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Within the context of social balance theory, much attention has been paid to the attainment and stability of
unipolar or bipolar societies. However, multipolar societies are commonplace in the real world, despite the fact
that the mechanism of their emergence is much less explored. Here, we investigate the evolution of a society
of interacting agents with friendly (positive) and enmity (negative) relations into a final stable multipolar state.
Triads are assigned energy according to the degree of tension they impose on the network. Agents update their
connections to decrease the total energy (tension) of the system, on average. Our approach is to consider a
variable energy ε ∈ [0, 1] for triads which are entirely made of negative relations. We show that the final state of
the system depends on the initial density of the friendly links ρ0. For initial densities greater than an ε-dependent
threshold ρc

0 (ε), a unipolar (paradise) state is reached. However, for ρ0 � ρc
0 (ε), multipolar and bipolar states can

emerge. We observe that the number of stable final poles increases with decreasing ε where the first transition
from bipolar to multipolar society occurs at ε∗ ≈ 0.67. We end the paper by providing a mean-field calculation
that provides an estimate for the critical (ε dependent) initial positive link density, which is consistent with our
simulations.
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I. INTRODUCTION

Societies experience unipolar, bipolar, and multipolar
phases over time [1,2]. A pole can be considered as a subcom-
munity of friendly individuals that cooperate with each other
or are in the same opinion on some issue. Such a cooperative
activity in humans usually arises from their moral and proso-
cial behaviors to reach what they are unable to obtain on the
individual level, and its dynamics can be better understood
using statistical physics and complexity science [3–9]. The
social polarization is a key concept in these contexts and, as
a collective phenomenon, it emerges from complex interac-
tions among individuals due to income inequality, economical
or political thoughts, globalization, migration, ethno-cultural
diversity, modern communication technologies, and the in-
tegration of states into transnational entities, such as the
European Union [10,11]. But how do such stable polarized
phases arise from rearrangement of local social interactions?
In a series of seminal works, it was assumed that avoiding
distress and conflict is the natural mechanism of creating
such a stability [12–14]. Although polarization is a common
phenomenon in socio-politico-economic settings, the number
of competing poles is also an important relevant issue, for
example, in the realm of politics, United States is dominated
by two major political parties while Italy, on the other hand,
has many equally strong political parties. Building consensus
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and coalitions is crucial in multipolar society, while unilateral
action is a possibility in a bipolar society.

One of the basic concepts in sociology is the structural
balance which is based on the observational intuition that in
society dynamics, triadic interactions are more fundamental
than the pairwise ones. In this respect, Heider’s theory, known
as the balance theory, considers the relationship between three
elements includes person (P), and other person (O), with an
object (X), known as the POX pattern [12]. Heider postulated
that the POX is balanced if P and O are friends, and they agree
in their opinion of X. In an unbalanced triad, to reduce the
stress and reach some sort of stability, the individuals alter
their opinions so the triad becomes balanced. Empirical ex-
amples of Heider’s balance theory have been found in human
and other animal societies [15–22]. Cartwright and Harary
demonstrated that a society with two possible interactions
between their individuals can be viewed as a signed graph
with positive (agree) and negative (disagree) links [13,14].
They found that the society is balanced, if and only if it can be
decomposed into two fully positive-link poles that are joined
by negative links, i.e., a bipolar state. Dynamical evolution
of how such stable states can be reached from an initially
unbalanced one is another important aspect of research studies
[23–35]. In such dynamical models, the individuals rearrange
their connections to reduce the local or global stress in the
society, for example, continuous-valued links models [26,27],
balance theory in asymmetric networks [28], disease spread-
ing on sign networks [36], memory effects on the evolution of
the links [37], and phase transition in societies with stochastic
individual behaviors [35,38], to name a few.
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Antal et. al. proposed a dynamical model, called con-
strained triad dynamics (CTD) [23,24]. In CTD, a triad with
an odd number of positive links is balanced. If �k represents
a triad of type k which consists of k negative links, then
triads of �0 and �2 are balanced, while triads of �1 and
�3 are unbalanced. They assumed that the total number of
unbalanced triads Nunb cannot increase in an update event. In
each update step, a randomly chosen link changes its sign
if Nunb decreases. If Nunb remains constant, then the chosen
link changes its sign with probability 1/2, and otherwise,
sign of the chosen link does not change. Thus, in each time
step, the system goes into a state that is more balanced than
the previous state, and the system eventually approaches into
a final bipolar state. Indeed, for ρ0 < 0.65, where ρ0 is the
initial density of the positive links the society is divided into
two equal-size poles and for ρ0 � 0.65, one pole becomes
dominant and we have a unipolar society (paradise). However,
a possible outcome of CTD dynamics is a jammed state, where
the system is trapped into an unbalanced state, forever. They
showed that in spite of the higher number of such states in
comparison with the balanced ones, the probability of reach-
ing a jammed state vanishes for large systems. By introducing
an energy landscape, the properties of such jammed states
have been studied extensively [39,40]. Shojaei et al. proposed
in Ref. [35] a natural mechanism to escape from such states
by introducing a dynamical model with an intrinsic random-
ness, similar to Glauber dynamics in statistical mechanics
[41]. They also showed that in finite networks, the system
approaches into a balanced state if the randomness is lower
than a critical value.

