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Antivax movement and epidemic spreading in the era of social networks:
Nonmonotonic effects, bistability, and network segregation
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In this work, we address a multicoupled dynamics on complex networks with tunable structural segregation.
Specifically, we work on a networked epidemic spreading under a vaccination campaign with agents in favor
and against the vaccine. Our results show that such coupled dynamics exhibits a myriad of phenomena such as
nonequilibrium transitions accompanied by bistability. Besides we observe the emergence of an intermediate
optimal segregation level where the community structure enhances negative opinions over vaccination but
counterintuitively hinders—rather than favoring—the global disease spreading. Thus our results hint vaccination
campaigns should avoid policies that end up segregating excessively antivaccine groups so that they effectively
work as echo chambers in which individuals look to confirmation without jeopardizing the safety of the whole
population.
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I. INTRODUCTION

In such a complex contemporary society where elements—
people and events—influence one another and feedback at
different scales [1], the application of tools set forth within
statistical physics in order to cope with collective phenomena
has gained prominence in other areas such as biology and
medicine, social sciences, and humanities, which have put
quantitative tools in the methodologies they apply [2–7].

Accordingly, phenomena in which there is a change in the
collective behavior displayed by a social system have turn
into an appropriate field for the application of such techniques
[8–10]; among the several different instances we can find
important contributions within the spreading of epidemics as
well as opinion dynamics (see, e.g., Ref. [11] and Sec. II). In
spite of the fact that the two subject matters are not related
at first, the dissemination of a causal relationship between
neurological disorders and vaccinations [12] has prompted an
urban myth that ultimately has jeopardized the elimination of
the disease in countries with a very high human development
index as the U.S.A. [13].

Next the manuscript is organized as follows: in Sec. II, we
establish the state of the art of the problem; in Sec. III, we
introduce our model for the combined dynamics of opinion
and contagion; in Sec. IV, we discuss the results for the model;
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in Sec. V, we present our final observations on the work and
future perspectives about it.

II. LITERATURE REVIEW

Modular networks [14] are generated by an algorithm that
leads to networks with an architecture of communities. A
given node in each community can be connected to nodes of
the same community (intracommunity links) and/or to nodes
of the other community (intercommunity links) (see Fig. 1).

The impact of the network modularity in spreading pro-
cesses has been investigated in recent years. Since the results
introduced in Ref. [14], a series of works were published
regarding the subject of optimal network modularity; therein,
the authors showed that modular structure may have coun-
terintuitive effects on information diffusion. Indeed, it was
discussed that the presence of strong communities in modular
networks can facilitate global diffusion by improving local
intracommunity spreading.

Still in relation to modular networks, it was recently found
that an optimal community structure that maximizes spread-
ing dynamics which can pave the way to rich phase diagrams
with exhibiting first-order phase transitions [15]. Within the
same context, the authors in Ref. [16] discussed the impact of
social reinforcement in information diffusion. They also found
optimal multicommunity network modularity for information
diffusion, i.e., depending on the range of the parameters the
multicommunity structure can facilitate information diffusion
instead of hindering it.

Regarding biological systems, it was recently found there
is a nonlinear relation between modularity and global ef-
ficiency in animal networks, with the latter peaking at
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FIG. 1. Examples of modular networks with N = 100, 〈k〉 = 10,
and μ = 0.05 in (a), μ = 0.10 in (b), and μ = 0.30 in (c). The
parameter μ is the community interconnectivity: small values of
μ means few intercommunities bridges which implies strong com-
munity structure, i.e., strong modularity or segregation. In these
examples we can see the strengthening of the community structure
for lower values of μ.

intermediate values of the former [17]. In addition, in neu-
ral networks there exists an optimal modularity for memory
performance, where a balance between local cohesion and

global connectivity is established, allowing optimally modular
networks to remember longer [18].

