
PHYSICAL REVIEW E 104, 034304 (2021)

Finite-size scaling of geometric renormalization flows in complex networks

Dan Chen ,1 Housheng Su ,1,* Xiaofan Wang ,2 Gui-Jun Pan ,3 and Guanrong Chen 4

1School of Artificial Intelligence and Automation, Image Processing and Intelligent Control Key Laboratory of Education Ministry of China,
Huazhong University of Science and Technology, Wuhan 430074, China

2Department of Automation, Shanghai University, Shanghai 200072, China
3Faculty of Physics and Electronic Science, Hubei University, Wuhan 430062, China

4Department of Electronic Engineering, City University of Hong Kong, 999077, Hong Kong

(Received 2 April 2021; revised 4 August 2021; accepted 23 August 2021; published 10 September 2021)

Some characteristics of complex networks need to be derived from global knowledge of the network topolo-
gies, which challenges the practice for studying many large-scale real-world networks. Recently, the geometric
renormalization technique has provided a good approximation framework to significantly reduce the size and
complexity of a network while retaining its “slow” degrees of freedom. However, due to the finite-size effect
of real networks, excessive renormalization iterations will eventually cause these important “slow” degrees of
freedom to be filtered out. In this paper, we systematically investigate the finite-size scaling of structural and
dynamical observables in geometric renormalization flows of both synthetic and real evolutionary networks. Our
results show that these observables can be well characterized by a certain scaling function. Specifically, we show
that the critical exponent implied by the scaling function is independent of these observables but depends only
on the structural properties of the network. To a certain extent, the results of this paper are of great significance
for predicting the observable quantities of large-scale real systems and further suggest that the potential scale
invariance of many real-world networks is often masked by finite-size effects.
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I. INTRODUCTION

Complex networks have attracted considerable attention
from various disciplines such as mathematics, physics, bi-
ology, engineering, computer science, and others [1]. Its
emergence was due to the discovery that associated with
a real system there exists a corresponding network which
can well define the interactions among the system compo-
nents [2]. Because of this, one can better understand the
structural and functional properties of the real system. In
particular, by studying the topology of the network asso-
ciated with a real system, some small-world properties [3]
and scale-free properties [4] were identified. Consequently,
their functional performances could be further studied, includ-
ing synchronization [5,6], observability and controllability
[7–9], reaction-diffusion [10], navigation [11], transportation
[12,13], and many other dynamic behaviors.

However, exploring the network structural and functional
properties also faces many challenges. For example, the evolu-
tions of real-world networks usually lead to more complicated
interactions and increasing numbers of nodes and edges, caus-
ing more difficulties for the investigations. In the past two
decades, the renormalization technique [14,15] was found to
be very effective for tackling the troublesome problem. This
framework significantly reduces the size and the complexity
of a large-scale network by retaining the “slow” degrees of
freedom in the network, while integrating the rest together. In
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so doing, smaller networks can be used to approximate the ini-
tially large ones. By performing a coarse-graining procedure
for a spatially embedded scale-free network, it was shown
[16] that a smaller network can maintain important structural
characteristics of the original one. Based on random walks,
a coarse-graining method was proposed [17] to reduce the
size of a network, but retain most spectral properties of the
original network through an iteration process. Furthermore,
using the shortest path-length measure of a network, a box-
covering technique was presented [18–20] for reducing the
size of the network. It was shown that the iteration process
can keep an approximately identical degree distribution of the
network, which was verified by some real-world networks.
Such a property is known as the network self-similarity [18].
In the following years, the box-covering technique had signif-
icant influence on the research of fractality and self-similarity
[21–23], as well as flows and fixed points [24–26], of various
complex networks.

It was observed that, for networks with small-world or
even ultra-small-world properties, the transformation method
based on shortest path-length cannot be effectively applied
to study their structural symmetry and functional invariance.
Therefore, a geometric renormalization (RGN) framework
was proposed [27], embedded in a hidden metric space
[28–33], which provides deep insights for studying the struc-
tural symmetry of complex networks. This framework is
proved capable of preserving both structural and dynamical
characteristics of scale-free networks, such as degree distri-
bution, clustering spectrum, dynamics, and navigability, to
a certain extent of accuracy within an appropriate number
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of iterations. Due to the finite-size effect on such networks,
however, excessive RGN iterations will eventually result in a
large deviation of the network features from the original ones.

