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Numerical renormalization-group-based approach to secular perturbation theory
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Perturbation theory is a crucial tool for many physical systems, when exact solutions are not available, or
nonperturbative numerical solutions are intractable. Naive perturbation theory often fails on long timescales,
leading to secularly growing solutions. These divergences have been treated with a variety of techniques,
including the powerful dynamical renormalization group (DRG). Most of the existing DRG approaches rely on
having analytic solutions up to some order in perturbation theory. However, sometimes the equations can only be
solved numerically. We reformulate the DRG in the language of differential geometry, which allows us to apply it
to numerical solutions of the background and perturbation equations. This formulation also enables us to use the
DRG in systems with background parameter flows and, therefore, extend our results to any order in perturbation
theory. As an example, we apply this method to calculate the soliton-like solutions of the Korteweg–de Vries
equation deformed by adding a small damping term. We numerically construct DRG solutions which are valid
on secular timescales, long after naive perturbation theory has broken down.
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I. INTRODUCTION

The career of a physicist consists of treating the harmonic
oscillator in ever-increasing levels of abstraction, according
to Sidney Coleman [1]. Although a joke, the truth is that
perturbation theory is an indispensable tool in physics. Per-
turbation theory allows us to gain insights into problems that
are too difficult to solve exactly, too expensive to solve nu-
merically, or we demand more control than is afforded by
numerical simulations. Entire textbooks focus just on various
methods in perturbation theory [2–5]. In the literature, one can
find a plethora of applications of the perturbative approach
which include critical phenomena in condensed matter sys-
tems [6–11], particle physics [12–14], and gravitation and
cosmology [15–18].

However, caution is always warranted when applying naive
perturbation theory. There are many ways in which traditional
perturbation theories can fail. In this paper, we are interested
in breakdown on secularly long timescales (typically propor-
tional to an inverse power of a control parameter), even when
the dynamical system is known to be bounded [2,3,5]. There
are many approaches to secular perturbation theory, tailored
to specific situations, for example, the Poincaré-Lindstedt
method for problems with periodic solutions [2,5]. Many
of these disparate approaches have been subsumed by the
method of the dynamical renormalization group (DRG) [9,19–
21]. In the DRG, constant parameters of the background
solutions are promoted to time-dependent functions, which
satisfy so-called β function flow equations. By making the
“constants” vary with time, the secular growth can be exactly
canceled.

*jgalvezg@cita.utoronto.ca
†lcstein@olemiss.edu

Although DRG includes RG in the name, this is renor-
malization in a Gell-Mann-Low sense [22], which is still
perturbative, unlike the nonperturbative Wilsonian or Callan-
Symanzik [23–25] point of view. DRG relies on the existence
of an attractor manifold of an unperturbed problem to con-
trol the calculation of a deformed problem. Despite being
perturbative, DRG can still resum solutions that include non-
perturbative effects.

For systems that have self-similar solutions, there has been
work on the RG approach [7,26], including some numerical
work [8,27,28]. However, the majority of the existing DRG
literature (that we are aware of) has been applied to analyt-
ical problems, and there has not been a general numerical
approach to the DRG outside of self-similarity. This creates
a limitation: one does not always have the luxury of a self-
similar solution, or an analytical solution at background or at
linear order. In this case, neither the analytical DRG nor the
previous numerical approaches can be applied.

In this paper, we propose a general numerical approach to
the DRG. To do so, we have reformulated the DRG in the
language of differential geometry. This extends the envelope
picture of [19,21]. The key insight is this: The details of the
secular growth of the naive perturbation solution encode the
time dependence (β functions) and reparameterizations (α
functions) of the solution parameters. Because of our geo-
metric formulation, we can equally well apply the DRG to
problems which already experience a background parameter
flow. Our formulation also makes it mechanical to see how to
continue to arbitrary perturbation order.

As a proof of concept, we apply this procedure to solve
a deformation to the Korteweg–de Vries (KdV) equation
[29,30]. We find solutions which are valid over secular
timescales, long after naive perturbation theory has broken
down. To do so, we promote the velocity of the one-soliton
KdV solution into a time-dependent function. We extract its
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reparameterization and flow functions directly from diverging,
naive perturbative solutions. We present several checks: of the
DRG approach itself, without reference to the true (nonpertur-
bative) numerical solution and also against the true solution.
The renormalized solution’s velocity, amplitude, and width all
agree with the true solution.