The authors in Ref. [19] studied the importance of close
and ordinary social contacts in promoting large-scale conta-
gion and found an optimal fraction of ordinary contacts for
outbreaks at a global scale. With respect to correlations in
complex networks, it was found that, constraining the mean
degree and the fraction of initially informed nodes, the op-
timal structure can be assortative (modular), core periphery,
or even disassortative [20]. Other recent works leading with
optimal modularity in networks can be found in [21,22].

In a recent work [23], a model of disease spreading in a
structural modular complex network was proposed and how
the number of bridge nodes n that connect communities af-
fects disease spreading was studied. It was verified that, near
the critical point as n increases, the disease reaches most of the
communities, but each community has only a small fraction of
recovered nodes. Moreover, a combination of social networks
with game theory was studied in Refs. [24,25].

Disease information can spark strong emotions like fear—
or even panic—that would affect behavior during an epidemic.
The authors in [26] considered an agent-based model that
assumes that agents can obtain a complete picture of the
epidemic via information from local daily contacts or global
news coverage. Those results helped conclude that such a
model can be used to mimic real-world epidemic situa-
tions and explain disease transmission, behavior changes,
and distribution of prevalence panic. Game theory was also
considered to reproduce the decision-making process of in-
dividuals during the evolution of a disease. In [27] a spatial
evolutionary game was coupled to a SIR model, and the re-
sults showed that protective behaviors decrease the numbers
of infected individuals and delay the peak time of infec-
tion. The study also concluded that increased numbers of
risk-averse individuals and preemptive actions can more ef-
fectively mitigate disease transmission; however, changes in
human behavior require a high social cost (such as avoidance
of crowded places leading to absences in schools, workplaces,
or other public places).

A recent work considered a coupled behavior change
and infection in a structured population characterized by
homophily and outgroup aversion [28]. It was found that
homophily can either increase or decrease the final size of
the epidemic depending on its relative strength in the two
groups. In addition, homophily and outgroup aversion can also
produce a “second wave” in the first group that follows the
peak of the epidemic in the second group.

Models of opinion dynamics were applied in the context
of opinions about vaccination (pro versus antivaccine) with-
out coupling an epidemic process [29]. Later, kinetic opinion
dynamics were coupled to classical epidemic models in order
to study the feedback among risk perception, opinions about
vaccination, and the disease spreading. In [30] it was found
that the engagement of the provaccine individuals can be cru-
cial for stopping the epidemic spreading. On the other hand,
the work [31] found counterintuitive outcomes like the fact
that an increment in the initial fraction of the population that
is provaccine can lead to smaller epidemic outbreaks in the
short term, but it also contributes to the survival of the chain
of infections in the long term.

034302-2



ANTIVAX MOVEMENT AND EPIDEMIC SPREADING IN … PHYSICAL REVIEW E 104, 034302 (2021)

Recently, the antivaccine sentiment was treated as a
cultural pathogen. The authors in [32] modeled it as an
“infection” dynamics. The authors showed that interven-
tions to increase vaccination can potentially target any of
three types of transitions—decreasing sentiment transmis-
sion to undecided individuals, increasing provaccine decisions
among undecided individuals, or increasing sentiment switch-
ing among antivaccine individuals.

We previously cited antivaccine opinions; thus it is im-
portant to mention some recent discussion about the global
antivaccine movement. Since the online discussions dominate
the social interactions in our modern world, the propagation
of such antivaccine opinions is growing fast. A recent report
noted that 31 million people follow antivaccine groups on
Facebook, with 17 million people subscribing to similar ac-
counts on YouTube [33]. The authors in [34] recently pointed
out that if the current trends continue, antivaccine views will
dominate online discussion in 10 years. The importance of
the antivaccine movement is fundamental for the evolution
of the COVID-19 outbreak. Indeed, the authors in [35] called
attention to the fact that it is a key point to qualitatively assess
how the administration of a vaccine could affect the COVID-
19 outbreak, taking into account the behavioral changes of
individuals in response to the information available on the
status of the disease in the community. According to a study
published in August 2020, nearly one in four adults would not
get a vaccine for COVID-19 [36] and, in some countries, more
than half of the population would not get it, including Poland
and France [37]. In September 2020, it was verified that
only 42 percent of Americans said yes to receiving a future
COVID-19 vaccine, across all political sides. This means that,
even in a best-case scenario where a futurehigh performing
vaccine is 95% effective in an individual, it would only impact
42 × 95 ≈ 40% of the population, which is way below the
predicted thresholds for herd immunity [38].