To further explore the variation of the characteristics of
a network in the RGN iteration process, this paper reports a
comprehensive study of the finite-size scaling (FSS) behavior
of the structural and dynamical observables in renormaliza-
tion flows of synthetic and real evolutionary networks. For
complex systems (networks), because the infinite size limit
cannot be reached in the actual numerical simulation process,
it is often observed that the behavior of the system deviates
from the thermodynamic limit behavior. FSS, developed in the
field of critical phenomena and renormalization groups, is an
effective tool for analyzing and predicting the structural and
dynamic behavior of finite systems. Specifically, we consider
networks in small-world phase, non-small-world phase, and
their critical regions, respectively, and perform FSS analy-
ses of their structural and dynamic observables. Our results
show that these observables can be characterized by a certain
scaling function, and the exponent implied by the scaling
function is independent of these observables but depends only
on the structural properties of the network. We have verified
the effectiveness of this conclusion via some real evolutionary
networks, which provides further evidence for the predictive
power of synthetic models to real systems.

The rest of this paper is structured as follows. In Sec. II
we first review the average degree behavior of the S1 net-
work model in different parameter regions through the RGN
transformation process. Then we introduce the structure ob-
servables and dynamics observables of the network in detail.
In Sec. III we perform FSS analysis on eight observables of
S1 type of synthetic networks and real evolutionary networks,
respectively. Finally, the discussion and the conclusion are
given in Sec. IV and Sec. V, respectively.

II. PRELIMINARIES

A. S1 geometric models

A network can be embedded into a hidden metric space
[28–30] based on the distance between nodes in the space,
where the edges between nodes are dominated by popularity
and similarity dimensions [31]. To be precise, popularity is
directly related to the degrees of the nodes, while similarity is
the sum of many other attributes that can regulate the possi-
bility of interaction between nodes [27]. The model generated
by these two mechanisms can clearly explain some universal
properties of real networks, such as the structural complexity,
evolutionary mechanism, and dynamical behaviors.

Consider a simple one-dimensional S1 geometric model
[28], in which N nodes are placed on the circle of radius R.
Each node i is dominated by two latent variables: one is the
angle θi of the node i in the circle coordinates, used as the
similarity measure, and the other is the hidden degree value
κi, which is associated with the prevalence of the node and is
proportional to the desired degree of the node in the network.
In the model, θi is uniformly randomly taken from the interval
[0, 2π ), and the value of κi satisfies the probability density
function φ(κ ) = (ν − 1)κν−1

0 κ−ν , κ � κ0 = 〈k〉(ν − 2)/(ν −
1), and ν > 2. Therefore, for nodes with large degrees, the

0l 1l 2l

FIG. 1. The RGN transformation process of a weighted S1

geometric model. Starting from the initial network (l = 0), the
nonoverlapping coarse-graining block (the shadowed areas in the
figure) consisting of s continuous nodes is defined along the circle,
and the dashed lines with arrows map the nodes in the block to
their supernodes in layer l + 1. The straight solid lines in each layer
represent the links between nodes, and two supernodes in layer l + 1
will be connected only if and only if a node in one coarse-graining
block in layer l is connected to a node in another coarse-graining
block. The figure shows the case of s = 2, s can be set to a larger
value during the actual transformation process. Furthermore, for each
layer of the network, when the total number of nodes is not divisible
by s, the number of nodes contained in the last coarse-graining block
in the layer will be less than s, and it will still be mapped to the
supernode in the next layer.

observed degree distribution is approximately the same as
φ(κ ), i.e., �(k) ∼ k−ν . The radius R of the circle is propor-
tional to the total number of nodes, N . For simplicity, set
N = 2πR, which ensures that the average density of the nodes
on the circle is equal to 1. The probability of connecting two
nodes in hidden coordinates (θi, κi ) and (θ j, κ j ) on the circle
is given by

pi j = 1

1 + ψσ
i j

= 1

1 + [ d (θi,θ j )
μκiκ j

]σ
, (1)

where d (θi, θ j ) = R
θi j is the geodesic distance between
nodes i and j on the circle, and 
θi j = π − |π − |θi − θ j‖.
Equation (1) indicates that the connection probability between
nodes increases with the product of the hidden degrees, but
decreases with the increase of their distance along the circle
[27]. The parameter μ controls the observed average degree
of the network, and the parameter σ controls the average
clustering coefficient of the network, such that the larger
the value is and the smaller the effective distance is, the more
advantageous it is to the increase of the average clustering in
the network [28].

