PHYSICAL REVIEW E 104, 034301 (2021)

Reconstructing cellular automata rules from observations at nonconsecutive times

Veit Elser
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853-2501, USA

® (Received 7 December 2020; revised 9 June 2021; accepted 17 August 2021; published 1 September 2021)

Recent experiments have shown that a deep neural network can be trained to predict the action of ¢ steps of
Conway’s Game of Life automaton given millions of examples of this action on random initial states. However,
training was never completely successful for# > 1, and even when successful, a reconstruction of the elementary
rule (t = 1) from ¢ > 1 data is not within the scope of what the neural network can deliver. We describe an
alternative network-like method, based on constraint projections, where this is possible. From a single data item
this method perfectly reconstructs not just the automaton rule but also the states in the time steps it did not see.
For a unique reconstruction, the size of the initial state need only be large enough that it and the r — 1 states
it evolves into contain all possible automaton input patterns. We demonstrate the method on 1D binary cellular
automata that take inputs from n adjacent cells. The unknown rules in our experiments are not restricted to simple
rules derived from a few linear functions on the inputs (as in Game of Life), but include all 22" possible rules on
n inputs. Our results extend to n = 6, for which exhaustive rule-search is not feasible. By relaxing translational
symmetry in space and also time, our method is attractive as a platform for the learning of binary data, since the

discreteness of the variables does not pose the same challenge it does for gradient-based methods.

DOI: 10.1103/PhysRevE.104.034301

I. INTRODUCTION

From a hardware perspective, cellular automata (CA) are a
natural model of computation. While too simple as a serious
model of the universe itself [1], their dynamics exhibit many
of the same qualitative modes of behavior seen in physical
systems. CA have translational symmetry and as such are of
interest in machine learning, where neural networks with con-
volutional filters are routinely used to detect spatial patterns,
no matter where they occur in an image.

With convolutional filters matching in size the input field
of an automaton, a network has the capacity to represent the
automaton rules. The challenge of training a network to learn
the rules was recently taken up by Springer and Kenyon (SK)
[2] with Conway’s Game of Life. In this 2D binary-valued
automaton, the value of a cell at the next time step is uniquely
determined by the value of a linear filter applied to the 3 x 3
field of inputs, together with the current value of the cell. SK
used the training protocol where random patterns are fed into
the network inputs, and the network outputs are compared to
the ¢-step Game of Life evolution of the input pattern. Using
standard gradient-based optimization of the network parame-
ters, such as the 3 x 3 filters, SK found that the ¢-step Game
of Life rule was learned reliably only for # = 1. Results were
mixed for ¢ > 1, even when (convolutionally) adding many
extra parameters as is common practice in machine learning.

Because SK did not impose time-translational symmetry
on their filters, their network cannot be faulted for not recon-
structing the elementary (¢ = 1) CA rule, even when it was
able to correctly predict ¢ > 1 applications of the rule. In fact,
SK were motivated by a more general question, the lottery
ticket hypothesis [3] of gradient-based optimization on net-
works, for which the CA prediction problem is an instructive
test case. On the other hand, now that one approach to this

2470-0045/2021/104(3)/034301(13)

034301-1

problem has been tried, it seems appropriate to consider its
difficulty and what methods are available to solve it.

The case t = 1 is trivial for any number n of inputs for the
CA rule: one simply examines states at two consecutive times
and constructs the CA rule as a look-up table. For a binary
automaton, a random input state having size of order n2" will
contain all 2" possible patterns to completely define the CA
rule. For small enough n the case r > 1 is trivial as well, since
one only has to try all 22" (binary) CA rules on the input to
find one that gives a match to the output when evolved by
t steps. Again, a single large random data instance suffices,
although now one should expect nonuniqueness, such as when
the output state has low entropy (e.g., a uniform state). The
CA rule reconstruction problem is therefore interesting for ¢t >
1 and sufficiently large n. Since 22 ~10°, n==61s already
an interesting case.

We present a method for reconstructing CA rules that has
several parallels with neural networks. Variables are arranged
at the nodes of a layered feed-forward network, with data ap-
plied at the input and output layers. “Training” is done with a
single input-output pair. When successful, the variables on the
intervening layers reveal the unseen states of the CA. There
are also variables on the network edges, connecting every
node not in the input layer with its zn inputs in the layer one
time step earlier. However, these are not weight parameters, as
in standard neural networks, but auxiliary variables used for
“splitting” the reconstruction problem into constraints among
independent sets of variables. The actual network parameters
in our method are the unknown 2" bits of the CA rule. An
important point of departure from standard practice is that the
parameters are not optimized by minimizing a loss. Instead,
the parameter-bits along with the states in the unseen layers
are recovered from the fixed-point of an iterative feasibility

©2021 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.104.034301&domain=pdf&date_stamp=2021-09-01
https://doi.org/10.1103/PhysRevE.104.034301

VEIT ELSER

PHYSICAL REVIEW E 104, 034301 (2021)

W,p-2) Wl,p-1) wip)
@) Q

N
N \

. \
x(Lp-2,p) x(Lp=1.p)
\\ \

\
AN x(Lp.p+1) x(lp,p+2)

Wi-1,p) Wi-1.p+1) yi-1,p+2)

FIG. 1. Node and edge variables highlighting (filled node, solid
edges) those taking part in one CA rule constraint. In this example
the CA has three inputs and each node variable has three upward
projecting copies on edges (two of which are shown dashed).

solver. This alternative approach [4] has been demonstrated
for the training of standard network models and seems espe-
cially well suited for the CA rule reconstruction problem.

After defining the network variables for a general CA in
Sec. II, we show in Sec. III that the constraints they must
satisfy can be partitioned into two sets such that the cor-
responding projections—to satisfy the constraints with least
change—are easy, local computations. This is accomplished
by using the “divide and concur” scheme [5], where variables
have multiple copies. In Sec. IV we briefly review the gen-
eral purpose RRR algorithm we will use for finding feasible
points, that is, points that satisfy both sets of constraints.
The method is first applied, in Sec. V, to n = 3 automata in
one dimension, featuring Wolfram’s Rules [6] 30 and 110
as examples of chaotic and Turing-complete CAs. Although
a reconstruction algorithm is not needed for n = 3, we find
that the method appears to find rules without exploring 2%
possibilities. To demonstrate the method in a setting where we
know of no practical alternatives, we turn to a CA with n = 6.
Finally, in Sec. VI we describe how the same scheme might
be used in a model for unsupervised learning called Boolean
generative networks, where the task is to discover how strings
of bits are generated from fewer uncorrelated bits.

II. NETWORK VARIABLES

Weuse £ =0, ..., to label the layers of the network, and
p € A for the cells or nodes in the identical and translationally
invariant layers A. By giving A the topology of a torus, a CA
rule learned on a finite A also applies to infinite A [7]. A
subset I C A of size n defines the input field of the automaton.
Node (¢, p) receives inputs from nodes (¢ — 1, p + i), for
each i € I. The possible input states of the CA rule are labeled
s =0,...,2" — 1, with the convention that the states are the
base-2 digits of s.

There are three sets of variables, x, y and z, all of which
take values O or 1 in a solution. The CA rule is expressed by
the variables

z(¢, p,s), £>0, €))
where, for example, z(¢, p, s) = 1 means that the cell or node
at (¢, p) has adopted the rule to be in state 1 when its input
field (in layer £ — 1) is in state s. There will be a constraint
that all nodes use the same rule.

The structure of the variables x and y is shown in Fig. 1 and
is identical to the scheme used for constraint-based training
of standard networks [4], except that the edges here do not
also hold parameters (weights). Our drawings use the neural
network convention, where time (forward propagation) is up-
ward, the opposite of the CA convention.