III. MODEL

A. Opinion dynamics

Even though payoff-based models have been employed to
address the problem of vaccination dynamics (for instance,
see [24,25,39] and the references therein), there is an alter-
native approach that is based on the coupling of epidemic
and psychosocial factors that have been provided a success-
ful modeling of phenomena related to vaccination dynamics
[28,32,40–44]. In this work, we follow such second methodol-
ogy. Specifically, based on Refs. [31] and [45] we consider an
agent-based dynamics in which the opinion about vaccination,
oi ∈ [−1, 1], of each agent, i, evolves with

oi(t + 1) = oi(t ) + εo j (t ) + wIn(i)(t ). (1)

A negative (positive) value of oi represents an individual i
supporting an antivaccine (provaccine) opinion. Equation (1)
takes into account the agent’s opinion, oi(t + 1), depending
on multiple factors: (i) his previous opinion oi(t ); (ii) the peer
pressure exerted by a randomly selected neighbor, j, modu-
lated by a stochastic heterogeneity ε, uniformly distributed in
the interval [0, 1]; (iii) the proportion of infected neighbors,
In(i)(t ), modulated by a risk perception parameter, w. Notice
that, in Eq. (1), if the value of the opinion exceeds (falls

FIG. 2. Coupled vaccination and continuous opinion dynamics.

below) the value 1(−1), then it adopts the extreme value
1(−1) [45].

The opinion dynamics regarding the vaccination campaign
is coupled with the epidemic dynamics, due to the factor
In(i)(t ) in Eq. (1).

B. Epidemics-vaccination dynamics

Based on [30,31] (and references therein), we define the
transitions among the epidemic compartments as follows.

(i) S
gi→ R: a susceptible agent i becomes vaccinated with

probability gi.

(ii) S
(1−gi )λ→ I: a susceptible agent i becomes infected with

probability (1 − gi )λ if he is in contact with an infected agent.
(iii) I

α→ S: an infected agent i recovers with probability α.

(iv) R
φ→ S: a immune agent i becomes susceptible

again with the resusceptibility probability φ. We assume
that vaccinated and recovered agents are in the same
compartment [46–50].

The vaccination probability gi of an agent i is proportional
to his opinion about vaccination −1 � oi � 1:

gi(t ) = 1 + oi(t )

2
∈ [0, 1]. (2)

Despite the differences, the modeling of the coupling between
disease and opinion evolution is still an open subject. In this
work, we consider the two dynamics having the same time
scale. An overview of our model is shown in Fig. 2. An ele-
ment in this problem which is still a focus of debate concerns
the timescale of each dynamics, epidemic and opinion. On the
one hand, it is often assumed in the epidemiological literature
[41–43,51] that the two timescales are equivalent. At first,
this can be understood as a simplification as it captures the
mass vaccination campaigns governments swiftly implement
in order to avoid disease outbreaks. On the other hand, it is
possible to assume different timescales of evolution of the
diseases and opinions about the disease [52,53]. In this work
we consider the first approach of equality between the two
timescales.

C. Community structure

Based on Ref. [54] and related literature, we start by pick-
ing the first N1 = N/2 of the N nodes and attaching them to
the community 1, and assigning the other N2 = N − N1 nodes
to community 2. We then proceed by randomly assigning
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FIG. 3. Steady state for the spreading measure Ii and collective opinion mi for each community i = {1, 2}. Symbols are the steady-state
outcome for each sample, i.e., each symbol is the result from each Monte Carlo realization, lines are the average of the samples, and the
colored background is the standard deviation of the average. Results for μ = 0.1. For this high level of segregation, each community ends
up preserving the sign of its initial opinion. Besides, the chain of contagion starts in the community 2 and cannot become permanent in the
community 1.

