponding to the N nodes
of the hypergraph.

(2) For each layer m consider configuration model of pure
(m − 1)-dimensional simplicial complexes [4] (codes avail-
able at the repository [69]) with generalized degree sequence

{k[m]}i=1,2...,N = {
k[m]

1 , k[m]
2 , . . . , k[m]

N

}
. (5)

From this simplicial complex extract the hypergraph formed
only by the simplicial complex facets. This hypergraph is
defined by a tensor a[m] describing all the m-body interac-
tions of the multiplex hypergraph. For simplicity we assume
that the hyperdegrees {k[m]

i } display a structural cutoff K̃ [m]

given by

K̃ [m] =
[

(〈k[m]N〉)m−1

(m − 1)!

]1/m

. (6)
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(d)

(e)

(f)

(a)

(b)

(c)

FIG. 1. A schematic representation of the multiplex network construction of the hypergraph with given generalized hyperdegree sequences
for hyperedges of cardinality m1 = 2 (layer 1) and m2 = 3 (layer 2). First a configuration model is used to generate a simple network
capturing the two-body interactions of the hypergraph (a). Second, the configuration model of simplicial complexes [4] is used to generate a
pure simplicial complex formed exclusively by triangles. Only the information about the three-body interactions is retained (b). Finally, the
information of the different layers is aggregated to generate the desired hypergraph including hyperedges of size m = 2 and m = 3 (c). This
construction can be generalized to an arbitrary number of layers. The factor graph representation of the mulitiplex hypergraph is shown in
panels (d), (e), and (f).

In this hypothesis the probability p[m]
[i1,i2...,im] of the hyperedge

[i1, i2 . . . , im] is given by [4]

p[m]
[i1,i2...im] = (m − 1)!

∏m
r=1 k[m]

ir

(〈k[m]〉N )m−1
. (7)

Note that some layers might be empty if

N∑
i=1

k[m]
i = 0. (8)

In this case, the number of layers of the random multiplex
hypergraph is given by the number M ′ of layers with at least
one hyperedge.

(3) Consider the hypergraph obtained by aggregating all
the layers, i.e., considering all the interactions of different
sizes 2 � m < M. Note that this aggregated hypergraph, dif-
ferently from the aggregated multiplex network with pairwise
interactions, retains its multilayer nature as the hyperedges
of different cardinality can be easily distinguished also in the
aggregated version of the hypergraph. Therefore, we will not
make a distinction between this aggregated hypergraphs and
their multiplex representation.

Despite, in general, a random multiplex hypergraph is dis-
tinct from a multiplex factor graph as factor graphs can have
more than two factor nodes connected to the same set of
nodes, in the sparse regime of uncorrelated random multiplex
hypergraphs displaying a structural cutoff we can, in the infi-
nite network limit, consider the two ensembles as equivalent.
In this factor graph interpretation, the probability that node i is
connected to factor node α in a given layer describing m-body

interactions, i.e., with mα = m is given by

p̃iα = k[m]
i m

〈k[m]〉N . (9)

The mapping between the hypergraph model with given
generalized hyperdegree sequences and multiplex networks,
allows us to address the role of correlations have in this
hypergraph model. Indeed, by considering a parallelism to
multiplex networks we can investigate different types of
possible correlations in hypergraph models. First of all the
hyperdegrees k of a given nodes can be correlated. In a
hypergraph including m = 2 and m = 3 hyperedges positive
generalized hyperdegree correlations indicate for instance that
nodes with many two-body interactions have also many three-
body interactions and nodes with few two-body interactions
have also few three-body interactions. On the contrary nega-
tive correlations of generalized hyperdegrees will imply that
nodes with many two-body interactions will participate in
few three-body interactions and vice-versa. Second, we might
be interested in the overlap between hyperedges of different
cardinality. This implies that in a hypergraph including m = 2
and m = 3 hyperedges, we might be interested to assess how
many two-body interactions connect nodes already connected
in three-body interactions.

In this work we will focus in particular in the effect of
the correlations between generalized hyperdegrees on the ro-
bustness properties of hypergraphs. Indeed, we notice that
in the considered hypergraph ensemble hyperedges do not
have a significant overlap. To show that we define the total
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overlap O[m,n] between m-hyperedges and n-hyperedges with
n > m as

O[m,n] =
∑

α∈Q[m]

a[m]
α A[n]

α , (10)

where Q[m] indicates the set m-tuples of nodes of the hyper-
graph and A[n]

α = 1 if and only if α is a subset of nodes of
an existing n-hyperedges; otherwise, A[n]

α = 0. The average
overlap 〈O[m,n]〉 over the hypergraph ensemble with marginals
given by Eq. (7) reads

〈O[m,n]〉 =
∑

α∈Q[m]

p[m]
α p[n,m]

α , (11)

where p[m]
α is given by Eq. (7) and where p[n,m]

α = 〈A[n]
α 〉 is

given by

p[n,m]
[i1,i2...im] = (n − 1)!

(n − m)!

∏m
r=1 k[n]

ir

(〈k[n]〉N )m−1
. (12)

This implies that the average overlap 〈O[m,n]〉 is negligible for
N � 1 as it scales as

〈O[m,n]〉 = (n − 1)!(m − 1)!

(n − m)!m!

〈k[n]k[m]〉m

〈k[n]〉m−1〈k[m]〉m−1Nm−2
, (13)

(see analogous treatment for multilayer networks in
Ref. [41]). Therefore, the overlap of hyperedges is negligible
in the sparse regime where the marginals are expressed by
Eq. (7).

III. PERCOLATION ON RANDOM HYPERGRAPHS

Percolation on random uncorrelated hypergraphs can be
treated directly by extending the ideas and concepts of per-
colation on factor graphs. Therefore, since the factor graph
corresponding to a random hypergraph is locally treelike we
can write self-consistent equations for the probability Ŝ that
starting from a node and following a link we reach a factor
node (hyperedge) in the giant component and for the prob-
ability S that starting from a factor node (hyperedge) and
following a link of the factor graph we reach a node in the
giant component. Assuming that each node is not initially
damaged with probability p[N] and each hyperedge is not
initially damaged with probability p[H ] the self consistent
equations for S and Ŝ read

Ŝ = p[H ]
∑

m

m

〈m〉 P̂(m)[1 − (1 − S)m−1],

S = p[N]
∑

k

k

〈k〉P(k)[1 − (1 − Ŝ)k−1]. (14)

A diagramatic representation of these two equations is shown
in Fig. 2.