There is a CA state variable y(¢, p) at every position p € A
and layer £ =0, ..., t. These are constrained directly by the
data in layers £ = 0 and ¢ = ¢. Figure 1 shows the cell (¢, p)
receiving inputs from cells (¢ — 1, p+1i), i € I (shown for
i =0, 1, 2) on which the state is also expressed by a y vari-
able. We also see variables x(¢, p — i, p), i € I attached to the
edges projecting upward from cell (¢ — 1, p). In a solution
these have the same value as y(£ — 1, p), but this is relaxed
when imposing the CA rule constraints. In particular, we can
think of x(¢, p, p) as an independent version of y(£ — 1, p)
that is used in the rule constraint at cell (£, p). The full set
of edge variables on which the rule constraint is imposed
is x({, p, p+ i), i € I, where these are versions of the state
variables y(¢£ — 1, p + i). By allowing the CA rule constraint
to act on independent versions of the input variables, the
enforcement of the constraint becomes an easy, local compu-
tation. Likewise, imposing equality of the multiple versions
x(¢, p—i,p),iel withy(€ — 1, p) is also a local computa-
tion.

III. CONSTRAINTS AND PROJECTIONS

The splitting scheme described above is an example of
“divide and concur” [5], where the concur-constraint imposes
equality of variables that have multiple copies. Even when
the variables of the problem are required to be discrete, it
makes sense to embed them in the continuum since then a real-
valued “concur-value” holds information about the degree to
which one discrete value is favored over the other. All of our
variables, x, y, and z, will be continuous to take advantage of
this. The constraints are therefore sets in Euclidean space, and
nearness to a constraint is the standard distance to the set. The
projection to constraint set S, of an arbitrary point (x, y, z) in
our space of variables, is the point (x', y', 7') = Ps(x,y,2) € S
that minimizes the distance to (x, y, z).

Since projections minimize distance, and the three variable
types represent quite different things, there is no reason to
assume that the real numbers O and 1 are the best encoding
of the discrete CA for all three of them. We therefore let
x €{0,1}, y € {0, n}, and z € {0, ¢} be the discrete choices
for the variable types, where 1 and ¢ will have the same role
as hyperparameters in machine learning.

The “rule constraint” is local to each (£, p), and each local
constraint set is the union of 2"*! point sets:

YU=1,...,t; peA)
U &@ps)/c=ye p/neio iy

Viel:x(t, p p+i)=s). (A)

Here we use s; to denote the bit of state s associated with
input index i. This constraint set, called A, is one of the
two constraint sets upon which the RRR algorithm, described
below, is built. To see that the projection Py to this set is an

034301-2

RECONSTRUCTING CELLULAR AUTOMATA RULES ...

PHYSICAL REVIEW E 104, 034301 (2021)

easy computation we need only observe that different (¢, p)
have no variables in common and projecting to each local
constraint involves finding the minimum of 2"*! distances. As
an example, consider a CA with n = 6. Each local constraint
then involves 6 x’s, one y, and 64 z’s. Given arbitrary real val-
ues of these variables, the projection to the constraint outputs
discrete values of the x’s (an instance of the rule-inputs), a
discrete y (the corresponding rule-output), and changes only a
single z—the one associated with the discrete settings of the
6 x’s—to the same value selected for y. The case £ =t is a
special case of this constraint in that the variables y(z, p) are
directly specified by the data.

The B constraint implements “concur,” or variable equality,
of two kinds. First, we require that the same CA rule is applied
at all layers and positions of the automaton:

Vs=0,...,2"—1, 3zz(s) e R:

VU=1,...,t; peN): z({, p,s) = zg(s). (B1)

Second, the edge variables projecting upward from the same
node should be equal to the node variable at that node:

YV=0,...,t—1; peA):
Viel: x0+1,p—i,p) =y p)/n.

For this constraint £ = 0 is a special case because the values
¥(0, p) are directly specified by the data. As both kinds of
concur constraint are simple linear constraints on small sets
of independent variables, the computation of the projection
Pp is easy.

It is interesting that the choice of the Euclidean distance,
when defining projections, leads to the simple rule that the
concur value is just the arithmetic average. That is, the small-
est sum-of-squares change to a set of real numbers that makes
them equal is to replace them by their average. When the
2-norm is replaced by the 1-norm, the concur value becomes
the median of the numbers and is not unique when the number
of numbers is even.

The final step in establishing the constraint formulation is
to show that any point (x, y, z) € AN B, where the variables
satisfy all constraints, is a solution of the CA rule reconstruc-
tion problem. Starting with the B constraints, when these are
satisfied the same CA rule is used at all nodes and the x
variables on edges are truly exact copies of the y variables
on nodes. This constraint also sets the y’s on the input layer to
their values in the data. When the A constraint is also satisfied,
with its x variables bound by the B constraint to y variables in
the lower layer, then a CA rule as represented by z holds at
each node, and constraint B ensures that the same rule is used
at each node. Geometrically, A is a point set that derives some
of its structure from the final CA state, while B is a single
hyperplane whose parameters depend on the initial CA state.
Finding a point in the intersection of these sets is made hard
by the property of set A being nonconvex.

(B2)

IV. RRR ALGORITHM FOR FINDING FEASIBLE POINTS

The relaxed-reflect-reflect (RRR) algorithm [8] is an itera-
tive method for finding points x € A N B, where A and B are
subsets of R™. In the CA rule reconstruction problem x is the
vector comprising all the variables [denoted (x, y, z) above].

The algorithm is completely specified by the projections Py
and Py that take an arbitrary point x to the nearest point, by
the Euclidean distance, on the respective constraint sets. The
RRR iteration

x = ¥ =x 4 B(Ps(2Pa(x) — x) — Py (x)), (2

with time-step parameter §, has two key properties. First, it is
easy to see that if x* is a fixed point of the iteration, then

x =Pg2Py(x*) —x*) = P4(x*) e BNA 3)

is a solution. The second property, which relies on the “reflec-
tor” in the argument of Pg, is that its fixed points are attractive.
When RRR is written entirely in terms of reflectors, 8/2 is
interpreted as a relaxation parameter and is restricted to the
range (0,1) for convergence in the convex case. Since even
nonconvex sets A and B are usually locally convex, or are
well approximated as such, this generous range for the time
step holds even in the nonconvex case. The RRR iteration is
asymmetric in the sets A and B, so interchanging them gives
another algorithm. While all of the results we report use (2),
we also found solutions using the alternate form.

RRR is the generalization to arbitrary constraint sets of
the most successful algorithm for phase retrieval [9]. It has
a strong record with combinatorially difficult problems where
gradient methods perform poorly [10]. Most recently it was
used in the training of neural networks [4], with the same
structure of node (edge) variables for splitting constraints as
we use here.

In loose analogy with gradient-based optimization in ma-
chine learning, where progress is assessed by a decreasing
loss, proximity of a solution fixed point with RRR is re-
flected in the distance moved in each iteration, A = ||x’ — x||.
But whereas the evolution of loss in gradient optimization is
mostly unremarkable, in hard feasibility problems A drops
abruptly to a small value, in an apparent “aha” moment, after
a long meander with large A. The CA rule reconstruction
problem, especially when the solution is unique, is a hard
problem and it is not realistic to expect any other kind of
behavior in the evolution of A.

Since A mostly just serves as as indicator for solution
discovery, one needs other means for assessing the quality
of the RRR search. For our application the concur values of
the CA rule, zz(s), serve that purpose. These 2" numbers are
the output of the projection to constraint (B1) and convey the
tendency toward O or 1 (¢) for each combination of inputs.
Their evolution with RRR iteration reveals the rate at which
qualitatively different rules are being considered in the itera-
tive search.