(1 − μ)M connections among pairs of nodes from the same
community and μM connections are randomly distributed
among pairs of nodes that belong to distinct communities,
where M = N k/2 and k is the network average degree [54].

The parameter μ regulates the community strength: large
values of μ mean more ties between the two communi-
ties and consequently a weaker community organization.
Another way to control the network structure—especially
in the formation of the echo chambers—is by considering
rewiring [55].

D. Initial condition

We consider that community 1 holds a positive stance on
vaccination, whereas community 2 holds a negative opinion
about that. We also assume the chain of infections starts in
community 2, because oi < 0 leads to a low propensity for
the agents to get vaccinated, which is naturally more relevant.
If the epidemic started in community 1, provaccine opinions,
oi > 0, would induce a higher probability for an agent to get
vaccinated that ultimately would end up disrupting the chain
of contagions.

Let U (a, b) be a single random value from a uniform dis-
tribution in the range [a, b]. At t = 0, we set the following.

(i) For i in 0 . . . N/2 − 1 (community 1: oi > 0; 0%
infected):

(a) oi ∼ U (0, 1).
(b) Status(i) = S.

(ii) For i in N/2 . . . N − 1 (community 2: oi < 0; 1% of
infected):

(a) oi ∼ U (−1, 0).

(b) Status(i) = S with probability 0.99.
(c) Status(i) = I with probability 0.01.

IV. RESULTS AND DISCUSSION

In this section, we present our results coming from Monte
Carlo simulations of networks with N = 104 nodes and k =
20. In all simulations, we set α = 0.1 and φ = 0.01, without
loss of generality. In Figs. 3–6, we show the steady-state
density of infected agents in the community u, Iu. We also
depict the behavior of the stationary opinion in the com-
munity u, mu. In turn, Itot and mtot refer to the global
proportion of infected individuals and global mean opinion,
respectively.

The results in Fig. 3 show that in the community 2—the
seed community—there is a transition from the absorbing
phase (extinction of the epidemic) to the epidemic survival
phase. In the community 1, there is no survival of the chain
of infections in the long term. In this setting with μ = 0.1—
which can be understood as yielding a weak modular structure
because of the small value of the parameter—the seed com-
munity remains with the negative opinion about vaccination,
which weakens the vaccination campaign and thus facilitates
the local permanence of the disease. Similarly, there is a
persistence of the initial opinion in the community 1, which in
this case is provaccine and therefore favors the vaccine uptake
that makes the epidemic spreading unsustainable. This means
that a low number of intercommunity ties hinders the change
in the community stance over vaccination; that creates a strong
distinction in the epidemic spread between both communities
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FIG. 4. Steady state for the spreading measure Ii and collective opinion mi for each community i = {1, 2}. Symbols are the steady-state
outcome for each sample, i.e., each symbol is the result from each Monte Carlo realization, lines are the average of the samples, and the colored
background is the standard deviation of the average. Results for μ = 0.2. For this intermediate level of segregation, there is the possibility for
a switch of opinion in the community 2 (seed). The epidemic spreading does not survive at the global and local levels.

with community 1 being unfavorable to epidemic spreading
since m1 > 0 and community 2 being favorable since m2 < 0.

In Fig. 4, it is notable that an intermediate community
strength leads to the elimination of the epidemic transmission
in both communities even when there is a dominance of the
negative opinion about vaccination in the community 2. The
epidemic contagion spreading is halted in the community 2,
even though the agents have a negative opinion about the vac-
cination, due to the intermediate number of bridges, μ = 0.2,
to the other community. These bridges are just strong enough
to drain the infected agents of the community 2, but not strong
enough to change its average opinion.