B. Average degree behaviors in geometric renormalization flows
of the S1 model

In [27] a RGN framework (see Fig. 1) for complex net-
works is defined based on a hidden metric space [28–31].
Specifically, the S1 model is generated according to Eq. (1),
and the distribution of nodes on the circle depends on
their angular coordinates. The closer the angular coordinates
are, the more similar the two nodes are considered to be.
Once the S1 model is generated, the next step is to de-
fine nonoverlapping coarse-graining blocks along the circle
and each block containing s contiguous nodes. The idea
of RGN is to abstract (coarse-graining) these s nodes with
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similar angular coordinates into one node (supernode) to get a
smaller replica network. In addition, whether there are edges
between supernodes depends on whether there are edges be-
tween block nodes before coarse graining. This principle is
the same as that followed by the box-covering renormal-
ization technique presented by Song et al [18]. The node’s
latent variables (κi,l+1, θi,l+1) of the layer l + 1 depend on
the node’s (κ j,l , θ j,l ) of the layer l , which satisfy κi,l+1 =
[
∑s

j=1(κ j,l )σ ]1/σ , θi,l+1 = [
∑s

j=1(θ j,lκ j,l )σ /
∑s

j=1(κ j,l )σ ]1/σ ,
García-Pérez et al. [27] have theoretically proved this result.

This RGN transformation has a good characteristic that it
can well predict the average degree behavior of a large-scale
network in the RGN flow process. Taking the S1 model for
example, in [27], the average degree is shown to approximate
satisfactorily an exponential relation along the RGN flow, as

〈k〉l = sα〈k〉l−1, (2)

where the exponent α depends on the parameters ν and σ ,
with

α =
{ 2

ν−1 − 1, 0 < ν − 1 � σ ,
2
σ

− 1, σ � ν − 1 < 2σ .
(3)

According to Eq. (3), the S1 model can be roughly divided
into three regions [27]:

I: ν < 3 or σ < 2 and α > 0, which corresponds to the
small-world phase. Along the direction of the RGN flow,
the network eventually approaches a highly connected graph.
That is, in this region, the average degree of the network
increases gradually along the RGN flow.

I to II: ν = 3 and σ � 2 or σ = 2 and ν � 3, namely, the
network is at the critical region from the small-world phase
to the non-small-world phase. According to Eq. (3), when
the value of (ν, σ ) is on the boundary line, α = 0, the average
degree of the network remains almost unchanged along the
RGN flow.

II: ν > 3 and σ > 2, namely, the network is located in
the non-small-world phase, the exponent α < 0, along the
direction of the RGN flow, the renormalized network becomes
more and more sparse and finally tends to a one-dimensional
ring structure; as the renormalization process proceeds, the
network eventually loses the small-world property.

III: 2σ < ν − 1, where the network becomes increasingly
homogeneous as s → ∞ (or l → ∞), and consequently the
network degree distribution lose its scale-freeness along the
RGN flow. From simulations, it was found that the average
degree of the renormalized layer has a similar behavior with
Eq. (2), i.e., 〈k〉l = sα〈k〉l−1.

Figure 2 shows the dependence of the average degree 〈k〉l

of a particular network on the renormalized layer l within
each region. Within regions I and III, 〈k〉l approximates an
exponential growth. At the edge of the transition between
regions I and II, the average degree 〈k〉l presents a tendency of
slow increase with the increase of l , which gradually becomes
saturated. Within region II, the average degree 〈k〉l approxi-
mates an exponential decay. The structure of the renormalized
network is similar to a ring as a fixed point. The dashed lines
show the result predicted by Eq. (3). Considering the ran-
domness of the S1 model, there are some differences between

0 2 4 6 8
l

101

102

〈k
〉 l

N0 = 50000

I

I to II

II

III

FIG. 2. The average degree 〈k〉l as a function of l for renor-
malized networks. Each solid curve represents the variation of the
average degree of a particular network in the corresponding region
along the RGN flow, and the dashed lines show the result predicted
by Eq. (3). In region I, (ν, σ ) = (2.5,1.5). At the edge of the transition
between regions I and II, (ν, σ ) = (3.0,2.5). In region II, (ν, σ )
= (3.5,2.5). In region III, (ν, σ ) = (4.0,1.1). The average hidden
degree 〈κ〉0 ≈ 6 and the expected average degree 〈k〉0 ≈ 6 for all
initial networks. The sizes of the initial networks are N0 = 50 000.
All results are averaged over 10 independent realizations.

theoretical and simulation results. More importantly, due to
the finite-size effect of the network, excessive renormaliza-
tion will cause the average degree of the network to deviate
seriously from the theoretical results. It can be seen from the
Fig. 2 that the difference between the simulation results and
the theoretical results gradually increases with the increase
of l . We speculate that when the initial network size is large
enough, the above phenomena show better consistency with
〈k〉l = sα〈k〉l−1. Moreover, Fig. 2 further shows that the value
of the parameter α can be used as a measure to distinguish
between small-world and non-small-world network. That is,
when α > 0, the network in phase I or III belongs to a small-
world network; when α � 0, the network in phase II or in their
critical region belongs to the non-small-world network.