The structural balance theory, applied in all above-
mentioned models, implies that individuals always tend to
polarize into at most two communities. This is due to the
way that unbalanced triads are defined, i.e., all triadic re-
lationships with an odd number of negative links (�1 and
�3) are considered to be unbalanced. Such conditions for
balanced/unbalanced triads assert that a friend of my friend or
an enemy of my enemy is my friend, and vice versa. However,
it has been observed in social and political societies that the
two types of unbalanced triads of �1 and �3 are not equally
unbalanced and also have a different incidence rate, i.e., �3

triads are more frequent than �1 [17,42]. On the other hand,
to reach multipolar states, we need to have triads of type �3

survived in the final state of the dynamics. In 1967, Davis
introduced the clustering theory [43], which generalizes social
balance theory by stating that in many situations an enemy of
one’s enemy can indeed act as an enemy. This means that only
triads with two positive links (�1) are unlikely in real stable
networks and all other types of triads (�0, �2 and �3) can be
present. This is indeed in agreement with empirical studies
in human social networks [44,45]. This form of structural
stability is called weak structural balance, in comparison with
the (strong) structural balance theory defined by Heider [12].

The dynamical models result in the unipolarity or bipo-
larity have been studied extensively, however, the notion of
multipolarity are greatly unexplored in the literature. In this
paper, by including the stochasticity of an individual’s behav-
ior similar to our previous work [35], we study the evolution
of a society with interacting individuals, seeking to reduce
the tension in the system, based on an energy minimization

formalism. Commonly, the triad energy is defined as the sign
product of the links, however, here we assign triad energies
in accordance with how much tension they can impose on
the system. In this respect, we include the role of triad �3

in the system dynamics by assigning to it a different energy
ε ∈ [0, 1], which allows us to control the level of tension in
the system. We observe that the system quickly approaches
into a final stable balanced state. The final fate of the system
can be either a unipolar, bipolar, or a multipolar state based on
different values of energy ε and initial link density ρ0. We find
that the system transitions from a unipolar state into a multi or
bipolar one when the initial positive link density ρ0 crosses a
critical value ρc

0 from above. Indeed, the system approaches
a unipolar state for any arbitrary values of ε when ρ0 > ρc

0.
On the other hand, when ρ0 � ρc

0, the system reaches a multi
or bipolar state, in which the number of poles increases as ε

decreases from the value of ε∗ ≈ 0.67. We end the paper by
providing a mean-field calculation for our model which pro-
vides a bifurcation diagram and is in line with our numerical
simulations.