V. EXPERIMENTS

In this section we present results on CA rule reconstruc-
tion using the RRR algorithm on the constraint formulation
described in Sec. III. It is appropriate to view these results
as experiments in that the run-time (number of iterations)
of RRR, itself a chaotic dynamical system, is beyond our
ability to estimate. Going into these experiments we had no
hypotheses about the nature of the rule search, only that the
hardness would increase dramatically both with the number of

034301-3

VEIT ELSER

PHYSICAL REVIEW E 104, 034301 (2021)

FIG. 2. The Rule 30 (left) and 110 (right) automata evolving with
periodic boundary conditions, upward, from the same initial state.

inputs n and the number of time steps ¢ separating the initial
and final states.

The algorithm was implemented as a C program and re-
quires only the standard libraries. All software and data used
in the experiments are freely accessible at [11].

A. Rules 30 and 110

Wolfram’s Rule 30 and 110 automata are interesting be-
cause the former exhibits the characteristics of a chaotic
dynamical system [12], while the latter was shown to be
Turing-complete [13]. How these properties translate into the
hardness of reconstructing the CA rule from ¢-step evolution
data is an interesting question we address for the first time. Of
course n = 3 rules are trivially found by exhaustive search, so
“hardness” is interpreted through the lens of methods, such as
ours, that continue to be practical even when exhaustive search
is impossible.

Figure 2 shows the evolution of the two automata (time
running upward) from the periodic initial state of length L =
30 also used in the experiments. The data provided to the RRR
algorithm are just this initial string of bits together with the
string at time step ¢. To run RRR all that needs to be specified
is the initialization of the (x,y, z) variables and the three
hyperparameters 1, { and 8. Because RRR itself has strongly
mixing dynamics, there is no benefit from clever initialization
and we simply use uniform random numbers bounded by the
discrete values of these variables.

By minimizing the number of iterations to the solution,
for Rule 30 with r =5, we obtained the settings n = 0.4,
¢ = 0.7 with the time-step parameter fixed at 8 = 0.2. The
same settings were then used at all ¢ and also for Rule 110.
Whereas the behavior with g, described below, is systematic
and interpretable, the optimal scales of the three types of
bits are entirely empirical. That ¢ > 1 improves performance
indicates that rule-inconsistency (over all cells in the time
evolution) should receive a higher penalty than a wrong rule-
output (z-bits have a greater scale than y-bits).

That small g improves performance was first noticed in
experiments on the bit retrieval problem [8]. To interpret this
phenomenon for the problem at hand, we define the solution
time 7 as the product of the time step 8 and the number of
iterations taken by RRR to find the solution. The 8 — 0 limit
of (2) defines a continuous time dynamical system, and T,
say, averaged over runs from different starting points, is the
continuous time taken by RRR to arrive at a solution fixed
point. Since the speed of the dynamical system, the fluctuating
quantity A/f, has a roughly constant running average over the
course of the search, T is also proportional to the distance (in
R™) traveled in finding the solution.

TABLE 1. Success rate for reconstructing Rule 30 from r =5
data in RRR time T = 4 x 10%, as a function of the time step .

B 02 03 04 05 06 07 08 09 1.0

Rate (%) 100 100 99 98 94 94 90 59 1

Fixing T =4 x 10* for the Rule 30, 7 = 5 instance, we
can test how solution discovery depends on g, the time-
discretization of RRR. Table I gives the success rate averaged
over 100 runs from random starting points at various 8. We in-
terpret the plunge in the success rate for § > 0.8 as the result
of the discrete-time RRR not being able to cooperatively sat-
isfy constraints throughout its considerable volume (in space
and time). Because variables respond only locally in each
iteration, there is a finite speed of propagation of information
(constraint discrepancy) that frustrates the system’s efforts
in solving a global problem. When B is too large, distant
variables (in space or time) are effectively uncoupled because
only their time average is noticed. Although RRR by construc-
tion never stagnates in a strict sense when the constraints are
not perfectly satisfied, we believe the quasi-independence of
distant variables stabilizes thermodynamic-like states, where
variables have stationary (non-solution) distributions. Our ex-
periments indicate that “finite temperature” traps of this kind
are completely eliminated when the RRR time step is suffi-
ciently small.

When g is small and all runs succeed, we can ask whether
T, averaged over starting points, converges to a finite value
T* in the limit of small 8. If so, then T* is the mean solution
time of continuous-time RRR. We find this to be the case, with
convergence already for 8 < 0.2. For reconstructing Rules 30
and 110 from ¢t = 5 data we find T* to be respectively 7.5 x
10° and 1.2 x 10°.

Figure 3 shows the RRR velocity, broken down among
the three variable types, in a typical run of a Rule 30,7 =5
reconstruction. In the plot, vy = [|xX' —x||/B, v, = [y —
yll/(n B), v, = ||z — z||/(¢ B) are the velocity components in
units of bits per continuous time. The many wiggles in these
curves might suggest that RRR is trying out many of the 256
rules for n = 3, when in fact very few are being considered in

0.5

0.4 B

03l]
[v

—_— Xy

— Xz

OA07““““““““““““
0 5000 10000 15000 20000 25000

iterations

FIG. 3. RRR velocities for the three variable types (v, > v, >
v,) in a run of a Rule 30, # = 5 reconstruction. The rule and unseen
states were reconstructed in under 2.5 x 10* iterations.

034301-4

RECONSTRUCTING CELLULAR AUTOMATA RULES ...

PHYSICAL REVIEW E 104, 034301 (2021)

" el

FIG. 4. Evolution of the eight rule-bits given by the concur esti-
mates z5(0), . . ., zg(7), for the same run shown in Fig. 3. RRR “time”
runs left to right. The black rows on the right are the 1-bits of Rule
30.

the search. This can be seen in the time series of the concur
estimate of the rule, z5(0), ..., z5(7), rendered in Fig. 4 for
the same run as Fig. 3 with RRR iterations running left to
right. Not only do particular bit patterns persist over many
iterations, only a small fraction of the 256 rules are seen at
all. We interpret this to mean that most of the work in the
RRR iterations goes into the slow process of making the x
and y variables consistent throughout space and time. When
additionally this collective dynamics of x and y is required
to be consistent with a shared rule, it appears that very few
rule candidates come under consideration. Curiously, the rules
that appear with the greatest frequency over the course of the
search, when reconstructing Rule 30 or 110, are the linear
CA rules (linear in the field of two elements). For example,
in Fig. 4 we see Rule 150 as the leading candidate in over
one-third of the iterations.

Table II compares the work (RRR iterations) in recon-
structing Rules 30 and 110 as a function of the number of
steps t between the data strings. All runs, for both rules, used
the initial state shown in Fig. 2, n = 0.4 and 8 = 0.2. We did
not find significant differences in optimal hyperparameters for
the two rules. Only the optimal ¢ exhibited a significant trend
with ¢. The improvement seen with decreasing ¢, at larger ¢,
means the search is more productive when rule consistency is
attenuated in response to the increased number of independent
rule constraints. Rule 110 appears to be consistently harder
to reconstruct than Rule 30, but not overwhelmingly so. It is
interesting that the increase in the RRR iterations with ¢ is
somewhat erratic, such as for Rule 30 at + = 4. We believe
this is transient behavior that might be eliminated if the initial

TABLE II. Growth with ¢ in the average number of RRR itera-
tions to reconstruct CA rules. All entries are based on 100 runs, all
successful, with n = 0.4 and g = 0.2.

t ¢ Rule 30 Rule 110
2 1.6 8.7 x 10? 2.0 x 103
3 0.8 3.6 x 10° 4.5 x 103
4 0.7 3.6 x 10* 3.4 x 104
5 0.7 3.6 x 10* 5.9 x 10°
6 0.7 1.4 x 10° 9.8 x 10°
7 0.6 3.6 x 10° 3.5 x 10°
8 0.6 2.0 x 10° 5.1 x 10°

FIG. 5. Time evolution (upward) of Rule X (4) from a random
periodic state of length 200.

state is sampled from the stationary distribution of the rule
instead of the uniform distribution.