Although a deformation to the KdV equation could be
treated analytically, we find this system ideal as our proof of
concept for numerical DRG. Our numerical simulations do
not take advantage of the existence of analytical solutions, so
we are demonstrating the “full” case of numerical DRG on
top of numerical background solutions. Meanwhile, we are
also able to assess how well the numerical DRG performs by
comparing with analytics.

We expect this method to be applicable to a variety of
problems. One of our motivations is in gravitational physics,
namely, in modeling small deformations of Einstein’s theory
of general relativity (GR). Like the KdV equation, GR has
stable nonlinear solutions (black holes) and an attractor man-
ifold (the space of binary black hole inspirals). Also like the
KdV equation, adding a deformation will lead to effects on
secularly long timescales. This similarity motivated our use
of the KdV equation as a model problem, before applying the
numerical DRG to the more complicated problem of beyond-
GR calculations.

The organization of this paper is as follows. In Sec. II
we first give an analytical example to describe the DRG
method. We then give our geometric formulation, which can
be applied to numerical problems. This procedure extracts the
RG flow and reparameterization functions directly from the
naive perturbative solution. In Sec. III we introduce the KdV
equation and perturb it to its damped form, also known as
the Korteweg–de Vries–Burgers (KdVB) equation, showing
all the elements needed to extract the parameter flow gen-
erators. In Sec. IV we present the results of our extraction
scheme and solve the flow equations to find the renormalized
parameters’ evolution. Once the bare parameters are replaced
by the flowing parameters in the one-soliton KdV solution,
we reconstruct a renormalized solution and compare it with
the nonperturbative KdVB solution. We also approach the
problem using an alternative parametrization, to test if the
dimensionality of the parameter space was increased by the
perturbation. In Sec. V we discuss a potential application of
this renormalization-based method to the calculation of grav-
itational waves from theories beyond GR. Finally, in Sec. VI
we discuss and conclude.

II. RG FLOW AND FIRST-ORDER PERTURBATION
THEORY

In this section, we present a procedure to build solutions
free from secular divergences. This procedure requires only
knowledge of the naive perturbative solution. Throughout, we
use the Einstein summation convention for repeated indices.

A. Analytical example

To demonstrate the concepts and features of this procedure,
we condense and simplify the results of Galley and Rothstein
[31] as an example. Consider the equations of motion for a

binary system, where the leading order is Newtonian gravity,
and the perturbation at order ε is due to post-Newtonian ra-
diation reaction. The radial and angular equations of motion
read

r̈ − r2ω = −M

r2
+ ε

[
64M3ν

15r4
ṙ+ 16M2ν

5r3
ṙ3+ 16M2ν

5r
ṙω2

]
,

rω̇ + 2ṙω = −ε

[
24M3ν

5r3
ω + 8M2ν

5r2
ṙ2ω + 8M2ν

5
ω3

]
. (1)

The background solutions are simply elliptic Keplerian orbits.
For small eccentricity e � 1, these are given by

r (0)(t ) = R0 + A sin φ◦(t ), (2)

ω(0)(t ) = �0 − 2�0A

R0
sin φ◦(t ), (3)

φ◦(t ) = �0(t − t0) + 	0, (4)

φ(0)(t ) = φ◦(t ) + 2A

R0
cos φ◦(t ), (5)

where �2
0 ≡ M/R3

0 and A = eR0. Here we have introduced the
auxiliary phase for a circular orbit, φ◦(t ), and an orbital phase
φ(t ). We will collect the four solution parameters into a single
“vector” �λ ≡ (R0,�0, A, φ◦); the reason for using φ◦ rather
than 	0 as a flowing parameter will become apparent below.