The percolation problem is fully characterized by its order
parameters given by the probability R of finding a node in the
giant component and the probability R̂ of finding a hyperedge
in the giant component. In a random hypergraph, these order

FIG. 2. An schematic illustration of Eqs. (14) for Ŝ and S are
shown in panels (a) and (b), respectively. Black circles represent
nodes; triangles, squares, and hexagons represent factor nodes (hy-
peredges) with different cardinality.

parameters can be expressed in terms of Ŝ and S as

R = p[N]

(
1 −

∑
k

P(k)(1 − Ŝ)k

)
,

R̂ = p[H ]

(
1 −

∑
m

P̂(m)(1 − S)m

)
. (15)

These equations together with the self-consistent Eqs. (14)
can be used to investigate the critical properties of percolation
inferring the robustness of the random hypergraph. In particu-
lar, we can impose p[H ] = 1 (or p[N] = 1) and to characterize
node percolation (or hyperedge percolation) where only hy-
peredges are randomly removed (or node percolation where
only nodes are randomly removed). If the hypergraph only
contains hyperedges of cardinality m = 2 (i.e., it reduces to a
network), then these two percolation problems reduce to link
and node percolation, respectively. In Fig. 3 we show R versus
p[H ] = p for hyperedge percolation (p[N] = 1) when both the
hyperdegree distribution and the distribution of cardinalities
of hyperedges are Poisson distributed. The critical point of
the general percolation problem defined in Eq. (15) is charac-
terized by the critical thresholds p[H ]

c and p[N]
c . By imposing

that the largest eigenvalue of the Jacobian matrix of Eqs. (14)
is equal to one at S = Ŝ = 0, we find that p[H ]

c and p[N]
c must

satisfy

p[N]
c p[H ]

c

〈k(k − 1)〉
〈k〉

〈m(m − 1)〉
〈m〉 = 1. (16)
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FIG. 3. The fraction of nodes in the giant component R is shown
versus p[H ] = p for random hypergraphs. The hyperdegree distri-
bution P(k) and distribution of cardinality of hyperedges P̂(m) are
Poisson distribution, with different expectation 〈m〉 and 〈k〉.

Therefore, for hyperedge percolation in which p[N] = 1 we
obtain that the critical threshold p[H ]

c satisfies

p[H ]
c

〈k(k − 1)〉
〈k〉

〈m(m − 1)〉
〈m〉 = 1, (17)

for node percolation in which p[H ] = 1 we obtain that the
critical threshold p[N]

c satisfies

p[N]
c

〈k(k − 1)〉
〈k〉

〈m(m − 1)〉
〈m〉 = 1. (18)

We note that Eqs. (17) and (18), fixed to the hyperedge and
the node percolation thresholds, are invariant if we permute
the distributions P(k) and P̂(m). This effect can be seen also
in Fig. 3 where it is evident that the hyperedge pecolation
thresholds of two random hypergraphs with Poisson P(k) and
Poisson P̂(m) is the same if for the first hypergraph 〈k〉 =
2 and 〈m〉 = 4 and for the second hypergraph 〈k〉 = 4 and
〈m〉 = 2.

Finally, we note that if the hypergraph is formed only by
m-hyperedges, the distribution P̂(m′) reduces to a δ function:

P̂(m′) = δm′,m, (19)

and Eq. (16) reduces to

p[N]
c p[H ]

c (m − 1)
〈k(k − 1)〉

〈k〉 = 1. (20)

This last equation reduces to results obtained in Refs. [63,64].

IV. PERCOLATION ON RANDOM MULTIPLEX
HYPERGRAPHS

A. General framework

We consider percolation on random multiplex hyper-
graphs, i.e., hypergraphs with given generalized hyperdegree
sequences when nodes are not initially damaged with prob-
ability p[N] and hyperedges are not initially damaged with

probability p[H ]. To characterize percolation on these hy-
pergraphs we consider their corresponding factor graphs. In
particular, we indicate with Ŝm the probability that by follow-
ing a link of a node in layer m we reach a m-factor node (m
hyperedge) that belongs to the giant component. Moreover,
with Sm we indicate the probability that following a link of
a m-factor node (m hyperedge) in layer m we reach a node
in the giant component. Since the corresponding multiplex
factor graph of the random multiplex hypergraph is locally
treelike the probabilities Ŝm and Sm can be find to satisfy the
self-consistent equations

Ŝm = p[H ][1 − (1 − Sm)m−1],

Sm = p[N]
∑

k

km

〈km〉P(k)

[
1 −

∏
m′

(1 − Ŝm′ )km′−δm,m′

]
. (21)

These self-consistent equations have a diagramatic interpre-
tation as shown in Fig. 4. In particular, Ŝm indicates the
probability that a m-factor node (m hyperedge) reached by
following a link in layer m, is not initially damaged and
it is connected at least to a node in the giant component.
Instead, Sm indicates the probability that a node reached by
following a link in layer m is not initially damaged and it
is connected at least to one factor node (hyperedge)—of any
possible cardinality—in the giant component.

The order parameters for percolation on a random multi-
plex hypergraph are given by the expected fraction of nodes
R and the expected fraction of hyperedges R̂ in the giant
component, given by

R = p[N]

[
1 −

∑
k

P(k)
∏

m

(1 − Ŝm)km

]
,

R̂ = p[H ]

[
1 −

∑
m

P̂(m)(1 − Sm)m

]
. (22)

Equations (22) together with the Eqs. (21) fully determine
the percolation process on random multiplex hypergraphs and
can be used to study the robustness of these structures as a
function of the hyperdegree distribution P(k) and the distribu-
tion of cardinality of the hyperedges P̂(m). In particular, they
can be used to investigate the effect that correlations between
the hyperdegrees on different layers have on the robustness
properties of the multiplex hypergraph.

One fundamental measure for characterizing the robustness
of a multiplex hypergraph with respect to another hypergraph
is without any doubt the characterization of the percolation
threshold. Indeed, a smaller node (or hyperedge) percolation
threshold implies that an hypergraph can display a giant com-
ponent also when a larger fraction of nodes (or hyperedges) is
removed.

Close to the percolation transition, for 0 < Sm � 1 and
0 < Ŝm � 1, Eqs. (21) can be linearized to

Ŝm = p[H ](m − 1)Sm,
(23)

Sm =
∑

n

GmnSn,

034306-6



HIGHER-ORDER PERCOLATION PROCESSES ON … PHYSICAL REVIEW E 104, 034306 (2021)

(a)

m

m

m
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m
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m

FIG. 4. A schematic illustration of Eqs. (21) for Ŝm and Sm are shown in panels (a) and (b), respectively. Red circles represent nodes;
squares, pentagons, and hexagons represent factor nodes (hyperedges) with different cardinality.

where the matrix G has elements

Gmn =
{

p[H ] p[N](n − 1)〈knkm〉/〈km〉 for m 	= n,

p[H ] p[N](m − 1)〈km(km − 1)〉/〈km〉 for m = n.