B. A rule on six inputs

To test our method for a CA where exhaustive rule search is
not possible, we randomly selected a Rule X for n = 6 whose
string of 2° rule bits (analogous to the Rule 30 and 110 naming
convention) is the integer

X = 6489248685664986109. “)

The time evolution of Rule X from a random periodic state of
length L = 200 is shown in Fig. 5.

Rule reconstruction for n = 6 is made harder both because
the number of z variables at each node has grown to 26,
and also because the spatial extent of the network (L = 200)
needs to be large enough to sample all 2° input patterns for
the rule to be determined uniquely. Our particular choice of
initial state in fact includes only 63 of the possible inputs
and therefore cannot determine a unique rule for r = 1. Even
having the benefit of rule consistency on another whole layer
of the network, for + = 2, does not uniquely determine the
rule as our method finds three rules (differing in two bits)
that can account for the data for that number of time steps.
However, for r = 3 the method always finds the same rule and
it is exactly the rule (4) we used to generate the data.

It is a remarkable empirical fact that the RRR algorithm
is able to discover the CA rule with a number of iterations
much less than the 22° rules that would have to be considered
in an exhaustive search. There is currently no comprehensive
theory how RRR manages to find needles in similarly complex
haystacks (e.g., phase retrieval). From the evolution (in RRR
time) of the concur estimates of the rule (zg) shown in Fig. 6
in a reconstruction from ¢t = 2 data, we see that RRR is able to

FIG. 6. Complete evolution of the 64 rule-bits given by the con-
cur estimates zz(0), ..., z3(63) in a reconstruction of Rule X from
t = 2 data. Over the course of the search (5.4 x 10* RRR iterations)
many rule bits persist over long times. The fixed-point bits of Rule X
appear on the right.

034301-5

VEIT ELSER

PHYSICAL REVIEW E 104, 034301 (2021)

TABLE III. Hyperparameters and average RRR iterations for
reconstructing Rule X.

t n e B Trials Average iterations
2 1.2 0.35 0.2 100 8.8 x 104
3 1.2 0.50 0.2 20 2.8 x 107

identify a number of “branching bits” that, in persisting over
many iterations, seem to be guiding the search at a high level.
This branching scheme is an automatic consequence of the
obvious splitting of constraints into sets A and B to make them
independent; cleverness was not involved.

RRR performance on reconstructing Rule X is summarized
in Table III. For L = 200 and # = 3 our C program does 925
iterations per second and limited us to only 20 trials in this
case. Since the projection to the L x ¢t rule constraints (A)
dominate the time, and these could have been done concur-
rently, a parallel implementation could gain a factor of 600 in
time. Hyperparameter settings are essential for good results.
Fixing B = 0.2 and a cutoff on iterations at T = 2 x 107 on
the r = 3 reconstruction, the 100% success rate with ¢ = 0.5
drops to about 20% when this hyperparameter is changed by
+0.15.

VI. BOOLEAN GENERATIVE NETWORKS
FOR BINARY DATA

What began as a case study in machine learning [2], and
then turned to questions about CAs, now returns to the subject
of machine learning. In particular, we propose applying our
methodology for reconstructing CA rules to the construc-
tion of generative models. Generative models may loosely
be defined as schemes for generating fake data from suf-
ficiently many examples of genuine data. The capacity to
create convincing fakes directly demonstrates generalization
and implies some understanding of the structure of the data.

All network-based generative models create fake data by
sampling a smaller space than the space in which the data
reside, called the internal representation. In variational au-
toencoders (VAEs) [14,15] a network is trained to encode
data samples into an internal representation and then decode
them back to the data with high fidelity. If additionally the
distribution of “codes” in the internal representation is trained
to have a chosen form, then sampling from that distribu-
tion and decoding constitutes a generative model. Generative
adversarial networks (GANSs) [16] are decoder-discriminator
pairs. Here the idea is to train, in tandem, a decoder that makes
increasingly convincing fakes that fool the discriminator, and
a discriminator that continues to be able to flag the ever im-
proving fakes. Since the decoders (for VAEs and GANSs alike)
in standard neural networks are continuous maps, by adopting
a universal (e.g., multivariate normal) model for the code
distribution, the success of both of these methods is limited
when the data distribution is very different in character, say
in having a complex support. Another drawback is that the
gradient-descent based loss optimization methods for standard
networks can promise only local optima.

FIG. 7. A Boolean generative network for four-bit binary data
and two-bit codes, showing the three variable types: w, x (both on
edges), and y (gray nodes).

Our proposal, called Boolean generative networks (BGNs),
while having smaller scope than VAEs and GANS, is built on
a more explicit definition of “generalization.” There is only a
decoder and generalization capacity is specified by its depth.
Figure 7 shows a small BGN decoder of depth 2. The fully
connected layers of nodes should be interpreted as a Boolean
circuit that takes two Boolean inputs, in the code layer, and
outputs Boolean 7 (TRUE) and F (FALSE) at the four output
nodes. By associating 7 with 1 and F with 0, the circuit is
able to generate 22, four-bit strings of data in its outputs. More
generally, a BGN with m inputs and n outputs generates 2",
n-bit data strings.

By fixing the number of inputs, or the entropy of the gen-
erated data, the generalization capacity of a BGN is strictly
a function of the number of network edges when we adopt a
uniform circuit construction rule. It is in this respect that the
BGN scheme intersects with the CA rule reconstruction prob-
lem. As a first proposal, we have considered the rule where
all the gates are OR, and each edge can be in one of three
states: ¥, W, and W. These correspond, respectively, to the
absence or presence of a non-negating (W) or negating (W)
wire. Instead of OR gates at all the non-input nodes, we could
have chosen NOR, AND, or NAND, as these are equivalent with
suitable negations applied to the wires.

Given enough depth, arbitrary Boolean functions can be
synthesized with just OR gates and negation, and therefore
BGNs have the capacity to represent arbitrary binary data.
However, the strength (or weakness) of our proposal depends
on whether binary data of interest can be generated with
networks of modest depth. We do not explore this question
here, but consider two very simple toy data sets below to
convey that depths as small as two are already interesting.
BGN representations have the property of being disentangled
in that all combinations of Boolean inputs are admissible for
generating data.

We depart from VAEs and GANSs also by taking advantage
of the RRR fixed-point method for training. As in CA rule
reconstruction, the RRR algorithm is able to reconstruct the
Boolean circuit—wires and negations—at the same time it is
reconstructing the Boolean variables at the nodes, including
the code at the inputs. One difference from CA rule recon-
struction is that all the variables have a data item label, and
the CA-rule concur constraint (B1) is replaced by consistency
of the BGN’s wire variables across all data items. Large data
sets can be processed in batches [4] by running RRR for
some number of iterations on one batch and using the concur

034301-6

RECONSTRUCTING CELLULAR AUTOMATA RULES ...

PHYSICAL REVIEW E 104, 034301 (2021)

TABLE IV. BGN hyperparameters defining the discrete settings
of the two-component wire variables and the two Boolean variable
types. The three wire states are ¢ (no wire), non-negating wire (W),
and negating wire (W).