In Fig. 5, with μ = 0.3 there is a high number of in-
tercommunity links. This additional connectivity between
communities weakens the initial epidemic spreading in the
community 2, but it is sufficient to introduce the possibility
of a wide opinion change in the community 1. The opinion
change in the community 1 facilitates the epidemic spreading
in that community. This effect is limited because we can see
for high infection probabilities λ > 0.8 the epidemic spread
vanishes. So, we have a counterintuitive effect, because for
higher transmissibility the epidemic spread vanishes. The
reason behind this is the risk perception, wI in Eq. (1),
which promotes vaccination, so higher transmissibility leads
to a bigger outbreak that in turn results in better opin-
ions about vaccination which ends up stopping the epidemic
outbreak.

The emergence of an intermediate range of μ that blocks
the local and global epidemic spreading is visible in Fig. 6.
Regarding the opinion dynamics, an initial increase in μ

leads to a decrease in m1 and an increase in m2, that is the
collective opinions tend to be less extremist for an initial

rise in the amount of intercommunity routes. Then a further
increase in μ promotes a sudden rise in m1 and m2 which
means a speedup in the switch of opinions in the community
2. A further rise in μ leads to a bistable behavior in both
communities.

This intermediary range of intercommunity connectivity
that promotes a minimal epidemic spreading seems to also
come from a perceived increment in the probability of an
infected individual having a vaccinated neighbor. The incre-
ment of the bridges between communities the initially infected
agents have a bigger probability of having a neighbor that was
vaccinated because initially most of the infected people are
in the community 2 and most agents with a positive opinion
about vaccination are in the community 1. This effect does not
persist for higher values of μ because then both communities
tend to adopt the same average opinion about vaccination and
this opinion can, in some cases, be negative. A negative global
opinion about vaccines does not guarantee that the epidemic
spread will persist, as can be seen in some cases for μ ≈ 0.23,
where all samples had no infected individual but some of them
had negative opinions about the vaccination. This can occur
due to the fact that the number of infected agents can become
zero before the negative global consensus about vaccines is
reached.

While in Figs. 3 and 4 there is a single stable steady
state (either extinction or persistence), Fig. 5 displays
bistable solutions depending on the randomness “embedded”
in the dynamics. Moreover, the results in Fig. 3 suggest
the absorbing-active epidemic transition is continuous for
strong communities (such as μ = 0.1), whereas the results
shown in Fig. 5 signal this extinction-persistence epidemic
transition is discontinuous for weak communities (such as
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FIG. 5. Steady state for the spreading measure Ii and collective opinion mi for each community i = {1, 2}. Symbols are the steady-state
outcome for each sample, i.e., each symbol is the result from each Monte Carlo realization, lines are the average of the samples, and the colored
background is the standard deviation of the average. Results for μ = 0.3. For this low level of segregation, there is the possibility for a switch
of opinion in both communities. The epidemic dynamics can survive if the contagion is not too aggressive (intermediate values of λ).

μ = 0.3). Therefore, the structural factors present in the mod-
ular networks can induce the emergence of bistability in the
epidemic-vaccination-opinion dynamics as well as a change
in the nature of the absorbing-active transitions.

An overall look into Figs. 3–6 reveals a sudden transition
can emerge from structural factors (increasing μ) or epi-
demiological factors (increasing λ). The transitions from the
disease-free phase to the active phase and vice versa (epidemic

FIG. 6. Steady state for the spreading measure Ii and collective opinion mi for each community i = {1, 2}. Symbols are the steady-state
outcome for each sample, i.e., each symbol is the result from each Monte Carlo realization, lines are the average of the samples, and the colored
background is the standard deviation of the average. Results for w = 0.1 and λ = 0.8.
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FIG. 7. Steady state for the spreading measure Ii for community
1, above, and 2, below. The colors indicate the average of nonzero
steady-state outcomes of all 200 samples. Results for w = 0.1.

resurgence) highlight the nonmonotonic behavior of the full
dynamics with the transmissibility λ.