II. MODEL DEFINITION

We consider a network of size N , and use a symmetric
adjacency matrix A, such that Ai j = ±1. The positive sign
represents friendship and the negative one represents enmity
between two arbitrary nodes i and j. For simplicity, we as-
sume that everyone knows everyone else, i.e., the dynamics
occurs on a fully connected graph, which is appropriate for
small real-world networks. For simplicity and without loss
of generality, we assign energies {u0, u1, u2, u3} = {0, 1, 0, ε}
to triads of type {�0,�1,�2,�3}, respectively, where ε ∈
[0, 1]. This means that triads �0 and �2 have the minimum
possible energy corresponding to their minimum tension they
impose on the system and triad �1 has the maximum possible
energy which indicates its maximum tension. Triads of type
�3 can have any energies in the range of 0 to 1, which im-
plies that they can have different degrees of tension based on
different values of ε. By this definition, we take into account
the role of triads of type �3 in the system dynamics, which is
in line with empirical observations [17,42]. We note here that
this model is indeed a generalization of the special case of
ε = 1 that has been studied extensively in our previous work
[35]. The total energy of the system is defined as

U =
∑

i

ui
�/Ntri, (1)

where the sum is over all triads and u� ∈ {u0, u1, u2, u3} and
the normalization factor of Ntri = N (N − 1)(N − 2)/6 is the
total number of triads in the system. It is also appropriate to
work with quantity ni which is the density of triads of type �i,
i.e., ni = Ni/Ntri, where Ni is the number of such triads. With
this definition, the number of positive links and the density
of such links become L+ = (3N0 + 2N1 + N2)/(N − 2), and
ρ = L+/L, respectively, where L = (N

2

)
is the total number of

links. In this respect, the positive link density and the system
energy can be written as ρ = n0 + 2n1/3 + n2/3 and U =
n1 + εn3, respectively. At every time step, we flip a randomly
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chosen link with probability [35]

p = 1

1 + eβ�U (t )
, (2)

where β can be considered as the inverse of the stochasticity
in the individual behavior. Also, �U (t ) represents the total
energy change due to the link flipping in every time step t .
This model resembles the Glauber dynamics used in simula-
tions of kinetic Ising models at a given temperature T = 1/kβ

[41]. In fact, this provides a more pragmatic situation in which
the tension in the system can either decrease or increase at
any given time step, while for finite β the tension decreases
on average [35]. Thus, the system can escape from jammed
states, which are local minima in the energy landscape of the
system [39]. We investigate the dynamics of the above model
for various initial configurations ρ0 and energies ε.

III. NUMERICAL RESULTS

Initially, we randomly distribute positive and negative links
among all nodes so the initial positive link density ρ0 is ob-
tained. Then, we start the dynamics by choosing an arbitrary
link, randomly. To check the dependency of the final state of
the system on the stochasticity in the individual’s behavior, β,
in Fig. 1(a), we plotted the final values of triads of n1 versus
different β and for different ε. By taking into account the
density n1 as the inverse of order parameter (ordered state = a
state without any unfavorable triadic relations, i.e., n1 = 0),
we find that for a given ε, the system undergoes a phase
transition from an unbalanced phase of n1 �= 0 into a stable
weak balanced state with n1 = 0 as β crosses a critical value
βc from below. As can be seen in Fig. 1(b), this critical value
βc is dependent on the value of the energy ε. In fact, as ε

decreases, βc increases. We note here that the value of βc is
also dependent on the system size and diverges for N → ∞.
This behavior is consistent with our previous work [35,38],
which can be considered as the special case of ε = 1 in the
present paper. This indicates that balanced states (weak or
strong) are hardly reached in large systems as well as systems
with ε → 0.

To show how the system evolves into a stationary (and
stable) state, in Fig. 2, we plot the dynamics of triad den-
sities n0, n1, n2, n3 and positive link density ρ for ε = 0.2
with initial conditions of ρ0 = 0.4 and 0.8 at β > βc (here
β = 1.2βc). The system size here is N = 256. As can be seen,
triads of type �1 disappear in all plots, i.e., n1(∞) = 0. Thus,
the final fate of the system can be three possible states due to
the final values of other triad densities: unipolar (n2, n3 = 0),
bipolar (n2 �= 0, n3 = 0), and multipolar (n3 �= 0). For exam-
ple, the system approaches into a multipolar state in Fig. 2(a)
and a unipolar state emerges in Fig. 2(b). Also, the dot-dashed
lines in both plots represent the corresponding final positive
link density ρ for both initial densities of ρ0 = 0.4 and 0.8.
To better understand the final states in the system, we present
in Fig. 3(a) the final positive link density ρ∞ versus ρ0 for
different values of ε. As can be seen, if ρ0 is greater than
a critical value of ρc

0, the final phase is a unipolar state for
all values of ε. On the other hand, for ρ0 � ρc