C. Finite-size scaling behavior of observables in RGN flows

We carry out a comprehensive study of the FSS behavior of
the structural and dynamical observables in renormalization
flows of the typical S1 geometric network model [28]. First,
an S1 network is generated with N0 nodes and E0 edges,
denoted as G0. Then, starting from G0, nonoverlapping blocks
of continuous nodes of size s are defined in the S1 circle
[27]. Here s = 2 is chosen, and one-step RGN iteration is
performed to obtain G1. Consecutively, a layer-l renormalized
network Gl is obtained after l steps of RGN iterations. The
number of nodes in layer l is denoted by Nl , and the relative
network size of layer l is nl = Nl/N0.

In the following, a RGN flow is tracked by eight ob-
servables. One is the normalized maximum degree of the
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FIG. 3. FSS analysis of S1-network topological observables along the RGN flow. The main figures show each observable as a function of
the variable nl in the process of RGN transformation, and the inset shows their scaling functions related to the variable nl N

1/δ

0 . Key parameters
of the S1 network are ν = 2.5 and σ = 1.5, respectively. These networks belong to phase I, and the scaling exponent corresponding to four
observables is δ = 1.6(1). For observables kl,max and 〈k〉l,n, the black dashed lines show the predicted behavior of the scaling function. The
average hidden degree 〈κ〉0 ≈ 6 and the expected average degree 〈k〉0 ≈ 6 for all initial networks. All results are averaged over 10 independent
realizations.

renormalized network,

kl,max = Kl

Nl − 1
, (4)

where Kl is the maximum degree of the renormalized network
Gl , and Nl − 1 is the maximum value that Kl may take. An-
other observable is the normalized average degree,

〈k〉l,n = 〈k〉l

Nl − 1
, (5)

where Nl − 1 is the maximum value that 〈k〉l may take. The
average clustering coefficient 〈c〉l and the average shortest
path length 〈
〉l for the renormalized network Gl will also be
considered below.

Regarding the above characteristics of networks, the FSS
behavior is investigated through a box-covering procedure
[24,25]. These observables are commonly used to characterize
the basic topological properties of the network, referred to as
topological observables of the network, as illustrated in Fig. 3.

Now, consider several other observables that represent
global properties of networks. One is the normalized maxi-

mum eigenvalue of the Laplace matrix,

λl,n(L) = �l,n(L)

Nl
, (6)

where �l,n(L) is the maximum eigenvalue of the Laplace ma-
trix L of the renormalized network Gl , and Nl is the maximum
value that �l,n(L) may take. For a connected network with
at least one edge, it always satisfies �l,n(L) � Kl + 1, where
the equality holds if and only if Kl = Nl − 1 [34]. The first
normalized nonzero eigenvalue of the Laplace matrix is

λl,2(L) = �l,2(L)

Nl
, (7)

where �l,2(L) is the first nonzero eigenvalue of the Laplace
matrix L of the renormalized network Gl , and Nl is the
maximum value that �l,2(L) may take. To some extent,
the functional properties of a network can be optimized by
increasing the value of �l,2(L). For instance, maximizing
�l,2(L) can maximize the rate of convergence to the network
homogeneous state for undirected networks [35].

Also, the S1 model parameters can be divided into three
regions according to the diffusion time 1/�l,2(L) as dis-
cussed earlier [27]. In the following, consider the ratio of the
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FIG. 4. FSS analysis of S1-network dynamic observables along the RGN flow. The main figures show each observable as a function of the
variable nl in the process of RGN transformation, and the inset shows their scaling functions related to the variable nl N

1/δ

0 . Key parameters
of the S1 network are ν = 2.5 and σ = 1.5, respectively. These networks belong to phase I, and the scaling exponent corresponding to four
observables is δ = 1.6(1). For all observables, the black dashed lines show the predicted behavior of the scaling function. The average hidden
degree 〈κ〉0 ≈ 6 and the expected average degree 〈k〉0 ≈ 6 for all initial networks. All results are averaged over 10 independent realizations.

maximum eigenvalue of the Laplace matrix to the first
nonzero eigenvalue [36–41],

Ql = λl,n(L)

λl,2(L)
, (8)

which is related to the synchronizability [41,42] and stability
[27] of the network synchronization process.