/] w W
w 0,0) (0,) (=0, w)
FALSE TRUE
x 0 1
FALSE TRUE
y 0 n

estimate of the wire states in that run to warm-start the run on
the next batch.

The three variable types used to reconstruct a BGN, from a
data set of output bit strings, is shown in Fig. 7. The x variables
on edges and y variables on nodes are exactly as they were in
CA rule reconstruction. A small difference is the absence of
y variables in the input (code) layer as there are neither gates
nor data constraints at this layer. The counterpart of constraint
(B2) in the input layer simply imposes equality of all the
incident x edge-variables. Another difference is that there are
wire variables w at all the edges of the network. Since these
take three discrete values in a solution, the wire variables
w are variable-pairs at each edge since a 2D real space is
required to represent the most general metrical relationship
among three points.

The BGN counterpart of the CA rule constraint (A) applies
to the inputs x, wires w, and output y of every OR gate of the
circuit. As in the CA rule constraint, we exercise our freedom
in choosing the discrete settings of these variables to introduce
three hyperparameters. These are defined in Table IV. When
o = 0 the wire states could have been represented by a single
real number, but we find that w # 0 improves the search
behavior of RRR.

An attractive feature of implementing arbitrary logic by
three-state wires (and only OR gates) is that the projections
to the gate constraints are highly local computations. For each
gate one considers both output states of the OR. When the out-
put is F, all incident edges must have (w, x) be in one of the
four F states, (@, T), (3, F), (W, F)or (W, T), and the projec-
tion selects the nearest. When the OR output is 7', then w and x
on each edge are independently set to their nearest states, and
if the resulting pair is one of the four F' combinations, then
the extra distance to the nearest of the T combinations (W, T')
and (W, F) must be computed as well. These extra distances
are used only if all of the incident edges have F' combinations,
in which case the edge with the smallest extra distance to T is
changed to that 7 combination. Whichever of the two cases of
OR output has the smallest projection distance is the one that
gets selected for the projection.

A reasonable objection to the strict logic of BGNSs is that
real-world data are never free of noise and/or may have out-
liers that are not modeled by the logic of the model. Noise is a
serious problem in phase retrieval as well [9], and we can use
the same RRR strategy for addressing it here. In the presence
of noise, the RRR velocity does not drop all the way to zero
(as in Fig. 3), but remains finite and small upon arriving at

FIG. 8. Wire state (), W, W) assignment in a fully connected
3 — 8 BGN for an instance of correlated partitions. Data bits in
the top row joined to the same code bit by wires with like (unlike)
grayscale/color will be perfectly correlated (anticorrelated).

a near-solution. RRR iterations are terminated at such events
and the search variables are interpreted as a solution that has
been corrupted by noise. In the case of BGNs, one would
project the concur estimates wg of the wire variables to the
nearest wire states and the concur values yg of the codes to
the nearest Booleans (for each data item). The data generated
with these wires and codes can then be compared with the
true data and assessed for bit-flip or outlier errors. Another
approach, that preserves the fixed-point behavior of RRR, is
to attenuate the constraint at the data nodes by allowing some
number of flipped bits, or exempting some number of outlier
data. Both methods of managing noise were demonstrated in
the study [4] that used RRR to train standard neural network
models.

A. Correlated partitions

In our first toy application of BGNs we consider data
where every bit has an unbiased distribution and at all pairs of
positions the bits are either perfectly uncorrelated or perfectly
correlated, either positively or negatively. Since the property
of being correlated is an equivalence relation, the data bits
partition into independent, perfectly correlated subsets. The
task of the generative model is to discover this partition and
the pattern of negations within each subset. The circuit in
Fig. 8 shows how data of this type can always be represented
by BGNs of depth 1. When the number of BGN inputs m
matches the number of partitions in the data, the wire states
in a solution are unique up to the order m!2™ group of code
permutations and negations.

RRR easily discovers valid circuits for this type of data. We
present results for an instance with m = 8, n = 16, where the
data bits partition as 1 +1+1+1+2+2+4 4 4. To test
generalization we look for valid solutions when the number
of data processed by RRR is less than the number of possi-
ble data, 2" = 256. Table V summarizes our results for the
average number of RRR iterations per solution in 100 trials,
all successful, when the BGN hyperparameters are tuned as
the number of data items is reduced. Since the number of w
variables participating in each concur constraint equals the
number of data, we might have expected a larger variation
in the optimal hyperparameters for these variables. Depth 1
networks have no y variables and there is no need to set
n. We did not optimize with respect to 8 but observed that
performance degrades overall when § > 0.9.

The 16-item data set that despite its size still gave a unique
BGN reconstruction is reproduced in Fig. 9. Discovering the

034301-7

VEIT ELSER

PHYSICAL REVIEW E 104, 034301 (2021)

TABLE V. Hyperparameter settings and average number of RRR
iterations for reconstructing the wire states in a § — 16 BGN that
generates and generalizes correlated partition data, as the number of
data items is reduced.

Number of data o w B Average iterations
128 0.9 0.2 0.7 640
64 1.5 0.3 0.7 360
32 1.3 0.5 0.7 270
16 1.3 0.5 0.7 440

partitions and negations is not a superhuman task. A human
running a simple mental algorithm on these data (identifying
pairs of columns that are perfectly correlated) has no trouble
finding the partitions and negations. Still, solution discovery
with a BGN is noteworthy because the only algorithm being
used (RRR constraint satisfaction) is universal in nature and
not specific to the task at hand.

B. Binary encoding

Our first application of BGNs only made trivial use of the
OR gate. The second application, chosen mostly for historical
interest, rectifies this. The 1985 paper [17] that introduced
the back-propagation formula for parameter optimization is
noteworthy also for some novel applications of the methodol-
ogy. Here we revisit the problem of training an autoencoder
tasked with compressing 2™ (real-valued) data vectors to bi-
nary codes of m bits. By using sigmoid activation functions
in the code layer, the internal representation was expected to
be binary in that values close to 0 and 1 are easily realized
as outputs of the sigmoid. However, in results reported for the
case m = 3, that were successful as far as reconstruction of the
data, often the encoding would be such that half of the codes
would include the value 1/2 (sigmoid input 0) in addition to 0
and 1.

For the special case of one-hot data vectors, as in the ex-
periments of Rumelhart and coworkers [17], a BGN decoder
of depth 1 as shown in Fig. 10 can efficiently represent the

"»

FIG. 9. Data bits, in rows, for an 8 — 16 instance of correlated
partitions. Columns 3 and 5, for example, are identical because the
bits at those positions are perfectly correlated.

FIG. 10. A BGN that generates 2* one-FALSE vectors. The red
(light-gray) edges are negating. For any setting of the nodes in the
code layer a single OR in the data layer will be FALSE.

data. For each of the 2™ settings of the code, exactly one of
the 2™ OR gates outputs FALSE. When the data include all
2™ one-FALSE vectors, the decoder circuit is unique up to the
(2™)! permutations of the codes with respect to the position
of the F in the output. Table VI summarizes RRR results for
runs with all the data. We do not understand the change in the
optimized hyperparameter settings and the sharp rise in the
number of iterations at m = 5.

By state counting we know a depth-1, m — 2™ network
does not have the capacity to binary-decode a general set of 2™
Boolean data vectors. A fully connected depth-2 BGN, with
architecture m — 2" — 2™, has sufficient capacity but will
the decoding circuits still be interpretable? We get an inter-
pretable design by combining a one-FALSE decoder (Fig. 10)
with a second stage of the kind shown in Fig. 11, with only
negating wires. We find, as shown in Fig. 12, that these
decoder designs are also the circuits found by RRR when
the data vectors are generic (randomly generated). Chang-
ing the RRR starting point only has the effect of permuting (in
the solution) the codes with respect to one-FALSE positions,
and the latter with respect to the data labels.