(24)

Therefore, node and hyperedges critical thresholds p[N]
c and

p[H ]
c can be obtained by imposing that the largest eigenvalue

� of G is one, i.e.,

� = 1. (25)

In the following sections we will predict the percolation
threshold in important examples of random multiplex hy-
pergraphs and we will characterize the role that correlations
among hyperdegree of different layers have on the robustness
properties of random multiplex hypergraphs.

B. Percolation threshold in some specific cases

1. Hypergraph with fixed cardinality of hyperedges

For a single-layer multiplex hypergraph including only
hyperedges of cardinality m, i.e., only including m-body in-
teractions, we have

P̂(m′) = δm,m′ . (26)

In this case, the matrix G reduces to a scalar G given by

G = Gmm = p[N] p[H ](m − 1)
〈km(km − 1)〉

〈km〉 . (27)

Therefore, the percolation thresholds are obtained by impos-
ing G = 1, giving

p[N] p[H ](m − 1)
〈km(km − 1)〉

〈km〉 = 1. (28)

It follows that in this simple case we recover the expression in
Eq. (20) as we should.

2. Independent layers with Poisson generalized degree distribution

A more interesting case in which we can appreciate the
multiplex structure of the problem is given by the case
in which the hyperdegree distribution of each layer of the
random multiplex hypergraphs is an independent Poisson dis-
tribution with layer-dependent average hyperdegree zm. In this
case, the joint hyperdegree distribution P(k) is given by

P(k) =
∏

m

Pm(km), (29)

with pm(km) given by

Pm(km) = e−zm zkm
m

km!
. (30)

By using the well-known expression for the moments of
Poisson distribution, it is easy to check that

〈knkm〉
〈kn〉 = zm,

〈km(km − 1)〉
〈km〉 = zm. (31)

Thus, we obtain that for this random multiplex hypergraph the
matrix G has elements Gmn given by

Gmn = p[H ]
c p[N]

c (m − 1)zm. (32)

Since the matrix elements Gmn only depend on the index m
(i.e., every row m of G is formed by elements having the same
numerical value) the rank of G is equal to one, i.e., rank(G) =
1. This implies that the only nonzero eigenvalue � of G equals
the trace of this matrix:

� = Tr(G) = p[N]
c p[H ]

c

∑
m

(m − 1)zm. (33)

By imposing that � = 1 we find that the critical thresholds
p[N]

c and p[H ]
c satisfy

1

p[N]
c p[H ]

c

=
∑

m

(m − 1)zm. (34)
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This equation can be used to elucidate the relation between the
percolation thresholds of the Poisson multiplex hypergraph
and the percolation threshold of single-layer Poisson hyper-
graphs constructed by considering only the hyperedges of a
given size. Indeed, Eq. (34) implies that

1

p[N]
c p[H ]

c

=
∑

m

1

p[N,m]
c p[H,m]

c

, (35)

where p[N,m]
c and p[H,m]

c with

p[N,m]
c p[H,m]

c = [(m − 1)zm]−1, (36)

indicating the critical node and hyperedge percolation thresh-
olds of hypergraphs obtained by considering only the m-body
iterations in layer m. This implies that the product of the
percolation threshold p[N]

c p[H ]
c for the multiplex hypergraph

model is smaller than the corresponding product of per-
colation threshold p[N,m]

c p[H,m]
c for each single layer of the

multiplex hypergraph. Therefore, the multiplex hypergraph is
more robust than every of its layers taken in isolation.

3. Independent layers with power-law generalized
degree distribution

Another interesting case of random multiplex hypergraph
is the one formed by independent layers each one with power-
law generalized hyperdegree distribution. In this case, the
joint hyperdegree distribution P(k) is given by

P(k) =
∏

m

Pm(km), (37)

with

Pm(km) = cmk−γm
m , (38)

with γm > 2 and cm indicating the normalization constant. For
this random multiplex hypergraph the matrix G has elements

Gmn =
{

p[H ] p[N](n − 1)〈kn〉 for m 	= n,

p[H ] p[N](m − 1)〈km(km − 1)〉/〈km〉 for m = n.

Given that γm > 2, we have that each layer is sparse, i.e.,
〈kn〉 is finite at the limit N → ∞. However, as soon as one
layer is associated to a power-law exponent γm ∈ (2, 3] the
second moment 〈km(km − 1)〉/〈km〉 diverges in the large net-
work limit N → ∞. This implies that the trace of G diverges
as well, indicating that the maximum eigenvalue diverges. It
follows that as soon as one layer has a scale-free generalized
hyperdegree distribution, i.e., as soon as for at least one layer
m we have γm ∈ (2, 3], then

p[N]
c p[H ]

c → 0, (39)

in the limit N → ∞. This implies that for standard percolation
it is enough that one layer is scale-free to significantly improve
the robustness of the random multiplex hypergraph.

C. Effect of correlations between generalized hyperdegrees

Random multiplex hypergraphs are characterized, in gen-
eral, by nontrivial correlations between the hyperdegrees of
the same nodes. In particular, given a random multiplex hy-
pergraph we indicate with Cmn the correlation between the

hyperdegrees of the same node, connected to hyperedges of
cardinality n and m, respectively, i.e.,

Cmn = 〈knkm〉 − 〈kn〉〈km〉. (40)

In a random multiplex hypergraph formed by two layers, this
correlations can be modified by permutating the labels of the
nodes in a given layer leaving the hyperdegree distribution
of the two layers unchanged. In particular, it is possible to
choose the permutation of the replica nodes in such a way that
the correlations among the corresponding generalized degrees
is maximized or minimized generating maximally positive
correlated multiplex hypergraphs and maximally negative cor-
related multiplex hypergraphs. This construction follows very
closely the construction to build maximally positive and max-
imally negative correlated multiplex networks proposed in
Ref. [16]. In particular, the maximally positive correlated mul-
tiplex hypergraph (MPCMH) can be obtained by ranking the
generalized hyperdegrees of both layers in increasing order
and identifying the label of the nodes with the same rank
in both layer. On the contrary maximally negative correlated
multiplex hypergraph (MNCMH) can be obtained by ranking
the generalized degrees of one layer in increasing order and
the one of the other layer in decreasing order, and by identify-
ing the label of the nodes of the same rank. If the label of the
nodes are assigned randomly, then we will obtain an uncor-
related multiplex hypergraph (UMH). To assess the effect of
correlations in the robustness of random multiplex hypergraph
here we focus on a duplex hypergraph and we investigate the
dependence of the percolations thresholds with the correla-
tions coefficient between the generalized hyperdegrees of the
two layers. In the considered case of a duplex hypergraph with
two layers formed by hyperedges of cardinality m1 and m2, the
matrix G is given by