Lastly, the spectral properties of the network adjacency
matrix determine the behavior of many dynamic processes,
among which the largest eigenvalue of the adjacency matrix is
an important one, and its normalized result is given by

λl,n(A) = �l,n(A)

Nl − 1
, (9)

where �l,n(A) is the largest eigenvalue of the adjacency ma-
trix A of Gl , and Nl − 1 is the maximum value that �l,n(A)
may take. Recently, the relationship between the maximum
eigenvalue �l,n(A) and two network subgraphs was revealed
for a large number of synthetic and real networks [43]. It also
shows [44] the impact of �l,n(A) on two highly correlated
dynamical models: one is epidemic spreading with threshold
λc = 1/�l,n(A) and the other is synchronization of Kuramoto
oscillators with threshold ζc = ζ0/�l,n(A). In this context, the
variables in Eqs. (6)–(9) have a critical effect on the dynamical

behavior of the network. For this reason, they are called dy-
namic observables of networks. Their FSS is shown in Fig. 4.

Next, along the directions of the RGN flows, FSS analysis
is performed on eight network observables in regions I (small-
world phase) and II (non-small-world phase), respectively.
Specifically, the dependence of these observables on nl is
investigated for each layer of the renormalized network. The
results indicate that these observables can be represented by a
scaling function with nlN

1/δ

0 as the variable. More precisely,
any observable X approximately satisfies

X = f
(
nlN

1/δ

0

)
, (10)

where f (·) is a function depending on the initial network size
and specific transformation used.

III. RESULTS

A. FSS of RGN flows in synthetic networks

Figure 3 shows the dependence of kl,max, 〈k〉l,n, 〈c〉l and
〈
〉l on nl for the S1 synthetic network. The inset shows
each observable as a function of nlN

1/δ

0 . The results show
that the observable curves of networks with different sizes
largely overlap. Specifically, in the small-world phase with
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(ν, σ ) = (2.5, 1.5), the scaling exponent δ 	 1 (δ ≈ 1.6; see
Fig. 3), while in the non-small-world phase with (ν, σ ) =
(3.5, 2.5), the scaling exponent δ ≈ 1 (see Fig. S4 in the Sup-
plemental Material [45]). The estimation method of exponent
δ is shown in Fig. S1 and Refs. [46–48]. Interestingly, for
kl,max and 〈k〉l,n, the results shown in Fig. 3 demonstrate that
they are both approximately obey a power-law relationship
with nl , where the black dashed lines show the predicted
behavior of the scaling function.

In the following, the power-law behaviors of these two
observables are further discussed. Simulation results show
that the maximum degree Kl of the renormalized network Gl

and the maximum degree Kl−1 of Gl−1 are related as

Kl = sεKl−1 = · · · = slεK0. (11)

Since nl = Nl/N0 = s−l , it follows that

kl,max = Kl

Nl − 1
≈ slεK0

Nl
= n−ε

l K0

nlN0

= n−(ε+1)
l K0

N0

≈ k0,maxn−(ε+1)
l . (12)

The above equation indicates that kl,max approximately fol-
lows a power-law relation, kl,max ∼ n−β

l , where β = ε + 1.
For the observed average degree 〈k〉l of the renormalized
network Gl , when ν − 1 < 2σ , it was shown [27] that the
average degree approximately satisfies an exponential relation
along the RGN flow, 〈k〉l = sα〈k〉l−1, which yields

〈k〉l = sα〈k〉l−1 = · · · = slα〈k〉0, (13)

consequently,

〈k〉l,n = 〈k〉l

Nl − 1
≈ slα〈k〉0

Nl
= n−α

l 〈k〉0

nlN0

= n−(α+1)
l 〈k〉0

N0

≈ 〈k〉0,nn−(α+1)
l . (14)

The above equation shows that, when ν − 1 < 2σ , 〈k〉l ap-
proximately obeys a power-law relation, 〈k〉l,n ∼ n−η

l , with
η = α + 1. For ν − 1 > 2σ , through simulations it is found
that the average degree 〈k〉l still approximately satisfies 〈k〉l =
sα〈k〉l−1, leading to 〈k〉l,n ∼ n−η

l , with η = α + 1. The values
of β and η are given in Table S1 of the Supplemental Material
[45].

Finally, consider the dependence of several dynamic ob-
servables on nl [see Eqs. (6)–(9)], which depend on the
spectral properties of the Laplace matrix and the adjacency
matrix of the network, as shown in Fig. 4. To a certain extent,
these observables are able to reflect some dynamical proper-
ties of a network, such as synchronization stability, diffusion
time, and synchronization threshold of Kuramoto oscillator
parameters. The inset of Fig. 4 shows the dependence of the
observables on nlN

1/δ

0 for different sizes of networks, which is
similar to the phenomenon presented in Fig. 3. More impor-
tantly, the exponent δ is also consistent with that in Fig. 3,
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1.5

1.7

1.9

2.1

2.3

2.5
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2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5
ν
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2.0