The effects of radiation reaction appear with leading coef-
ficient ν�5

0R5
0 � 1, which is counted by powers of ε. To solve

perturbatively, we pose

r(t ) = r (0)(t ) + εr (1)(t ), (6)

ω(t ) = ω(0)(t ) + εω(1)(t ). (7)

Plugging this in to the differential equation and collecting at
order ε1, we get the linearized differential equations

r̈ (1) − 3�2
0r (1) = 2R0�0ω

(1), (8)

R0ω̇
(1) + 2�0ṙ (1) = − 32

5 νR6
0�

7
0. (9)

The solutions to these equations have homogeneous and
particular pieces, and the total solution is [31]

r(t ) = R0 + A sin (�0(t − t0) + 	0)

− ε

[
64ν

5
�6

0R6
0(t − t0) − 64ν

5
�5

0R6
0 sin �0(t − t0)

]
,

(10)

ω(t ) = �0 − 2�0A

R0
sin (�0(t − t0) + 	0)

+ ε

[
96ν

5
�7

0R5
0(t − t0) − 128ν

5
�6

0R5
0 sin �0(t − t0)

]
,

(11)

φ(t ) = 	0 + �0(t − t0) + 2A

R0
cos (�0(t − t0) + 	0)

+ ε

[
48ν

5
R5

0�
7
0(t − t0)2 + 128ν

5
�5

0R5
0 cos �0(t − t0)

]
,

(12)
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where the expression φ(t ) comes by direct integration of ω(t ).
There are two important features to observe in the O(ε) pieces
of these solutions. The first term in the square brackets is a
linear-in-time divergence for ω(t ) and r(t ), and a quadratic
divergence for φ(t ). Those diverging terms suggest two new
secular timescales: one from ω(t ) (and r(t )), which scales
as ε−1, and another from φ(t ) scaling as ε−1/2. Nominally,
Tsec ∼ ε−1/2 is the shortest timescale where secular diver-
gences need to be controlled; but it is essential to describe
in which circumstances each of the two timescales appears. A
traditional approach to handling these new timescales would
be the method of multiple scales [2,3]. However we will
follow the DRG approach, which does not require a priori the
knowledge of how “slow” and “fast” times are related.

The second term in the square brackets can be ab-
sorbed by a redefinition of the initial values which are
collected in �λ(t0) ≡ (R0,�0, A,	0). Absorbing the last term
in Eqs. (10)–(12) is accomplished by making an infinitesimal
diffeomorphism of the initial values according to

�λ(t0) → �λ(t0) + ε�α(�λ), (13)

with the specific solution

�α =
(

0; 0;
64ν

5
R6

0�
5
0 cos 	0; −64ν

5A
R6

0�
5
0 sin 	0

)
. (14)

Now to control the secular divergence, we promote
�λ to a function of time, renaming its components
to be the “renormalized” solution parameters �λR =
(RR(t ),�R(t ), AR(t ),	R(t )). We promote the solution

r(t ) = RR(t ) + AR(t ) sin 	R(t ), (15)

ω(t ) = �R(t ) − 2�R(t )AR(t )

RR(t )
sin 	R(t ), (16)

φ(t ) = 	R(t ) + 2AR(t )

RR(t )
cos 	R(t ). (17)

The new �λ satisfies a “β function” flow equation,

d�λR

dt
= �β(�λR) = �β (0)(�λR) + ε�β (1)(�λR). (18)

In the background solution, φ◦(t ) was already flowing, which
is why we included it in �λ instead of the constant 	0. The
background β function was simply

�β (0) = (0; 0; 0; �R). (19)

Reference [31] found that the first-order β function is

�β (1) =
(

−64ν

5
R6

R�6
R;

96ν

5
�7

RR5
R; 0; 0

)
. (20)

These can be integrated explicitly, finding simple algebraic
solutions for (RR(t ),�R(t ), AR(t ),	R(t )) [see Eqs. (4.42)–
(4.45) in [31]]. Let us also point out here that the two nonzero
components in Eq. (20) are not independent: their relation-
ship can be found by taking a differential of Kepler’s law
�2

0 ≡ M/R3
0. We will return to this feature in our numerical

example in Sec. IV B.
There are two equivalent ways to find the first-order β

functions. Galley and Rothstein followed the typical Wilso-
nian approach of introducing appropriate counterterms which

absorb the secular divergences. A more pedestrian approach
from the point of view of the differential equation is as fol-
lows. For sufficiently short times, ε(t − t0) � 1, the evolution
of the parameters is linear in time. Including the �α reparame-
terization, this is equivalent to replacing �λ(t ) with

�λR(t ) = �λ(t ) + ε�α + ε(t − t0)�β (1) + O(ε2), (21)

where �λ(t ) satisfies the background flow equation. In our
promoted solutions, Eqs. (15) and (16), insert these flowing
quantities [the treatment of φ(t ) in Eq. (12) is more subtle,
because of the background flow of φ◦, and will be explained in
the next section]. Next, reexpand in powers of ε. Finally, read
off functions of �α and �β (1) that will match the homogeneous
solutions and secularly divergent terms at O(ε) in Eqs. (10)
and (11). Performing this coefficient matching gives the same
components as in Eqs. (14) and (20).