0, multipolar
(n3 �= 0) and bipolar (n3 = 0) states can emerge for small and
large ε, respectively, as observed in Fig. 3(b), which repre-

(a)

(b)

FIG. 1. (a) The β dependency of large time behavior of final
densities n1, as the inverse of order parameter in the system, for
ρ0 = 0.4. Different energies of ε are shown with different symbols.
The system transitions to an ordered state, at some values of β = βc.
The system size in all plots is N = 256. (b) The critical values of βc

versus ε and for different system sizes N . As can be seen, βc goes to
infinity for large networks or small ε.

sents the final densities of n3. We note here that this critical
value of ρc

0 is dependent on ε and we will show later that it is
indeed an unstable branch in the phase space of the system.

To better check ε dependency of the final state of the
system, we also plot in Fig. 4(a) the final density ρ∞ versus
ε for different initial densities ρ0. We find again that for ρ0

above or below the critical value ρc
0, the system can reach a

unipolar, bipolar, or multipolar state. More precisely, for the
case of ρ0 � ρc

0, the fate of the system can be either a bipolar
or multipolar state if the energy ε is larger or smaller than a
critical value of ε∗ ≈ 0.67, as observed in Fig. 4(b). In fact, for
ε � ε∗ the degree of tension associated to triads of type �3 is
high enough that they cannot survive in the final state of the
network. On the other hand, for ε < ε∗ we find that multipolar
states with different sizes emerge. We are also interested in the
properties of these emerging multipolar states. For example,
Fig. 4(c) demonstrates the mean number of poles 〈Npole〉 for
different values of initial densities ρ0 and energies ε, where
〈...〉 represents an average over 500 different realizations of
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FIG. 2. The time evolution of triad densities, ni, with ε = 0.2 and
for initial positive link densities of (a) ρ0 = 0.4 and (b) ρ0 = 0.8. The
triad density n1 vanishes and thus the system approaches into a stable
(weak) balanced state. The dot-dashed lines in both figures indicate
the corresponding time evolution of positive link density ρ. For all
plots, β > βc (see Fig. 1) and the system size is N = 256.

the system. We see that when ρ0 � ρc
0, the mean number of

poles decreases as a power-law form 〈Npole〉 ∼ ε−0.8 when
ε < ε∗ and remains constant (〈Npole〉 = 2) if ε � ε∗. Also, for
ρ0 > ρc

0, we have 〈Npole〉 → 1, which indicates the unipolarity
independent of ε. It is noteworthy to mention here that the
observed number of poles in real-world systems usually is not
large and our results show that this can occur for a reasonable
values of energies ε around 0.5. Finally, in Fig. 5 we present
six examples of possible network configurations correspond-
ing to final states of the system for different values of ε and ρ0.
Indeed, Figs. 5(a)–5(d) represent four examples of multipolar
states with different pole sizes and Fig. 5(e) indicates a bipolar
state. As we mentioned above, a unipolar state emerges for
any values of ε when ρ0 > ρc

0 as indicated in Fig. 5(f). Note
that for all Figs. 5(a)–5(e), ρ0 � ρc

0 and for Fig. 5(f) ρ0 > ρc
0.

IV. MEAN-FIELD APPROACH

Since the system possesses large number of degrees of
freedom, its exact time-dependent dynamical equations are

FIG. 3. (a) The final positive link density ρ and (b) the final triad
density n3 versus ρ0 for different ε. As can be seen, the final fate of
the system is a unipolar phase for any arbitrary ε when ρ0 > ρc

0. For
ρ0 � ρc

0, n-polar states with n � 2 emerge. Other parameters are the
same as in Fig. 2.