G = p[H ] p[N]

(
m̂1κ1 m̂2K1

m̂1K2 m̂2κ2

)
, (41)

where m̂r = mr − 1 for r ∈ {1, 2} and where we have used the
notation 〈

kmr

(
kmr − 1

)〉
〈
kmr

〉 = κr,

〈
km1 km2

〉
〈
kmr

〉 = Kr, (42)

for r ∈ {1, 2}. The percolation threshold can be found by
imposing that the maximum eigenvalue of the matrix G equals
one, obtaining

p[N]
c p[H ]

c = 2[κ1m̂1 + κ2m̂2 +
√

�]−1, (43)

with

� = (κ1m̂1 − κ2m̂2)2 + 4K1K2m̂1m̂2. (44)

We observe that for this percolation problem, the node
percolation threshold p[N]

c obtained when we impose p[H ] =
p[H ]

c = 1 and the hyperedge percolation threshold p[H ]
c ob-

tained when we impose p[N] = p[N]
c = 1 take the same value.

Since the productK1K2 depends on the correlation coefficient
Cm1m2 through

K1K2 =
(
Cm1m2 + 〈

km1

〉〈
km2

〉)2〈
km1

〉〈
km2

〉 , (45)

034306-8



HIGHER-ORDER PERCOLATION PROCESSES ON … PHYSICAL REVIEW E 104, 034306 (2021)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Negative
Positive
Uncorrelated

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Negative
Positive
Uncorrelated

(b)(a)

FIG. 5. The fraction R of nodes in the giant component for MPCMH (Positive correlations), for the UMH (Uncorrelated) and for MNCMH
(Negative correlations) is shown for hyperedge percolation (a) and for node percolation (b). The considered duplex hypergraph has N = 104

nodes and hyperedges of cardinality m1 = 2 (layer 1) and m2 = 3 (layer 2). The generalized hyperdegree distributions are Poisson with z2 = 0.5
(for layer 1), z3 = 1.5 (for layer 2).

Eq. (43) reveals that positive correlations increase the robust-
ness of the multiplex hypergraph against random attack while
negative correlations decrease the robustness of the multiplex
hypergraph. In Fig. 5 we show the effect of degree corre-
lations on the robustness of random multiplex hypergraph
by investigating separately node percolation and hyperedge
percolation. We observe that the percolation threshold for
node and hyperedge percolation are the same and are in
perfect agreement with the analytical results indicating that
maximally correlated multiplex hypergraphs have a lower
percolation threshold than maximally negative correlated mul-
tiplex networks. The investigation of the the order parameter
R versus p[N] in node percolation (when p[H ] = 1) versus
p[H ] in hyperedge percolation (when p[N] = 1) show that for
both types of percolation a notable effect: the crossing of
the curves R versus p (with p = p[H ] or p = p[N]) calculated
for the MPCMH and for the MNCMH. This implies that for
large values of p the negative degree correlations enhance
the robustness of the multiplex hypergraphs with respect
to the positive correlations. To understand this phenomenon
we note that close to the percolation threshold the robustness
of the multiplex hypergraph is determined by the high degree
nodes, that are less prone to damage in presence of positive
correlations, leading to a smaller percolation threshold of
MPCMH. On the contrary, for large values of p the robustness
of the multiplex hypergraph, quantified by the fraction R of
nodes in the giant component, is highly dependent on the low
degree nodes. In particular, the role of low degree nodes is
more pronounced when in each layer there is a non-negligible
number of isolated nodes. In presence of positive correlations
among the generalized hyperdegrees, the number of nodes
isolated in both layers or connected to a small number of hy-
perdeges (regardless of their size) is larger. As a consequence
of this MNCMH have a larger fraction of nodes in the giant
component than MPCMH, giving an intuition for explaining
the fact that for large value of p the order parameter R be-
comes larger for MNCMH than for MPCMH in both for node
and hyperdegree percolation in Fig. 5. This effect remains
but it is strongly suppressed in absence of isolated nodes
and disappears in the case in which the multiplex network is
connected, i.e., there is only a single connected component.

V. HIGHER-ORDER PERCOLATION ON MULTIPLEX
HYPERGRAPHS

A. The landscape of possible higher-order percolation problems

The topology of random multiplex hypergraph models
allows us to explore a large variety of higher-order per-
colation problems. Higher-order percolation problems are
characterized by illustrating cooperative phenomena where
the probability that a node (or a factor node) is active depends
on the presence of two or more active neighbours. These
higher-order percolation problems have a highly nontrivial
critical behavior and display hybrid discontinuous transitions,
tricritical points, and they can even be characterized by more
than one critical point as we will show in the following. Here
we investigate and systematically characterize a large variety
of higher-order percolation models that can be defined on
multiplex hypergraphs. Inspired by the parallelism between
multiplex hypergraphs and multiplex networks [6,38,40,70]
we can define interlayer node interdependence in multiplex
hypergraphs in which a node is active if it has at least a active
neighbor on every layer of the multiplex hypergraph. This
higher-order percolation is characterized by a hybrid discon-
tinuous transition which can become a continuous transition
at a tricritical point if partial interdependence is considered.
However, interlayer node interdependence is not the only
interdependent model that can be defined on a multiplex
hypergraph. In fact, we can also consider interdependence
associated to hyperedges, and assume that an hyperedge is
active only when all its nodes are active. This highly non-
trivial model display hybrid discontinuous transitions if the
hyperedges are all involving more than two nodes. In presence
of hyperedges of cardinality two (links) the transition can
become continuous at a tricritical point in some cases. Note
that this model is the percolation problem most directly related
to the higher-order contagion problem proposed and studied in
Refs. [11,27] as a nodes is activated by an hyperedge only if
all the other nodes of the hyperedge are active. Another class
of higher-order percolation problems is inspired by K-core
percolation [36,37]. In the case of node K-core percolation
a node is active if at least K of its hyperedges (of any
given cardinality) are active, for hyperedge K-core percolation
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(a) (b)

(c) (d)

FIG. 6. Schematic representation of the equations for Ŝm and for Sm determining higher-order percolation models defined on multiplex
hypergraphs. Panel (a) represents node-interdependent percolation. Panel (b) represents hyperedge-interdependent percolation. Panel (c) rep-
resents Node K-core percolation. Panel (d) represents hyperedge K-core percolation.

instead an hyperedges is active if at least K of its nodes are
active. In either one of these last two models the transition is
discontinuous as long as K > 2 and the distributions P(k) and
P̂(m) have finite second moment. These different higher-order
percolation problems are summarized in Fig. 6.