This example demonstrates the analytical approach to the
dynamical renormalization group, which we will promote to
a numerical approach. We will revisit the problem of secular
divergence in a binary inspiral in the discussion in Sec. V.

B. General formalism

We now present the general framework for the DRG, in
a form that is amenable to a numerical implementation. The
analytical approach has been treated extensively; see, e.g.,
[19,21]. Suppose we want to solve the differential equation

dϕA

dt
= F A[ϕB, t] + εPA[ϕB, t], (22)

which is an O(ε) deformation of an equation which we already
know how to solve (at ε = 0). Here capital Latin indices label
the degrees of freedom (or fields) in the differential equation.
In the case of a partial differential equation (PDE), F A and PA

can also depend on spatial derivatives of the ϕA fields. In this
work we will focus on the autonomous case, so there is no
explicit time dependence in F or P.

In our approach, we rely on the existence of an “attractor,”
“invariant,” or “slow” manifold for the space of solutions.
We assume that the εP deformation is mild enough that it
does not affect the existence of a slow manifold (this can be
rather subtle for PDEs, for example if including P changes
the principal part of the system). The solutions are labeled by
some parameters (or collective coordinates) λi in a space �

of finite dimension m, which we may also denote as �λ. The
solutions to the background (ε = 0) equations are

ϕA = ϕ(0)A(t, λi ), (23)

and possibly spatial dependence in the case of a PDE. We can
think of ϕ(0):� → S as a map from parameter space to the
solution space S , as seen in Fig. 1. As seen in the previous
section [Eq. (19)], the background parameters may have their
own flow equations,

d�λ
dt

= �β (0)(�λ), (24)

referred to as the “β functions” of the system. The �β vector
field is depicted as the blue field in the left panel of Fig. 1.
These β functions will be corrected at order ε, leading to a
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FIG. 1. Flows in parameter space � are mapped to the flows in solution space S via the solution map ϕ(0). The flow is an integral curve
of the vector field �β (in blue), whereas the vector field �α (in orange) generates an infinitesimal transformation (diffeomorphism) redefining
the initial coordinate. Every point ϕ (0)(λ) ∈ S corresponds to an entire solution, expanded at right. The tangent space Tϕ(0) (λ)S consists of
homogeneous solutions ϕ (1) to the differential equation linearized about ϕ (0)(λ), which correspond to shifts in parameter space.

secular divergence in the integral curves of the background
and foreground β functions.

The naive perturbation theory treatment of Eq. (22) would
pose the ansatz

ϕA = ϕ(0)A + εϕ(1)A, (25)

which then leads to the system of differential equations

dϕ(0)A

dt
− F A[ϕ(0)] = 0, (26)

dϕ(1)A

dt
− F (1)A[ϕ(1); ϕ(0)] = PA[ϕ(0)]. (27)

Here F (1) is a linear differential operator that is the lineariza-
tion of F , namely,

F (1)A[ϕ(1); ϕ(0)] = d

dε
F A[ϕ(0) + εϕ(1)]

∣∣∣∣
ε=0

. (28)

The linear differential equation (27) generically leads to
secular divergences in ϕ(1) [as seen, for example, in Eqs. (10)
and (11)], and it is these divergences that we seek to renor-
malize.

First, the solution ϕ(1) may contain pieces that live in the
space of homogeneous solutions to the perturbation equation
(27). These homogeneous solutions can be absorbed by per-
turbative shifts of the initial parameters �λ(t0) via

�λ(t0) → �λ(t0) + ε�α(�λ). (29)

The �α vector field is depicted as the orange field in Fig. 1.
A perturbative shift of the initial parameters yields another
nearby solution of the background system Eq. (26), and there-
fore the difference is a homogeneous solution of the first-order
perturbation equation,

ϕ(0)A(t, λi + εαi ) = ϕ(0)A(t, λi ) + εαi δϕ
(0)A

δλi
, (30)

d

dt
ϕ(0)A(t, λi + εαi ) − F A[ϕ(0)A(t, λi + εαi )] = 0, (31)

εαi

(
d

dt

δϕ(0)A

δλi
− F (1)A

[
δϕ(0)A

δλi
; ϕ(0)

])
= 0. (32)

This first-order shift is generated by the functions that we
called δϕ(0)A/δλi, which have a clear interpretation in differ-
ential geometry (in terms of the differential of a map) that we
discuss below.