Comparing with other works, we see that, while in [14]
there is an optimal modularity for enhancing information
spreading, here there is an optimal modularity for hindering
epidemic spreading.

In Figs. 7 and 8 we can see a wide range of results for
two different settings of risk perception, i.e., w = 0.1 and
w = 0.2. These results are similar but they show how increas-
ing the risk perception reduces the range of parameters that
present an endemic state. Other than that, we can also see
that in community 1 the endemic state is more prevalent for
higher values of modularity μ; this is to be expected since
initially only community 2 has infected agents. In community
2 the increment in modularity initially reduces the fraction
of infected agents, but at a certain point when the endemic
state appears in community 1 it surges back in community
2. This further reinforces that optimal modularity reduces the
epidemic spreading.

FIG. 8. Steady state for the spreading measure Ii for community
1, above, and 2, below. The colors indicate the average of nonzero
steady-state outcomes of all 200 samples. Results for w = 0.2.

V. FINAL REMARKS

In previous work, namely Ref. [40], it was shown with a
binary opinion dynamics that the spread of opinions against
vaccination is one of the potential responsible factors for the
large outbreaks of vaccine-preventable diseases in many high-
income countries. In this work, we have gone farther afield to
show the emergence of a networked SIRSV model that shows
that the spectrum of scenarios arising from the competition
of pro- vs antivaccine views during an epidemic spreading is
highly complex.

The several outcomes shown in Figs. 3–8 point out that our
model produces a diverse phenomenology where the social
and biological scenarios exhibit a nonmonotonic dependence
with spreading rate λ. From the perspective of the dynamical
systems, our results provide a mechanism for bistability in a
biological-social setting. From a practical point of view, our
work offers perspectives for the development of strategies for
halting epidemic spreading based on tuning the modularity to
an optimal degree.
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Some provaccine strategies can have as a side effect the
segregation between individuals with conflicting views about
the vaccines and clustering of similars. In [56] the authors
found that, in scenarios with effective vaccines, the impact of
clustering and correlation of belief systems become stronger.
Alternatively, the authors in Ref. [57] have shown that segre-
gation of antivaxxers can potentially extend the duration of
an epidemic spreading, whereas in Ref. [58] it was found
that an increase in the contact between vaccine refusers and
the rest of society can lead to a scenario where vaccination
alone may not be able to prevent an outbreak. Here we show
that too much or too little segregation of antivaxxers favors
the chain of contagion, but an intermediate level of segrega-
tion disfavors the epidemic spreading. Therefore, our results
indicate that vaccination campaigns should avoid strategies
that have as a side effect too much informational segregation
of antivaccine groups so that reliable provaxx information
can reach those groups whilst enforcing a minimum degree
of physical distancing as it occurs in countries where child-
hood vaccination is required at some degree, namely school
entry [59].

Our work produces a thought-provoking analogy. In a
small-world architecture, there is an intermediate number
of long-range bridges that lead the full network to have
unusual properties such as high clustering and low path
lengths. Here, a structure with an intermediate number of
intercommunity ties leads the dynamics in the full network

to produce an interesting outcome, namely the suppression
of the epidemics. Thus it would be interesting to consider
further sophisticated network architectures, like multiplex
networks.

Despite the rich phenomenology we observed in our
model, some limitations can be discussed which can be tar-
geted in future work. The social contacts’ structure of modular
networks, presenting communities, is relevant to study several
dynamical processes [14–23]. However, it could be more re-
alistic to consider two distinct layers, one for the spreading of
each dynamics (epidemic and opinion), but with each dynam-
ics influencing the other. Such multiplex network structure
can model better the coupled opinion-epidemic dynamics.
Other rules for the opinion dynamics, distinct of the kinetic
exchanges, could also be considered.

Besides, it will be worthwhile to consider the interplay be-
tween several sources of heterogeneity in agent bias, namely
plurality and polarization [60].
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