B. Interdependent node percolation

1. General framework

In analogy to interlayer dependency on multilayer net-
works [6,38,40,70], we consider the interlayer dependency on
hypergraphs. A node in the hypergraph is active when each of
its replica nodes belongs at least to one active hyperedge, i.e.,
the node belongs to at least one active hyperedge for each pos-
sible value of the hyperedge cardinalities m. For instance in a
duplex networks representing brain regions we consider the
giant component formed by brain regions (nodes) connected
both in the blood vessel network and in the higher-order func-
tional connectivity network. Similarly in social networks we
consider the connected component formed by agents (nodes)
connected both in the mobile phone connection networks
and in some on-line or face-to-face higher-order interaction
networks. In interdependent node percolation the probability
Ŝm that starting from a node we reach a m-factor node (m-
hyperedege) that is active and the probability Sm that starting
from a m-factor node (m-hyperedge) we reach a node that is
active follow the recursive equations

Ŝm = p[H ][1 − (1 − Sm)m−1],

Sm = p[N]
∑

k

km

〈km〉P(k)
∏
m′

[1 − (1 − Ŝm′ )k′
m−δm,m′ ]. (46)

Moreover, the order parameters R̂ and R indicating the fraction
of active hyperedges and the fraction of active nodes, respec-
tively, are given by

R̂ = p[H ]
∑

m

P̂(m)[1 − (1 − Sm)m],

R = p[N]
∑

k

P(k)
∏
m′

[1 − (1 − Ŝm′ )k′
m ]. (47)

As for interdependent percolation on pairwise multiplex net-
works, these equations lead to discontinuous (and hybrid)
phase transitions. Let us indicate with � the maximum eigen-
value of the Jacobian matrix J of the system of Eqs. (46). The
critical point of the discontinuous transition corresponding to
nonzero order parameters R and R̂ can be obtained by solving

� = 1 (48)

together with Eqs. (46) and (47).

2. Independent layers

To reveal the mechanism responsible for the discontinuity
of the transition, let us consider the model in the simple case
in which the generalized degrees of a nodes are independent.
In this case, the joint distribution P(k) factorizes according to
Eq. (29). In this limit the equations for Sm and R can be simply
written as

Sm = p[N](1 − G1,m(1 − Ŝm))
∏

m′ 	=m

(1 − G0,m′ (1 − Ŝm′ )),

R = p[N]
∏
m′

(1 − G0,m′ (1 − Ŝm′ )), (49)
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FIG. 7. The fraction R of active nodes in interdependent node
percolation is shown versus p[H ] for a duplex multiplex hypergraph
with p[N] = 1. The layers of the duplex networks are formed by
hyperedges of cardinality m1 = 3 (layer 1), and m2 = 4 (layer 2).
Both layers have Poisson generalized degree ditribution with z3 =
z4 = 2.5. The inset displays the function h(S) defined in Eq. (53)
calculated at the critical point, i.e., for p[H ] = p[H ]

c .

where G0,m(x) and G1,m(x) indicate the generating functions

G0,m(x) =
∑
km

Pm(km)xkm , (50)

G1,m(x) =
∑

k

km

〈km〉Pm(km)xkm−1. (51)

By choosing the generalized degree distributions Pm(km) to be
Poisson and given by Eq. (30) these equations further simplify
as G0,m(x) = G1,m(x). Therefore, we have R = Sm = S for
every possible value of R. Therefore, in this simple limit the
order parameter R = S being the largest root of the equation

h(S) = 0, (52)

with the function h(S) given by

h(S) = S − p[N]
∏

m

[1 − exp[−p[H ]zm(1 − (1 − S)m−1)]].

(53)

For any node-interdependent multiplex hypergraph with more
than one layer this equation describes a discontinuous hybrid
phase transition. Indeed, Eq. (52) does not only have a trivial
solution for S = 0 but can admit also nontrivial solutions S >

0. In particular, as the values of p[N] and p[H ] change, the non-
trivial solution emerges discontinuously when the minimum
of the function h(S) is achieved at a value of S = Sc > 0 in
which h(S) = 0, [6] (see Fig. 7). Therefore, the critical point
can be found by solving

h(Sc) = h′(Sc) = 0. (54)

We can consider the model in which p[N] = 1 or the model
in which p[H ] = 1. In both models the transition is hybrid.

3. Effect of correlations between generalized degrees

Interdependent multiplex hypergraphs display a higher-
order percolation transition that is significantly affected by the
correlations between generalized degrees of different layers.
This phenomenon is the higher-order version of the corre-
sponding phenomenon known to occur on pairwise multiplex
networks [6,16]. By considering a duplex hypergraph with
tunable correlations of the generalized degrees of the two lay-
ers we observe that MPCMH are more robust than MNCMH,
i.e., positive correlations between generalized degrees of
different layer increase the robustness of the multiplex hy-
pergraph. This beneficial effect of positive correlations affects
the critical threshold of the higher-order percolation model,
which is lower for MPCMH than for MNCMH with the
same hyperdegree distributions in each of the two layers (see
Fig. 8). Interestingly, for interdepent multiplex networks the
beneficial effect of positive correlations remains effective for
every entity of the damage. In fact, for this percolation prob-
lem, we have that also for large values of p[H ] and p[N] the
order parameter R for MPCMH remains always larger that the
order parameter R for MNCMH. This phenomenology differs
from the one observed for standard percolation (see Fig. 5).
The reason for this different behavior of interdependent per-
colation is simple: when most of the nodes and most of the
links are not initially damaged, the fraction of active nodes
is maximized for positive correlations. This remains true also
in presence of isolated nodes. In fact, negative correlations
will imply the maximization of nodes which are isolated on
at least one layer, and thus inactive, while positive correla-
tions will minimize the number of nodes isolated in at least
one layer. This simple explanation reveals why in Fig. 8 the
order parameter R for MPCMH is always larger that the order
parameter R for MNCMH, while we observe a crossing of the
two curves for standard percolation (see Fig. 5).