Besides the homogeneous solutions, there is another source
of secular divergence in naive perturbation theory. The true
solution at finite ε need not stay on the background solution
manifold S seen in Fig. 1, but there is a curve within S that is
closest to the true solution. When this closest curve is pulled
back to the parameter manifold �, its flow need not coincide
with the background flow generated by �β (0). Therefore we
need to allow for the possibility of the flow of �λ changing
at first order, giving the renormalized �λR solution,1

d�λR

dt
= �β (0)(�λR) + ε�β (1)(�λR). (33)

In the absence of a background flow, short timescales sat-
isfy (t − t0) � Tsec, where Tsec ∼ (εβ (1) )−1 is the timescale
of secular divergence of naive perturbation theory. Thus, for
sufficiently short time intervals we write

�λR = �λ + ε�α + ε(t − t0)�β (1) + O(ε2). (34)

Now there are two ways to write the first-order solution:
one following naive perturbation theory [from Eq. (25)], and

1Notice that Eq. (33) does not specify the normal form of the
differential system, and in fact a singular perturbation may require
further generalization (e.g., a negative power of ε on the right-hand
side). For further details see [32].

034219-4



NUMERICAL RENORMALIZATION-GROUP-BASED … PHYSICAL REVIEW E 104, 034219 (2021)

one renormalized, where the correct choice of β (1) will ensure
that the first-order solution is bounded in time. For small
times, we equate these two,2

ϕ(0)A(�λ) + εϕ(1)A = ϕ(0)A(�λR) + εϕ
(1)A
⊥ , (35)

ϕ(1)A = [αi + (t − t0)β (1)i]
δϕ(0)A

δλi
+ ϕ

(1)A
⊥ . (36)

Let us emphasize that this matching is the key to our for-
mulation of DRG: the details of the secular growth in naive
perturbation theory encode the data for renormalization, �α
and �β (1). This gives us the condition for finding �α and �β (1):
keep the residual ϕ

(1)A
⊥ bounded in time. We take this to mean

minimizing its norm in an appropriate function space, for
example,

‖ϕ(1)
⊥ ‖2 =

∫
|ϕ(1)A

⊥ |2dt,

‖ϕ(1)
⊥ ‖2 =

∫ ∣∣∣∣ϕ(1)A − [αi + (t − t0)β (1)i]
δϕ(0)A

δλi

∣∣∣∣
2

dt, (37)

where the norm | · | inside the integral can, e.g., include a
spatial integral, when solving a PDE.

Differential geometry formulation of DRG

Before providing details of such minimization, we give a
geometrical interpretation for this procedure. Above we pre-
sented the procedure only to first order in ε and first order
in a time difference �t = t − t0 � Tsec. However, we can
promote this to all orders by recognizing that the �α and �β
vector fields generate diffeomorphisms of parameter space.
The geometric version of the reparametrization �λ → �λ + ε�α
is a diffeomorphism generated by flowing along the vector
field �α by parameter ε. This α can be generalized to higher
orders, for example, defining �A = ε�α(1) + ε2 �α(2) + · · · , and
then flowing along the integral curves of �A by parameter
1. Likewise, the time-dependent flow under the β function
equation corresponds to a flow along the �β vector field by
parameter (t − t0).

Let us write 	V
s : M → M to represent the flow along

integral curves of the tangent vector field V ∈ X (M), by a
parameter s [33]. From Fig. 1, we see that the desired flow in
parameter space should be the composition

λR(t ) = 	
β
t−t0 ◦ 	A

1 [λ(t0)]. (38)

It will be convenient to represent λ0 ≡ λ(t0) in terms of undo-
ing the background �β (0) flow, namely,

λ(t ) = 	
β (0)

t−t0 [λ(t0)], (39)

λ(t0) = 	
−β (0)

t−t0 [λ(t )]. (40)

Therefore, the renormalized flow, as a function of the back-
ground flow, is stated as

λR(t ) = 	
β
t−t0 ◦ 	A

1 ◦ 	
−β (0)

t−t0 [λ(t )] = 	V
1 [λ(t )], (41)

2Let us remark that here we take a vanishing background flow,
β (0) = 0. The full case will be given below.