FIG. 5. The contour plot of the critical exponent δ. Only numer-
ical results for the normalized average degree are given here, and
our results show that other observables have very similar numerical
results. The black and red solid lines in the figure are theoretical
boundaries that separate these regions defined in Sec. II B. The re-
sults show that the phase diagram for δ here has a strong correlation
with the phase diagram for α [see Eq. (3)] in the previous study [27].

namely, in the small-world phase, δ 	 1, and in the non-
small-world phase, δ ≈ 1 (see Fig. S5 in the Supplemental
Material [45]). The black dashed lines show the predicted
behavior of the scaling function for each observable along
the RGN flow. The corresponding power-law exponent values
are listed in Table S1 of the Supplemental Material [45]. It
is worth noting that these observables approximately obey
power-law curves along the RGN flows, providing important
guidance for predicting the structural and dynamical prop-
erties of large-scale networks. For instance, one can use the
eigenvalue ratio Ql of a renormalized smaller-size network
to estimate the synchronizability of the initial large-scale net-
work. To some extent, it can also be used to eliminate various
consequences caused by the high complexity of large-scale
networks. Furthermore, the results also show that for higher-
dimensional embedded networks, by embedding a network
into a D-dimensional (D � 2) space, the value of the exponent
δ is consistent with that of the S1 model (see Figs. S8– S11 in
the Supplemental Material [45]).

As a supplement, we provide a more robust result to sup-
port the above conclusions. Specifically, for each observable,
we consider more parameters (ν, σ ) combination and plot the
associated contour map (heat map), as shown in Fig. 5. The
horizontal and vertical coordinates correspond to parameters
ν and σ , respectively, and the color level corresponds to the
value of δ. Our results show that, for eight observables con-
sidered in this paper, they have very similar numerical results.
In addition, similar to the conclusion in Ref. [27] [i.e., Eq. (3)
in this paper], the phase diagram of the critical exponent δ can
also be used as an auxiliary means to divide the phases of the
network.
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TABLE I. Topology characteristics of real evolutionary networks. For each network, we report the network name, the number of nodes
of the largest connected component, the number of edges of the largest connected component, the value of the exponent ν, the value of the
parameter σ , the average clustering coefficient, the phase of the network.

Name N E ν σ 〈c〉 Phase

1 IG5-9 538 4570 4.71 1.0056 0.0222 III
2 IG5-11 1692 22 110 3.10 1.0085 0.0003 III
3 IG5-13 4731 91 209 4.45 1.0096 0.0112 III
4 IG5-15 11 987 323 509 3.73 1.0062 0.0097 III
5 IG5-17 30 162 1 034 600 4.54 1.0066 0.0135 III
6 TF13 1302 11 044 6.05 1.0077 0.0356 III
7 TF14 3160 29 668 5.74 1.0070 0.0164 III
8 TF15 7742 79 848 5.43 1.0067 0.0081 III
9 TF16 19 321 215 942 5.14 1.0075 0.0035 III
10 TF17 48 630 585 951 4.96 1.0053 0.0018 III
11 Rajat06 10 922 18 061 2.30 2.3593 0.4438 I
12 Rajat07 14 842 24 571 2.27 2.3834 0.4439 I
13 Rajat08 19 362 32 081 2.25 2.3829 0.4440 I
14 Rajat09 24 482 40 591 2.24 2.4735 0.4440 I
15 Rajat10 30 202 50 101 2.22 2.4876 0.4441 I
16 Gnutella, 4 Aug. 2002 10 876 39 994 3.39 1.0061 0.0080 III
17 Gnutella, 25 Aug. 2002 22 663 54 693 4.36 1.0070 0.0090 III
18 Gnutella, 30 Aug. 2002 36 646 88 303 5.65 1.0065 0.0114 III
19 Gnutella, 31 Aug. 2002 62 561 147 878 4.74 1.0077 0.0101 III
20 Cage9 3534 19 030 6.16 1.5127 0.2095 III
21 Cage10 11 397 69 624 6.80 1.4405 0.1803 III
22 Cage11 39 082 260 320 6.46 1.4370 0.1736 III
23 Cage12 130 228 951 154 7.17 1.4232 0.1582 III
24 Maragal-2 549 4313 2.59 1.0058 0.1563 I
25 Maragal-3 1687 18 246 2.78 1.0071 0.1787 I
26 Maragal-5 4654 92 683 2.83 1.0055 0.1696 I
27 Maragal-6 21 255 536 283 2.90 1.0099 0.1208 I
28 AS-1998-01-02 3216 5705 2.35 1.0949 0.3311 I
29 AS-1999-12-06 6301 12 226 2.18 1.2041 0.4006 I
30 AS-2001-05-26 11 174 23 409 2.19 1.3095 0.4532 I
31 CAIDA-2004-01-05 16 301 32 955 2.21 1.0474 0.3585 I
32 CAIDA-2006-01-30 21 339 43 283 2.16 1.1383 0.3648 I
33 CAIDA-2007-11-12 26 389 52 861 2.16 1.1289 0.3325 I
34 Cond-Mat, 1995–1999 13 861 44 619 2.82 5.5954 0.7194 I
35 Cond-Mat, 1995–2003 27 519 116 181 2.61 3.8944 0.7107 I
36 Cond-Mat, 1995–2005 36 458 171 735 2.51 3.6290 0.7079 I
37 Socfb-UC64 6810 155 320 5.77 1.3660 0.2831 III
38 Socfb-UC61 13 736 442 169 5.37 1.3522 0.2714 III
39 Socfb-UC33 16 800 522 141 4.85 1.2898 0.2349 III