VII. CONCLUSIONS

The contrast between traditional machine learning and the
constraint-based approach, when applied to the CA prediction
problem, could not be more stark. Not only is the method
reliable when multiple time steps separate the data, but it is
able to do so with just a single data item instead of millions
[2]. Although we did not apply the method to the Game of
Life, in the setting where it is one of 22 possibilities, in
Appendix A we show the method succeeds when modified for
the easier problem considered by Springer and Kenyon [2],
where the rule can be formulated with linear filters.

The CA prediction problem and simple toy applications,
such as binary encoding [17], challenge the working premise

TABLE VI. Hyperparameter settings and average number of
RRR iterations in 100 trials, for finding depth 1 binary decoder
circuits from one-FALSE data.

m o w B Average iterations
3 0.6 0.6 0.5 140

4 0.5 0.2 0.5 680

5 0.15 0.55 0.5 57000

034301-8

RECONSTRUCTING CELLULAR AUTOMATA RULES ...

PHYSICAL REVIEW E 104, 034301 (2021)

FIG. 11. A possible circuit in the second stage of a3 — 8 — 8
decoder for binary encoded data vectors. All wires (thick edges) are
negating. The bottom (gray) nodes receive one-FALSE vectors from
a first stage of the kind shown in Fig. 10. For example, if the F
is at the leftmost input node, the decoder output is the data vector
FFFTFFFT.

upon which much of machine learning is currently based.
For CA prediction, this is the belief, that given sufficient
parameters and data, the models will eventually “understand”
an elementary CA rule and not just be increasingly good at
mimicking its consequences. However, because there is no
compelling evidence this is happening spontaneously in at
least this application, alternative designs that do offer this
functionality should be considered.

Relatively modest modifications of the standard network
design can improve data representation at a semantic level
by simply being interpretable. A technical obstacle is that
the network variables and parameters should be able to take
discrete values. We have shown that the RRR optimizer is up
to this task and can be efficiently deployed on networks. In
the CA rule reconstruction application, interpretability took
the form of making “the rule” be the parameters of the model
and then imposing this rule at all time steps. In Boolean gen-

i AL

vul ey I . —
el —i, " i T A N X,y —— i

- T——— ————

f - .h- . s :Il
pr— "y L Y L - e S
b gl - 1IJ_:"--;
o —— i =
T —— T el G i
.'_' m ' I-'|-|h — |||IT_“| - E
i T

L — T m——

e N ey

ph i o ey e E S ——

FIG. 12. RRR evolution (6 = 0.6, w = 0.5, n =0.9, 8 =0.5),
left to right, of the wire states (the component of the concur estimate
wp that encodes negation) in a 3 — 8 — 8 network learning to
decode eight binary data vectors from a three-bit binary code. White
corresponds to no wire, and the two colors (grayscales) give the
wire-negation status as in earlier figures. The top 24 rows show the
wire states in the first stage. Throughout most of the search the states
considered in the two stages are close in character to the states in the
solution, on the right.

erative networks (BGNs), interpretability was introduced by
imposing the constraint that all the data are expressible as the
output of the same fixed-depth logic circuit. Both applications,
in having different variable types (on network nodes, edges,
etc.), presented challenges to RRR, which usually works with
homogeneous variable types (e.g., image pixels). Introduc-
ing scale hyperparameters for the various discrete variables
greatly improved the performance of RRR in this setting.
In the binary encoding problem for random data vectors we
saw an instance where the wire variables have very different
distributions in different layers (Fig. 12) and might benefit
by having different scale hyperparameters. An automatic hy-
perparameter tuning mechanism would in any case make the
method more user-friendly.

Our implementation of BGNs, where the Boolean circuit is
designed just through three-state settings of the edges (wire,
negating-wire, no wire), was meant mostly as a demonstration
of what kinds of interpretable representations are possible
while staying within a network framework. An alternative
model, even closer to the model used for CA rule reconstruc-
tion, is to have fixed (non-negating) wires, only two-input
gates, and to give each gate the freedom to select its own truth
table.

It is noteworthy, that while both applications we considered
are deeply tied to the notion of time and determinism (CA
evolution, logical implication), this detail played almost no
role in the constraint formulation used by RRR. Constraints
were imposed (through projections) concurrently at all CA
time-steps and layers of the BGN. Language may be a case
where natural neural networks use representations without
deterministic rules. The production rules of a formal grammar
are nondeterminstic and could in principle be learned by RRR
in artificial networks.

But time reasserts itself as data are being distilled and
representations are formed. It is in this respect that the subject
properly falls in the domain of physics. Gradient descent and
RRR are dynamical systems and the strengths and weaknesses
of these methods rest on their behavior in time. Because the
time evolution of the discretely constrained variables of RRR
so closely resembles a CA, to avoid confusion we made a
point of orienting time left-to-right (Figs. 4, 6, and 12) in
contrast to the vertical convention for CAs. The dynamics of
RRR is poorly understood. In applications such as phase re-
trieval [8] and Sudoku [10], with just one type of variable, the
model of strongly mixing dynamics as a mode of exhaustive
search has worked well. However, when there are multiple
variable types, such as in the applications we considered
here, nonproductive dynamical behavior can arise as well.
A potential problem is posed when the variable types define
quasi-independent subsystems, like the phonons and electrons
in a conventional metal, and fail to find a solution to the joint
system of constraints. So far, by tuning hyperparameters and
decreasing the RRR time step 8, we have been able to achieve
“superconductivity” even in these more complex dynamical
systems.

ACKNOWLEDGMENTS

I thank Jonathan Yedidia for bringing Ref. [2] to my atten-
tion, and Neil Sloane for reminding me of his and Conway’s

034301-9

VEIT ELSER

PHYSICAL REVIEW E 104, 034301 (2021)

Wy Wo

HEE
N

[[

FIG. 13. Lower and upper bound 3 x 3 masks for Life (top row)
and 5 x 5 Alien Life masks (bottom row). The corresponding “gates”
take input on 9 4+ 8 “wires” in the former, and 5 4+ 5 wires in the
latter.

motto, of going as far as any reasonable person, and then
going further. One of the referees is thanked for forcing me
to address more transparently the hardness of CA rule recon-
struction (Appendix B).

APPENDIX A: RECONSTRUCTING GAME
OF LIFE “GATES”

Reconstructing the rule of a general binary automaton with
n =9 inputs (one of 2% candidates), is probably intractable.
We therefore consider a restricted formulation which hap-
pens to be close to the convolutional formulation studied by
Springer and Kenyon [2]. The idea is to express the rule as the
conjunction of two linear inequalities. If x is the binary vector
of n cell states at time ¢ that determine the state y of a cell at
time ¢ + 1, then

17
"o

The intuition that life is a balance between growth and decay
motivates the directions of the inequalities, on the assumption
that the vectors of weights w; and w, are non-negative. For
simplicity, and also for the relationship to BGNs, we restrict
w; and w; to be binary, or indicators for “wires.” We will
refer to the pattern of wires to the field of inputs as “masks,”
and the automaton rule as a gate defined by two masks. Again
for simplicity we chose not to have the network also learn the
values of the two integer bounds b and b,. The Game of Life
gate has by = b, = 3 and the two 3 x 3 masks shown in the
top of Fig. 13. We also studied a more challenging Alien Life
gate defined by the two 5 x 5 masks, in the lower half of the
figure, and b; = b, = 2. A naive rule search in this case would
involve 2°° possibilities.