hard to obtain. In this respect, we search for a mean-field
approximation for the rate equations, using the notations used
in Refs. [24,35]. As we discussed before, it is appropriate
to work with quantity ni, which is the density of triads of
type �i. Other useful quantities are triad densities n+

i and
n−

i , which are defined as follows: each of Ni triads of type
�i is attached to 3 − i positive links and thus (3 − i)Ni is
the total number of positive links belonging to all triads of
type �i in the network. Thus, for each positive link, the aver-
age number of such triads that are attached to this link can be
obtained as N+

i = (3 − i)Ni/L+, where L+ is the total number
of positive links in the system. Since each link is connected to
N − 2 triads of any type, one can simply find the density of
triads of type �i that are connected to a positive link, as n+

i =
N+

i /(N − 2). Similarly, one can obtain n−
i = N−

i /(N − 2) for
a negative link, where N−

i = iNi/L− is the average number of
triads of type �i that are attached to a negative link and L− is
the total number of negative links in the system. Consequently,
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FIG. 4. (a) The final positive link density ρ and (b) the final triad
density n3 versus ε for different ρ0. A phase transition from bipolar
states into multipolar ones occurs at εc ≈ 0.67 when ρ0 � ρc

0. (c) The
log-log plot of the mean number of poles versus ε for different values
of ρ0. For ρ0 � ρc

0, the number of poles decreases as a power law
form of ∼ε−0.8. Other parameters are the same as in Fig. 2.

we have

n+
i = (3 − i)ni/(3n0 + 2n1 + n2),

n−
i = ini/(n1 + 2n2 + 3n3).

(3)

FIG. 5. Examples of six final states of the system: (a)–(d) rep-
resent multipolarity with different size of the poles. A bipolar and
unipolar state are indicated in (e) and (f), respectively. Note that in
(a) to (e) ρ0 � ρc

0 and in (f) ρ0 > ρc
0. The system size is N = 64 for

all graphs. Note that only friendly links are displayed.

By considering that ρ is the probability of finding a positive
link, the probability of flipping a positive link is π+ = p+ρ,
with

p+ = 1

1 + eβ�U+−
(4)

and of flipping a negative link is π− = p−(1 − ρ), with

p− = 1

1 + eβ�U−+
, (5)

where �U+− and �U−+ are the energy differences due to
the flipping a positive and a negative link, respectively. In
fact, the transition probabilities p+ and p− are the two pivotal
parameters that drive the system dynamics.

For each update at step j, we have

L+( j + 1) − L+( j) = −π+ + π−. (6)

Since each time step equals L updates, the rate equation for
(average) ρ can be written as

dρ

dt
= −π+ + π−. (7)

The energy difference due to the flipping of a positive
and negative link in each update step equals to (N+

0 − N+
1 +

εN+
2 )/Ntri and −(N−

1 − N−
2 + εN−

3 )/Ntri, respectively. Thus
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we obtain

U ( j + 1) − U ( j) = π+(N+
0 − N+

1 + εN+
2 )/Ntri

− π−(N−
1 − N−

2 + εN−
3 )/Ntri. (8)

Therefore, we find the rate equation of the total energy as

dU

dt
= π+�U+− + π−�U−+, (9)

where

�U+− = +3(n+
0 − n+

1 + εn+
2 ),

�U−+ = −3(n−
1 − n−

2 + εn−
3 ).

(10)

Also, the rate equations for all triad densities, ni, can be
obtained in a similar way, which are as follows:

dn0

dt
= −3π+n+

0 + 3π−n−
1 ,

dn1

dt
= −3π+n+

1 − 3π−n−
1 + 3π+n+

0 + 3π−n−
2 ,

dn2

dt
= −3π+n+

2 − 3π−n−
2 + 3π+n+

1 + 3π−n−
3 ,

dn3

dt
= −3π−n−

3 + 3π+n+
2 .

(11)

As we mentioned before, the system dynamics are gov-
erned by the two transition probabilities of p+ and p−. In this
respect, p+ = p− means that the probability of transition of
a positive link into a negative one is equal to the transition
probability in the reverse direction. For example, if β → 0, we
have p+ = p− = 1/2, and one can simply find from Eq. (7)
that dρ/dt = 1/2 − ρ, which yields

ρ(t ) = 1/2 + (ρ0 − 1/2)e−t . (12)

This demonstrates that for large t , ρ tends to 1/2 as expected
in such a fully random situation. However, to find an exact
solution for finite β is not straightforward and we will present
a qualitative explanation. First, by assuming that the system
remains uncorrelated during its early stages of the evolution,
the triad densities become n0 = ρ3, n1 = 3ρ2(1 − ρ), n2 =
3ρ(1 − ρ)2, and n3 = (1 − ρ)3. By substituting these values
into Eq. (3) and then Eq. (10), we find