B. FSS of RGN flows in real evolutionary networks

As a common practice, it is necessary to verify the uni-
versality of the above conclusions with real networks, mostly
small-world networks. Obviously, this brings up the problem
that a single network has only one initial size N0. To address
this issue, some evolutionary network systems are employed,
each of which eventually leads to a series of networks of
different sizes over time, and these networks of the same type
with different sizes are all approximately in the same phase
on the (ν, σ ) plane. Ten types of real evolutionary networks
[49–53] (including 39 networks) are investigated, and the
parameter σ value of each network is inferred according to
an existing method [54]. The results show that these networks
belong to small-world networks, that is, in phase I or III. In
Table I we show the basic topology characteristics of 10 types

of real evolutionary networks [49–53], where the parameter
ν is the approximate value obtained by fitting the tail of the
degree distribution curve, and the parameter σ is a parameter
necessary to embed the real network into the synthetic net-
work, which is inferred by the method in [54]. The parameters
ν and σ determine the position of each network in the (ν, σ )
plane. Our results indicate that these networks are all in phase
I or III, that is, they belong to small-world networks.

These networks are embedded into different S1 networks,
and then the geometric renormalization transformation is per-
formed. It is found that the eight observables curves of the
same type but different sizes of the evolutionary networks
overlap roughly, and the exponent δ is consistent with that of
the synthetic network (small-world phase), i.e., δ ≈ 2. Take
the IG5 evolutionary network [49] as an example. It has five
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FIG. 6. Self-similarity of real evolutionary networks. For each type of network, we show the complementary cumulative distribution
function (CCDF) Pc of node rescaled degrees kres = k/〈k〉. Topological characteristics of this series of evolutionary networks are given in
Table I.

different system sizes at five time points (see Table I), and
these five networks all belong to phase III. Figure 6 shows the
complementary cumulative degree distribution function of 10
types of real evolutionary networks; examining this charac-
teristic, they are self-similar. The FFS analysis is performed
along the RGN flow, and the results suggest that there is a
phenomenon similar to that of synthetic networks, that is, the
curves of each observable almost overlap under the scaling
function with nlN

1/δ

0 as the variable, and the exponent δ ≈ 2
(see Figs. 7 and 8). The other nine types of evolutionary
networks produced similar results (see Figs. S12– S29 in the
Supplemental Material [45]).

IV. DISCUSSION

Based on the studies of Radicchi et al. [24] and García-
Pérez et al. [27], this paper systematically studied the critical
behavior of observables such as structure and dynamics of
synthetic networks and real evolutionary networks from the
perspective of RGN and FSS. Our results show that, in-
fluenced by the finite size of the network, excessive RGN
iteration would lead to significant changes in the structure and
dynamic characteristics of the network. However, this is not a
disadvantage of RGN, because many networks have potential
scale-invariant properties that are often masked by finite-size
effects. For this purpose, this paper proves that the charac-
teristic quantity of the network satisfies the scaling behavior
in the process of RGN transformation with the help of FSS
analysis and obtains the critical exponent that determines the
universality class of the network.

In the process of RGN transformation, we do not pay
attention to whether the network is self-similar or not, but
project the network along the direction of RGN flow. The
results show that the FSS can capture the universal scaling
law that follows behind the projection, in which the critical
exponent provides information that divides the small-world
phase and non-small-world phase of the network from another
perspective. According to our conclusion, RGN projection is
suitable for both real evolutionary networks and static net-
works, especially for scale-free networks. Moreover, we can

learn many potential analysis methods from the RGN. For
example, in large-scale simulations, the downscaled replica of
the network can be used as an alternative or guidance to sam-
pling methods or to quickly explore the critical behavior of
a large-scale network. In addition, finite-size scaling can also
be performed on the downscaled version of the real network,
which would allow us to determine critical exponents from a
single snapshot of the topology [27].