One might criticize our “mask” formulation as being easier
than the one used in [2] in that the weight parameters are
restricted to a discrete set. However, the discrete option is
the natural one for the application at hand, and would also

wi -x = by and wy - x < by,
1 / 1 2 X 2 (Al)
otherwise.

have been used in [2] had it been within the scope of the
gradient-based optimizer. By choosing to work with the re-
stricted model we reaffirm that discrete states need not be off
limits in neural networks.

The network variables for mask reconstruction are for the
most part the same as in Sec. II, for general rule recon-
struction. Cells of the CA reside on a square lattice A with
square-torus topology. The field of inputs / is a 3 x 3 square
for Life, 5 x 5 for Alien Life. Layers of the network (time
steps) are decoupled by using two sets of variables, x and
y, for the cell states. The y’s reside on nodes and the x’s
on edges between nodes on adjacent layers. Each y and the
corresponding x’s incident from the past participate in a rule
constraint (A), now specialized as a gate parameterized by two
masks. One difference is that now there are two sets of edge
variables, x; and x;, one for each inequality in (A1). Likewise,
there are two sets of weights, w; and w,, also on edges,
that are interpreted as indicator variables for wires to the
gates.

The B constraint again imposes consistency on the various
variable replicas. Constraint B1 ensures that all gates, over all
space and time, have exactly the same pair of masks (choice
of wires). For example, in Life the projection to constraint set
B results in 9 4 9 real-valued averages of the mask variables
at each gate. Constraint B2 imposes equality at each node of
the y and the x;’s and x,’s incident from the future. The corre-
sponding projection, also given by an average, is an estimate
of the cell states over the nodes of the network.

By far the most elaborate projection is to the rule con-
straint, as expressed by (Al), but with separate vectors x;
and x, for the two inequalities. Participating in each local
constraint is a single y, the gate output, two sets of gate inputs,
x1 and x,, and corresponding wire variables w; and w,. In con-
straint set A all of these take binary values which we denote
0 and 1 here, but have a scale set by hyperparameters in the
actual algorithm. These scales, such as 5 for y, are all relative
to x; and x,, for which we chose the same scale. For the wire
variables we found that for the harder 5 x 5 application it was
critical to allow different scales w; and w, for w; and w;.

The discreteness of constraint A makes the corresponding
projection easier, not harder. In the following description of
the projection algorithm we mostly want to convey that the
complexity does not grow combinatorially; in fact, the case
of 5 x 5 inputs takes only about 25/9 as much time as 3 x 3
inputs.

At the highest level, the gate projection compares the two
output states, y € {0, 1}. In either case, the next step is to
greedily project all the edge variables (x’s and w’s) to their
nearest discrete values. While doing this the algorithm also
records, for each edge and mask inequality (1 and 2), the pro-
jection to the nearest flipped product. For example, suppose
the nearest (x, w) on a particular edge is (1,0) with product
0. The nearest flipped product combination is then (1,1). If
instead the nearest state is (1,1), the nearest flipped combina-
tion is either (0,1) or (1,0), whichever is closer to the input of
the projection. In any case, upon completion of this stage of
the projection we know for each edge (i) the nearest discrete
(x, w), (ii) the squared distance to that state, (iii) the nearest
flipped-product (x, w), and (iv) the extra squared distance to
the flipped-product state.

034301-10

RECONSTRUCTING CELLULAR AUTOMATA RULES ...

PHYSICAL REVIEW E 104, 034301 (2021)

TABLE VII. Average number of RRR iterations needed to recon-
struct the Game of Life masks (Fig. 13, top) up to ¢ = 5 time steps
between observations. All results are based on 20 experiments and
used hyperparameters w; = 0.9, w, = 0.7, n = 2.0, and RRR time
step B = 0.75.

t 2 3 4 5

Average iterations 129 557 1980 27 100

In the second stage of the gate projection the sums of
the products for each inequality (w;-x; and w; - xp), for
the greedy discrete state projections, are compared with the
bounds b; and b,. If we are considering y =1 and both
inequalities are satisfied, then the constraint is satisfied and
the squared distance has a contribution from y and the greedy
values (ii) above from all the edges. If either of the inequalities
is not satisfied, some number of the products in w - x must be
flipped, 0 — 1 in order to satisfy the lower bound of mask
1, or 1 — O to satisfy the upper bound of mask 2. Which
edges to flip is determined by ranking the numbers (iv) above.
This shows that the nearest discrete state having y = 1 can be
efficiently computed, as is the distance to that state.

A similar set of computations is performed for the case
y=0. Now the greedy edge projections are output when
either of the inequalities is violated. When both inequalities
are satisfied by the greedy edge projections, then the extra
squared distance in violating one or the other, by summing
ranked edge contributions, are compared to decide which of
the two should be violated.

Whichever of the two cases y € {0, 1} has the smallest
projection distance is the one selected for the gate projection.
A combinatorial explosion is avoided because contributions
from edges can be sorted and the minimum distance for
changing the status of an inequality is a projection to the
equality case. The projection is simplified when the output
node is in layer £ = ¢ where y is specified by the data.

We found that the two masks of the Life rule were eas-
ily reconstructed even with several time steps ¢ between the
observations. As in our experiments with general rule recon-
struction, the reconstruction (training) used just a single data
item. Following [2] the initial random state had a density 0.38
of 1’s. For this kind of initial state we obtained the (unique)
Life rule for A as small as 16 x 16. With hyperparameters
w; =0.9, v, =0.7, and n = 2.0, the RRR algorithm with
B = 0.75 very early in the search discovered the correct masks
or close approximations. It appears that most of the work
goes into reconstructing the CA states at the unseen times.
The average number of iterations per solution in 20 runs,
all successful, and up to r =5, is given in Table VII. As
an RRR iteration corresponds computationally to a gradient
step in standard training, the numbers in Table VII should
be compared to the 10° gradient steps (total data items) used
in [2]. Even so, the success rate in the minimal architecture
(like ours) was 0% already for r = 2. Only when the network
capacity was increased by a factor of 10 did the success rate
for t = 2 reach 100%. The gradient trained networks were

T

FIG. 14. Three time steps (upward) of Alien Life starting from a
random state at the bottom.

never successful for # = 5, even with the 10-fold parameter
enhancement.

Reconstructing the rules of Alien Life proved to be much
more challenging. Since this rule is less familiar, Fig. 14
shows three steps in the evolution from a random state on
a 32 x 32 torus. Our data, on the same size system, had a
random initial state at density 0.5. Reconstructions always
yielded the Alien Life masks (Fig. 13, bottom) that were used
to generate the final data state. Results were very sensitive
to the settings of the hyperparameters w; and w, associ-
ated with the two masks, in particular, their difference. For
example, when w; — w, > 0.4, the variables of mask 1 are
sufficiently less compliant than those of mask 2 that they are
effectively static while RRR tries to (unsuccessfully) resolve
all inconsistencies via mask 2. This behavior can be detected
by comparing the corresponding RRR velocities v; = ||w] —
will/(w; B), i = 1,2, which yields v, & 4v; when the hyper-
parameters differ by 0.4. The activity of the two masks in this
kind of unproductive search is reversed when w; — w; < 0.
The hyperparameters given in Table VIII fall in a window

034301-11

VEIT ELSER

PHYSICAL REVIEW E 104, 034301 (2021)

TABLE VIII. Hyperparameters and average RRR iterations for
reconstructing the Alien Life masks (Fig. 13, bottom). Both results
are based on 10 runs.