�U+− = −�U−+ = +3{(3 + ε)ρ2 − (2 + 2ε)ρ + ε}. (13)

On the other hand, for a finite β, p+ = p− if �U+− = �U−+.
Taking all these findings together, we conclude that whenever
the positive link density ρ satisfies �U+− = 0 (or �U−+ =
0), the condition p+ = p− is reached. Based on Eq. (13), the
two solutions of �U+− = 0 can be obtained as

ρ ′ = ((1 + ε) − √
1 − ε)/(3 + ε),

ρ ′′ = ((1 + ε) + √
1 − ε)/(3 + ε).

(14)

We plotted in Fig. 6 these two solutions for different values
of ε. Indeed, for ρ < ρ ′′, we have �U+− > 0 (or �U−+ < 0),
which means that p+ < p−. This indicates that negative links
will be flipped into positive ones with higher probability,
which on average increases ρ until it reaches to ρ ′′ where
p+ = p−. By similar mechanism, if ρ > ρ ′′ then p+ > p−,
i.e., positive links will change to negative ones with higher

FIG. 6. Our analytical solutions obtained by using mean-field
approximation. Blue unfilled diamonds, ρ ′, indicate the unstable
solution, above and below which the system tends to another sta-
ble solutions of a unipolar (ρ ′′′) and a multi or bipolar (ρ ′′) state,
respectively. The filled symbols represent our simulation results:
Diamonds denote the values of phase transition points (ρc

0) obtained
from Fig. 3(a). Squares and circles also represent final values of ρ as
indicated in Fig. 4(a).

probability, and this decreases ρ until it again reaches ρ ′′.
However, ρ = ρ ′ is an unstable solution, since for ρ > ρ ′, we
have p+ < p−, which increases the number of positive links
until ρ reaches its maximum value ρ = ρ ′′′ = 1, where ρ ′′′ is
the stable unipolar state. For ρ < ρ ′, we have p+ > p− which
decreases the number of positive links until ρ = ρ ′′. Briefly,
our mean-field analysis shows that a bifurcation occurs for
ε < 1, with a stable branch, ρ ′′, for ρ � 1/2 and an unstable
branch, ρ ′, for ρ > 1/2. Filled symbols in Fig. 6 represent our
simulation results. In fact, filled diamonds represent values of
transition points ρc

0 as observed in Fig. 3(a). Filled squares
and filled circles also show, respectively, two final possible
states of unipolar and n-polar phases with n � 2 represented
in Figs. 3(a) and 4(a). This demonstrates that our mean-field
approximation is mostly in agreement with our numerical
simulations, and can well explain the phase-space behavior
of the system.

V. CONCLUSION

In social balance theory, triads with various interactions are
typically grouped into balanced and unbalanced states. Such
binary identification may lead to a globally balanced situation
which are either uniform or bipolar. On the other hand, many
real world situations exhibit multipolarity, which have gained
much less attention in the literature. In this paper, we showed
how considering a triad which contains all negative links as
less unbalanced than a triad with only one negative link can
lead to an eventual state which contain multipolar commu-
nities. Our stochastic dynamics was chosen in accordance
with Glauber dynamics in the presence of randomness β. We
described the transition to the multipolar state as a function of
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ε and ρ0 and showed various phase diagrams. The number of
final poles crucially depends on the value of ε and can grow
very large as ε is reduced considerably.

We also provided a mean-field calculation which showed
how decreasing ε from its standard value leads to a bifur-
cation with a stable and unstable branch, which was mostly
consistent with our numerical simulations. We observed that
our model typically leads to multipolar states with roughly
homogeneous pole size distribution. An interesting question
to investigate is the conditions under which a heterogeneous
size distribution may emerge in a multipolar society.

Finally, we close with some general comments. The fact
that different types of triad interactions may bring different
levels of tension to the system, which can eventually lead to
a stable multipolar society, seems to be a general result which

might have relevance in more realistic models with regards to
dynamics and/or structure. Furthermore, multipolar societies
seem to offer more options to a larger part of the population
which might lead to a more sustainable level of engagement
on the individual level. Therefore, it is important to consider
the general mechanisms which underlie their emergence as
well as stability.
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