4. Partial interdependence

While node-interdependency always leads to discontinu-
ous and hybrid transitions, if partial interdependence is taken
into account it is possible to observe a change of behavior
at a triciritical point separating a phase in which the perco-
lation process displays discontinuous hybrid transitions from
a phase in which the process displays continuous transitions.
Partial interdependence has been introduced and investigated
in detail for pairwise multiplex networks [6,40,70]. Here
we extend this notion to multiplex hypergraphs highlighting
the similarities and differences between the two models. By
partial interdependence we mean that the interdependence
is not always present between the replica nodes but replica
nodes are interdependent only with probability r. Therefore,
for r = 1 we recover the node-interdependent multiplex hy-
pergraph studied in the previous paragraph and displaying a
discontinuous hybrid transition, while for r = 0 we recover
the standard percolation model studied in Sec. III displaying
a continuous transition. Let us restrict our discussion here
to the simple case of independent generalized degrees with
joint generalize degree distribution P(k) given by Eq. (29). In
this case, the equation for Ŝm and the equation for R̂ remains
unchanged [given by the first of Eqs. (46) and (47)]; however,
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FIG. 8. The fraction of active nodes R for interdependent node percolation is plotted versus p[H ] when p[N] = 1 (a) and versus p[N] when
p[H ] = 1 (b) for a MPCMH (Positive correlations) a MNCMH (Negative correlations) and for a UMH (Uncorrelated). The layers of the duplex
hypergraph are formed by hyperedges of cardinality m1 = 3 (layer 1), m2 = 4 (layer 2), with Poisson layers of average generalized degree
z3 = 2.5, z4 = 2.5.

the equations for Sm and R change and are given by

Sm = p[N](1 − G1,m(1 − Ŝm))
∏

m′ 	=m

(1 − rG0,m′ (1 − Ŝm′ )),

R = p[N](1 − G0,m(1 − Ŝm))
∏

m′ 	=m

(1 − rG0,m′ (1 − Ŝm′ )).

Interestingly, due to the higher-order nature of the multiplex
hypergraphs these equations cannot be reduced to a single
equation in the case of Poisson layers with generalized degree
distribution given by Eq. (30). However, the phase diagram of
the model can be investigated numerically. The phase diagram
is characterized by a tricritical point separating a regime with
r < rT for which we observe continuous transitions and a
regime with r > rT in which we observe a discontinuous hy-
brid phase transition. Let us consider the case in which either
nodes (p[H ] = 1, p[N] = p) or hyperedges (p[N] = 1, p[H ] =
p) are randomly removed with probability 1 − p. In this case,
the tricritical point (rT , pT ) can be found numerically by
solving the self-consistent equations for Ŝm and Sm together
with

� = 1, (55)

where � is the largest eigenvalue of the Jacobian matrix of the
equations determining Ŝm and Sm (see Fig. 9).

C. Interdependent hyperedge percolation

1. General framework

In this section we introduce the higher-order interdepen-
dent hyperedge percolation model. In this model an hyperedge
is active only if all its nodes are active as well; moreover
a node is active if at least one of its hyperedges is active.
This model is here chosen because of its complementarity
with the node-interdependence where a node is active if all
its replica nodes are active, i.e., all its replica nodes belong
to at least an active hyperedge. Interestingly, the independent
hyperedge percolation problem can be related to the model
of higher-order social contagion proposed in Ref. [11] and
investigated on random hypergraphs in Ref. [27]. Indeed, in
higher-order contagion model a node is infected if at least
one of its m-hyperedges connects it to m − 1 infected nodes.

The interdependent hyperedge percolation model and the
higher-order contagion model are closely related to each other.
However, there are significant differences between the con-
tagion model on hypergraphs and interdependent hyperedge
percolation. The first one is that the percolation models are
typically mapped to SIR-type dynamics while higher-order
simplicial model are typically studied in the SIS settings. This
difference impedes a perfect mapping between the SIS dy-
namics an percolation. However here we are concerned about
the nature of the phase transition rather than to the details of
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FIG. 9. The percolation threshold pc = p[H ]
c of a duplex mul-

tiplex hypergraph is plotted versus r for the interdependent node
percolation process with partial interdependence. Solid line cor-
respond to the line of continuous critical point, the dashed line
corresponds to the line of discontinuous, hybrid transitions. The
tricritcal point separating the two lines is obtained for r = rT =
0.68 . . .. The inset displays the value R = Rc of the fraction of active
nodes at the critical point as a function of r showing that Rc > 0
for r > rT indicating that the transition is discontinuous. The layers
of the duplex hypergraph are formed by hyperedges of cardinality
m1 = 3 (layer 1), m2 = 4 (layer 2), with Poisson layers of average
generalized degree z3 = 2, z4 = 2. Here p[N] is set equal to one, i.e.,
p[N] = 1.
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the dynamics and typically the nature of the phase transition
(whether the transition is continuous or discontinuous) does
not depend on the choice between the SIS and SIR dynam-
ics. The second and more significant difference is that the
higher-order contagion processes admit a region of bistability
in which the number of infected nodes can acquire either a
larger or a smaller value depending on the initial conditions of
the dynamics, while in the corresponding region of the phase
diagram, the interdependent hyperedge percolation does not
display bistability. Indeed, although the self-consistent equa-
tion for the order parameter admits two solutions, the order
parameter R always takes the value of the largest solution
of the self-consistent equations. This is due to the fact that
broadly speaking percolation can be seen as an optimization
problem in which one characterizes the maximum number of
nodes that are connected under the conditions imposed by the
combinatorics of the process.

In the hyperedge-interdependent percolation model the
probability Ŝm that starting from a random node we reach an
m-factor node (m-hyperedge) which is active, and the proba-
bility Sm that starting from a m-factor node (m-hyperedge) we
reach a node that is active are given by

Ŝm = p[H ]Sm−1
m ,

Sm = p[N]
∑

k

km

〈km〉P(k)

[
1 −

∏
m′

(1 − Ŝm′ )km′−δm,m′

]
. (56)

Moreover, the order parameter R̂ and R indicating the frac-
tion of active hyperedges and active nodes, respectively, are
given by

R̂ = p[H ]
∑

m

P̂(m)Sm
m,

R = p[N]
∑

k

km

〈km〉P(k)

[
1 −

∏
m′

(1 − Ŝm′ )km′

]
. (57)

These equations differ with respect to the equation valid
for standard percolation. In particular, the equations for Ŝm

and R̂ imply that an hyperedge can be active only if all
its nodes are also active. Therefore, we note that if the
multiplex hypergraph contains only one layer and the layer
captures only pairwise interactions, i.e., m1 = m = 2 then this
model reduces to standard percolation, however as long as
the hypergraph contains hyperedges of cardinality m 	= 2 the
interdependent hyperedge percolation problem differs from
standard percolation. In the following paragraphs we will in-
vestigate the nature of the percolation transition and the effect
of correlations among generalized degrees observed for this
model.