TABLE IX. Run times and conflict counts for MINISAT when
reconstructing three CA rules using the SAT encoding scheme of
(B1).

t w wy n B Average iterations t CPU time (sec) Conflicts
2 1.15 0.85 35 0.75 3.1 x 104 Rule 30
3 1.04 0.85 2.0 0.75 1.5 x 108 2 0.0020 0
3 0.0024 8
4 0.0020 0
5 0.0041 7
where the two masks are searched jointly, as shown in Fig. 15, 6 0.0066 79
and the velocities of all variables types (including x and y) 7 0.0057 29
. . . 8 0.0098 112
are comparable, about 0.15 bits per continuous time. The Rule 110
results of our experiments with Alien Life are summarized in
2 0.0019 0
Table VIII. 3 0.0027 4
4 0.0034 26
APPENDIX B: BINARY CA RULE RECONSTRUCTION 5 0.0040 55
AS BOOLEAN SATISFIABILITY 6 0.0038 39
. . L 7 0.0054 12
A standard method for experimentally investigating the 8 0.0088 01
complexity of discrete feasibility problems is to express them Rule X '
as Boolean formulas in conjunctive normal form (CNF) and 5 0.0862 684
try any of the large variety of efficient solvers that have 3 1994.0000 15 430 281

been developed for this application. A clever solver can dis-
cover good variables for branching, generate useful additional
clauses, or otherwise reduce the work far below the naive
estimate, which for a binary CA with n inputs is trying all
22" rules.

In our encoding scheme the CNF formula has |A|(f 4+ 1)
“state variables” and 2" “rule variables.” Using the same nam-
ing convention as in Fig. 1 for the case of a 1D rule withn = 3
inputs, there are two clauses for each p € A, layer £ # ¢,
input pattern s, both of which involve the following set of
four state variables and one rule variable: y(¢ + 1, p), y(¢, p),
vy, p+ 1),y p+2),z(s). Forinstance, withs = 5 = 101,
as the input pattern, the two clauses take the form

(Bla)
(B1b)

Y Vv =z(101) V =yg V y; V =y,
=y Vz(101) V =y V y1 V =y,

where y = y(€ + 1, p) is the output state and y; = y(¢, p + i),
i =0, 1, 2 are the three input states. By the final three literals,
both clauses are true whenever (yg, y1,y2) # (1,0, 1) and so

‘:__—. |—*l --=lh-—-;-q--+| o ——
st = ' 1 s |1 | e (G
__-— -ﬂ;.- Tailm L __ R ERE | l‘ll\] I ——

N _‘-—- . v il .uq.u--‘-uu‘l

‘- *- _._--_ ‘-l-lll:—

.u i i -':"J-L.'_ ‘_-..‘-_;.-.'1.!—

ot e e e e MR

. " .. -ll:..-. ol .l lﬂ .-.l-. " ' ! l‘l_
... ; -.':.--IL_ L-.- - i l. l':.l 1 s m

it ot A G- e

FIG. 15. Complete evolution of the two 5 x 5 masks (25 + 25
rows) in an Alien Life rule reconstruction from ¢ = 2 data. The two
five-wire masks of Alien Life appear on the right.

it is only when the inputs exactly match s that these clauses
have any effect on the truth of the CNF formula. In that
event we see that the first two literals impose the property
y' = z(101), that is, the output matches the CA rule for the
particular input pattern s that these clauses are responsible for.
The CNF formula comprises 2"|Alt clause-pairs of the form
(B1) that impose rule consistency at all positions and times.
An additional 2|A| unit clauses on the variables in layers
£ =0 and ¢ = ¢ impose the data constraint.

To gain some perspective on the hardness of CA rule re-
construction we tried the general purpose conflict-driven SAT
solver MINISAT [18] on the CNF formulas described above for
the same 1D rules that were studied in the main text. Formulas
in the standard DIMACS format are available at [11]. The re-
sults, using default settings, are given in Table IX. In addition
to the CPU times we list the number of ‘conflicts’ that had
to be resolved in the course of finding solutions. These are a
machine-independent measure of hardness, and correspond to
the number of leaves in a backtracking tree search.

It is not surprising that MINISAT makes short work of the
three-input rule CAs. After all, the correct rule involves trying
at most 256 cases for the eight z variables, which stand out
(for branching purposes) by being included in each of the
many clauses. The very slow growth of hardness with 7 is
consistent with the behavior of the RRR algorithm (Table II).
On the other hand, the behavior of MINISAT on Rule X is
quite different. While the case ¢ = 2 is still impressive, adding
another time step caused the hardness (measured either by
time or number of conflicts) to increase by a factor of 2 x 10*.
The corresponding increase for the RRR algorithm (Table IIT)
was a factor of 300.

034301-12

RECONSTRUCTING CELLULAR AUTOMATA RULES ...

PHYSICAL REVIEW E 104, 034301 (2021)

[1] S. Wolfram, A New Kind of Science (Wolfram Media Cham-
paign, IL, 2002).

[2] J. M. Springer and G. T. Kenyon, It’s hard for neural networks
to learn the Game of Life, arXiv:2009.01398 (2020).

[3] J. Frankle and M. Carbin, The lottery ticket hypothesis: Finding
sparse, trainable neural networks, arXiv:1803.03635 (2019).

[4] V. Elser, Learning without loss, Fixed Point Theory Algorithms
Sci. Eng. 2021, 12 (2021).

[5] S. Gravel and V. Elser, Divide and Concur: A general approach
to constraint satisfaction, Phys. Rev. E 78, 036706 (2008).

[6] S. Wolfram, Statistical mechanics of cellular automata, Rev.
Mod. Phys. 55, 601 (1983).

[7] The open boundary conditions used in [2] can lead to violations
of the CA rules even when the exterior of the initial state is all
zeros. For example, Game of Life might create a glider that exits
the interior.

[8] V. Elser, The complexity of bit retrieval, IEEE Trans. Inf.
Theory 64, 412 (2017).

[9] V. Elser, T.-Y. Lan, and T. Bendory, Benchmark problems for
phase retrieval, SIAM J. Imag. Sci. 11, 2429 (2018).

[10] V. Elser, I. Rankenburg, and P. Thibault, Searching with iterated
maps, Proc. Natl. Acad. Sci. U. S. A. 104, 418 (2007).

[11] https://github.com/veitelser/rulerecon.

[12] E. Jen, Global properties of cellular automata, J. Stat. Phys. 43,
219 (1986).

[13] M. Cook, Universality in elementary cellular automata,
Complex Syst. 15, 1 (2004).

[14] D. P. Kingma and M. Welling, Auto-encoding variational
Bayes, arXiv:1312.6114 (2013).

[15] D. J. Rezende, S. Mohamed, and D. Wierstra, Stochastic
backpropagation and approximate inference in deep generative
models, in Proceedings of the 31st International Conference on
Machine Learning (ICML, 2014), Vol. 32.

[16] 1. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio, Generative
adversarial nets, in Advances in Neural Information Processing
Systems (2014), pp. 2672-2680.

[17] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning
internal representations by error propagation, Tech. Rep., Uiv-
ersity of California at San Diego, La Jolla Institute for Cognitive
Science (1985).

[18] N. Sorensson and N. Eén, A SAT solver with conflict-clause
minimization, in Proceedings of Theory and Applications of
Satisfiability Testing (2005).

034301-13

http://arxiv.org/abs/arXiv:2009.01398
http://arxiv.org/abs/arXiv:1803.03635
https://doi.org/10.1186/s13663-021-00697-1
https://doi.org/10.1103/PhysRevE.78.036706
https://doi.org/10.1103/RevModPhys.55.601
https://doi.org/10.1109/TIT.2017.2754485
https://doi.org/10.1137/18M1170364
https://doi.org/10.1073/pnas.0606359104
https://github.com/veitelser/rulerecon
https://doi.org/10.1007/BF01010579
http://arxiv.org/abs/arXiv:1312.6114