It should be noted that, similar to traditional FSS, the FSS
analysis employed in this paper can also be used to estimate
the scaling exponent of the diverging correlation length. Con-
sidering the differences between the S1 geometric model and
the classical WS small-world model, we did not continue the
relevant studies of Newman and Watts on diverging correla-
tion length in small-world networks, a critical point at p = 0,
and an associate finite-size scaling form [14]. Instead, FSS is
used to reveal the scaling properties of network observables
under the RGN flow. However, the relevant work is also very
meaningful and deserves further research.

Finally, the RGN framework is developed on the basis of
the hidden metric space model S1/H2 [27,28]. Like the box-
covering method proposed by Song et al. [18], their core idea
is coarse graining the network to reduce the size of the initial
network. These methods have achieved good results for spe-
cific scenarios, but they all require special assumptions, such
as embedding the network into space or based on the shortest
path length [55]. Therefore, finding a robust way to rescale
the network remains an open question. Another question is
to what extent the conclusions of this paper depend on the
specific assumptions of the S1 geometric model. To answer
this question, a natural solution is to develop a renormalization
group or sampling framework that does not require specific
assumptions, and then explore whether there are similar laws
behind it, which is very meaningful work. However, there are
many challenges. For instance, although sampling schemes
require no specific assumptions and are easy to operate, they
tend to severely undermine the inherent structural character-
istics of the initial network, such as scale-free, small-world,
and modular properties. In contrast, the renormalization
framework retains much of the basic properties of the original
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FIG. 7. FSS analysis of IG5 evolutionary networks’ topological observables along the RGN flow. The main figures show each observable
as a function of the variable nl in the process of RGN transformation, and the inset shows their scaling functions related to the variable nl N

1/δ

0 .
These networks belong to phase III, and the scaling exponent corresponding to four observables is δ = 2.0(1).

network, but it requires specific assumptions. Therefore, we
need to find a balanced solution to rescale the network and
then explore the FSS properties, which is a direction that we
need to pursue vigorously in the future.

V. CONCLUSION

In conclusion, the scaling behaviors of structural and dy-
namical observables of S1 synthetic and real evolutionary
networks have been systematically investigated along the
RGN flows. According to the structural properties of the S1

model, the network evolutionary phase can be divided into
three regions. Some networks with different structural param-
eters are generated in each region, with finite-size scaling
analysis on their structural and dynamical observables. The
results show that these observables can be characterized by
a certain scaling function with nlN

1/δ

0 as the variable. More
importantly, the critical exponent δ is found to be independent
of these observables but dependent only on the structural
properties of the network.

Inspired by the findings on model S1, some real evo-
lutionary network systems are considered, typically in the
small-world phase, which also follows the finite-size scaling
found in model S1. Specifically, for each system, there are
different sizes at different time points. By embedding these
networks of different sizes into the S1 network, it was found
that they all approximate the same phase on the (ν, σ ) plane,
and these networks are self-similar. Thus, this investigation

continues to study the scaling laws of some real evolution-
ary systems in the same way as the synthetic networks. The
findings further suggest that the S1 model can provide more
evidence for predicting the structural and dynamical behavior
of those real networks. On the other hand, the results of this
paper can provide some guidance for studying the structural
and functional characteristics of large-scale networks. For in-
stance, an evolutionary network, often with a relatively small
initial size, will eventually evolve to a large-scale system, so
that it is difficult to obtain its structural and functional charac-
teristics via computer simulation. While the scaling law found
in this paper makes it possible to predict the characteristics of
large-scale networks from small-size networks. Furthermore,
the results also show that the RGN transformation may lead to
significant changes of some properties of the network, which
can be captured by the scaling function under the finite-size
scaling analysis.
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APPENDIX: NETWORK DATA SETS

We consider 10 types of evolutionary networks (including
39 networks): IG5, TF, Rajat, Gnutella peer-to-peer network
[50,51,56], Cage, Maragal, Route Views AS graphs [52,57],
CAIDA AS graphs (2004–2007) [52,58], and condensed mat-

ter collaborations [53,59], and Socfb-UC [49,60]. Among
them, IG5, TF, Rajat, Cage, and Maragal [49] are collections
of some miscellaneous networks; see [61]. The Socfb-UC
network data set is in the category of Facebook networks.
In this paper, we consider only the unweighted, undirected,
and without self-loops versions of these networks. The basic
topological characteristics of these networks are shown in
Table I.
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