2. Independent layers

It is instructive to investigate the critical properties of
hyperedge interdependence for a multiplex hypergraph with
independent layers. In this case, Eqs. (56) and (57) reduce to

Ŝm = p[H ]Sm−1
m ,

Sm = p[N]

[
1 − G1,m,(1 − Ŝm)

∏
m′ 	=m

G0,m′ (1 − Ŝm′ )

]
,

(58)

R = p[N]

[
1 −

∏
m

G0,m,

(
1 − p[H ]Sm−1

m

)]
,

R̂ = = p[H ]
∑

m

P̂(m)Sm
m,

where the generating functions G0,m(x) and G1,m,(x) are
defined in Eq. (51). By considering Poisson layers with gen-
eralized degree distribution given by Eq. (30) we observe that
Sm = R = S for every value of m with S satisfying

S = p[N]

[
1 − exp

(
−p[H ]

∑
m

zmSm−1)

)]
. (59)

In the case of two-layer multiplex hypergraphs we obtain that
S satisfies

h(S) = 0, (60)

with

h(S) = S − p[N]
{
1 − exp

[−p[H ]
(
zm1 Sm1−1 + zm2 Sm2−1

)]}
.

(61)

Let us fix the expected number of hyperedges incident to a
node, regardless of their cardinality, by imposing

zm1 + zm2 = z, (62)

and let us investigate the nature of the interdependent hyper-
dge percolation transition as a function of zm1 . Let us start with
the specific example of having two layers with m1 = 2 and
m2 = 3. If z2 = z and z3 = 0, then the multiplex hypergraph
reduces to a single network, and the transition is the standard
percolation transition, which occurs at a critical point charac-
terized by satisfying

h(0) = h′(0) = 0. (63)

In the other extreme case in which z2 = 0 and z3 = z, the
multiplex hypergraph reduces to a single-layer hypergraphs
including only three hyperedges. By following a well estab-
lished theory of critical phenomena in simple and multiplex
networks [6] we can predict that in this case the transition is
discontinuous and it leads to a nonzero value S = Sc for which

h(Sc) = h′(Sc) = 0. (64)

These are the two limiting cases of a region of the phase space
in which we observe a continuous transition and of a region of
phase space in which we observe a discontinuous transition.
These two regions are separated by a tricritical point observed
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FIG. 10. The critical behavior of the interdependent hyperedge percolation process on a duplex hypergraph is investigated by plotting the
function h(S) defined in Eq. (52) versus S (a, c) and by displaying the the fraction of active nodes R for different values of p = p[H ] (d, f).
The duplex hypergraphs have layers with hyperedge cardinalities m1 = 2, m2 = 3 (a, d), m1 = 2, m2 = 10 (b, e), and m1 = 3, m2 = 5 (c, f).
Each layer is characterized by Poisson hyperdegree distributions with average degree zm1 (layer 1) and zm2 (layer 2) with zm1 + zm2 = z = 6.
In panel (d) we observe a continuous transitions and a discontinuous transitions occurring for different values of z2. In panel (e) we observe
that the model can display, for the same value of z3, two critical points pc1 and pc2 corresponding to a continuous and discontinuous transition
occurring at a nonzero value of the order parameter. In panel (f) we show that all the transitions are discontinuous.

at the value of zm1 = zT that satisfies

h(0) = h′(0) = h′′(0) = 0. (65)

For hyperedge-interdependent percolation with p[N] = 1 we
obtain the triciritcal point at

zT = 2

3
z,

p[H ]
T = 3

2z
. (66)

For hyperedge-interdependent percolation with p[H ] = 1 we
obtain the tricritical point at

zT = √
1 + 2z − 1,

p[N]
T =

√
1 + 2z + 1

2z
. (67)

As we change the values of m1 and m2 characterizing the
two layers of the duplex multiplex network different scenarios
emerges. For m1 > 2 and m2 > 2, the transition is always
discontinuous. Interestingly, as is shown in Fig. 10(b), when
m1 = 2 and m2 > 3 the hyperedge-interdependent percolation
can display not just one but also two percolation transitions.
The first transition describes the emergence of the general-
ized giant component and is continuous, the second transition
indicates a discontinuity of the order parameter R from a
nonzero value to another nonzero value. As far as we know
this phenomenon has not been reported before, not even for
the higher-order contagion model studied in Refs. [11,27]

but can have an interesting interpretation in that context as
a sudden activation of hyperedges of larger cardinality.

3. Effect of correlations

The general equations determining hyperedge-inter-
dependent percolation can be also used to study the effect
of correlations between the generalized degrees of the replica
nodes in different layers. In this case, regardless the nature
of the phase transition, we observe that MPCMH display a
transition threshold smaller than MNCMH, indicating that
the system is able to sustain more damage. However, for
small entity of the damage, and in the extreme case in which
the multiplex hypergraph is not damaged, the MPCMH have
a smaller giant component than the MNCMH. This phe-
nomenon is expected as it has the same explanation of the
corresponding phenomena observed and discussed in Sec. III
for the case of standard percolation (see Fig. 11).

D. Node K-core percolation

In this section we propose the K-core node percolation
on random multiplex hypergraphs. This model is a higher-
order percolation process that generalizes K-core percolation
of single pairwise networks to the multiplex hypergraphs. In
K-core node percolation a node is active if has at least K
active neighbours. In K-core node percolation defined on a
multiplex hypergraph, a node is active if it belongs at least to
K active hyperedges regardless of their cardinality. Physical
motivations for this dynamics are not lacking as this is a
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FIG. 11. The fraction of active nodes R in the interdependent hyperedge percolation is plotted versus p[H ] when p[N] = 1 (a) and versus
p[N] when p[H ] = 1 (b) for a MPCMH (Positive correlations) a MNCMH (Negative correlations) and for a UMH (Uncorrelated). The layers of
the duplex hypergraph are formed by hyperedges of cardinality m1 = 2 (layer 1), m2 = 3 (layer 2), with Poisson layers of average generalized
degree z2 = 4.8, z3 = 1.2 and z = z2 + z3 = 6.

fundamental example of cooperative model in the class of
threshold models [71,72] that are known to determine fun-
damental aspects of contagion and avalanche dynamics. The
probability Ŝm that starting from a node we reach an m-factor
node (m-hyperedege) that is active and the probability Sm that
starting from a m-factor node (m-hyperedge) we reach a node
that is active follow the recursive equations

Ŝm = p[H ][1 − (1 − Sm)m−1],
(68)

Sm = p[N]
′∑

k

km

〈km〉P(k)

[
1 −

K−2∑
q=0

Bq(k)

]
,

where
∑′

k indicates the sum over k such that

∑
m

km � K. (69)

Here Bq(k) is given by

Bq(k) =
′′∑

{qm′ }

∏
m′

[(
k′

m − δm,m′

qm′

)
Ŝqm′

m′ (1 − Ŝm′ )k′
m−δm,m′−qm′

]
,

where
∑′′

{qm′ } indicates the sum over of {qm′ } such that

∑
m′

qm′ = q. (70)

The order parameters R and R̂ expressing the fraction of
nodes (R) and the fraction of hyperedges (R̂) in the node K-
core are given by

R̂ = p[H ]

[
1 −

∑
m

P̂(m)(1 − S)m−1

]
,

(71)

R = p[N]

[
1 −

′∑
k

P(k)
K−1∑
q=0

Dq

]
,

with Dq given by

Dq =
′′∑

{qm′ }

∏
m′

[(
k′

m

qm′

)
Ŝqm′

m′ (1 − Ŝm′ )k′
m−qm′

]
. (72)

It follows that the equations for node K-core percolation
reduce to standard K-core percolation if the multiplex hyper-
graph if formed by a single layers encoding for hyperedges
of cardinality m = 2 (i.e., links). For node K-core percola-
tion, like for node K-core percolation on pairwise networks
[36,37], we observe that the percolation transition is dis-
continuous and hybrid as long as K > 2 provided that the
generalized degree distributions have finite second moment
(see Fig. 12).
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FIG. 12. The fraction R of active nodes for the node K-core per-
colation on duplex hypergraphs with independent Poisson layers is
shown versus the probability of retaining a hyperedge p[H ] = p. The
duplex hypergraph includes N = 104 nodes and has layers formed by
hyperedges of cadinality m1 = 4 and m2 = 5 with independent Pois-
son generalized hyperdegree distributions with average z4 = z5 = 2.
Here p[N] is fixed to the constant value p[N] = 1. The node K-core
percolation is discontinuous for K > 2.
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E. Hyperedge K-core percolation

Hyperedge K-core percolation is here defined as a higher-
order percolation process occurring on multiplex hypergraphs
in which a hyperedge is active only if at least K (with K � 2)
nodes belonging to it are also active. This model interpolates
between percolation and interdependent percolation. There-
fore, it describes the physical scenario in which a node is
activated only if a critical number of nodes belonging to the
same hyperdege is activated and can describe another varia-
tion of contagion models or threshold models [71,72]. In this
case, the probability Ŝm that starting from a node we reach a
m-factor node (m-hyperedge) that is active and the probability
Sm that starting from a m-factor node (m-hyperedge) we reach
a node that is active are given by

Ŝm =
{

p[H ]
[
1 − ∑K−2

q=0 B̂q(m)
]

for m � K
0 for m < K

,

Sm = p[N]

[
1 −

∑
k

km

〈km〉P(k)
∏
m′

(1 − Ŝm′ )km′ −δm,m′

]
, (73)

where Bq(m) can be expressed as

B̂q(m) =
(

m − 1
q

)
(Sm)q(1 − Sm)m−1−q. (74)

Similarly we can define the order parameters R and R̂ indicat-
ing the fraction of nodes and hyperedge that are active as

R̂ = p[H ]
∑
m�K

P̂(m)

[
1 −

K−1∑
q=0

(
m − 1

q

)
Sq

m(1 − Sm)m−q

]
,

R = p[N]

[
1 −

∑
k

P(k)
∏
m′

(1 − Ŝm′ )km′

]
. (75)

For hyperedge K-core percolation like for K-core percolation
on pairwise networks [36,37], we observe that the percolation
transition is discontinuous and hybrid as long as K > 2 pro-
vided that the distribution P̂(m) has finite second moment (see
Fig. 13).

VI. CONCLUSIONS

In this paper we have provided a comprehensive framework
to study standard and higher-order percolation on random
multiplex hypergraphs. Random multiplex hypergraphs are
a natural generalization of random hypergraphs where the
hyperedges of different cardinality are associated to different
layers of the multiplex. This modeling framework is very
comprehensive and is here used to investigate the rich inter-
play between the topology of hypergraphs and the properties
of standard and higher-order percolation defined on these
structures. We reveal how interlayer correlations among the
generalized degree of replica nodes can affect the critical
properties of standard percolation. In particular, we show
that close to the percolation transition positive correlations
enhance the robustness of multiplex hypergraphs while when
the initial damage is minor, negative correlations can be
beneficial to network robustness. We show how the multi-
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FIG. 13. The fraction R of active nodes for the hyperedge K-core
percolation on duplex hypergraphs with independent Poisson layers
is shown versus the probability of retaining a hyperedge p[H ] =
p. The duplex hypergraph includes N = 104 nodes and has layers
formed by hyperedges of cadinality m1 = 4 and m2 = 5 with inde-
pendent Poisson generalized hyperdegree distributions with average
z4 = z5 = 2. Here p[N] is fixed to the constant value p[N] = 1. The
transition is discontinuous for K > 2.

layer nature of multiplex hypergraphs can be exploited to
define a number of higher-order percolation processes. In par-
ticular, we propose two models generalizing interdependent
percolation in multiplex networks and contagion model in
hypergraphs (the interdependent node and the interdependent
hyperedge percolation) and two models generalizing K-core
percolation to hypergraphs (the node K-core and hyperedge
K-core percolation). These models are here shown to display
a rich phenomenology including discontinuous hybrid phase
transitions, tricritical points, and multiplex phase transitions
together with nontrivial effects due to the interlayer correla-
tions among the generalized degrees.

Although our aim is to provide a comprehensive view of
the possible higher-order percolation processes on random
multiplex hypergraphs we are aware that the processes inves-
tigated in this work are not exhausitive of the many relevant
percolation processes that can be defined on these structures.
We hope that this work can generate further interest in the
interplay between the structure of higher-order networks and
their dynamics and that the revealed properties of percolation
on multiplex hypergraphs can open new insights also for the
study of other dynamical processes such as epidemic spread-
ing and social contagion.
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