FIG. 2. Illustration of the differential map dϕ (0) : T � → TS.
The parameter space coordinate basis vectors ∂/∂λi can be pushed
forward to span the tangent space at Tϕ(λ)S, giving the basis functions
δϕ (0)/δλi. The first-order solution has a projection into the tangent
space, ϕ

(1)
‖ = ϕ (1) − ϕ

(1)
⊥ ; this projection is decomposed with the

basis functions, yielding the components of �α and �β.

and this will be the argument to the background solution
map, ϕ(0). Here we used the fact that diffeomorphisms form
a group, so the composition can be rewritten as the flow under
a single vector field �V , which can be determined using the
Baker-Campbell-Hausdorff (BCH) theorem below.

There is also a clear geometric meaning for the functions
δϕ(0)A/δλi which appear in the norm, Eq. (37), which we will
minimize. The map ϕ(0):� → S induces a map called the
differential, dϕ(0):T � → TS , from the tangent space at λ to
the tangent space at the image ϕ(0)(λ). This is illustrated in
Fig. 2. The tangent space at the image consists of solutions
to the linearization of the background differential equation
[when linearized about the solution ϕ(0)(λ)], as demonstrated
in traditional notation in Eq. (32). The matching performed in
Eq. (35) can be written geometrically as finding the decompo-
sition

ϕ(1) = dϕ(0)( �V ) + ϕ
(1)
⊥ , (42)

where ϕ
(1)
⊥ lies outside of the vector space Tϕ(0) (λ)S . The dif-

ferential dϕ(0) can be thought of as a matrix, where the ith
column, δϕ(0)A/δλi, is a vector in Tϕ(0) (λ)S , which corresponds
to the change in the solutions under an infinitesimal shift in
the λi direction in parameter space. The solution to the linear
perturbation problem in Eq. (27) is also a vector in Tϕ(0) (λ)S ,
and the minimization procedure that we employ decomposes
this vector as a linear combination of these appropriate basis
functions. This procedure is essentially a fit of the data, ϕ(1),
with the functional form given by dϕ(0)( �V ), and the fit param-
eters being the values of �α, �β (1), and potentially higher-order
coefficients. The orders of t − t0 and ε kept in calculating �V
will affect the quality of this fit.

To determine the generator �V of the composition, we apply
the BCH theorem [34]. If a function f is right-composed with
a diffeomorphism 	V

s , this is equivalent to the left action of
the exponential of the Lie derivative acting on it,

exp(LsV ) · f = f ◦ 	V
s . (43)
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We want to find the vector field V which generates

exp(LV ) · f = f ◦ 	
β
t−t0 ◦ 	A

1 ◦ 	
−β (0)

t−t0 , (44)

exp
(
LV

) = exp
(
L−(t−t0 )β (0)

) · exp(LA) · exp
(
L(t−t0 )β

)
.

(45)

Here we will demonstrate with just the first few terms of the
BCH theorem, namely,

exp(LC ) = exp(LA) · exp(LB), (46)

C = A+ B+ 1
2 [A, B]+ 1

12 [A, [A, B]] − 1
12 [B, [A, B]]+ · · · .

(47)

Applying the BCH formula to the two compositions in
Eq. (45) gives us

�V = ε
{
�α(1) + (t − t0)�β (1) + (t − t0)[�α(1), �β (0)]

+ 1
2 (t − t0)2[�β (0), [�β (0), �α(1)] − �β (1)]

} + O(εt3, ε2).
(48)

Notice that when �β (0) �= 0, the components of �V at a point
λ depend on components of derivatives of �α(1) and �β (1).
Namely, to this order, we need all of the values

α(1)i, β (1)i, β (0)kα
(1) j
,k , β (0)kβ

(1) j
,k ,

β (0)iβ
(0)k
,i α

(1) j
,k , β (0)kβ (0)iα

(1) j
,ki , (49)

where we have introduced the notation of the parameter
“comma derivative,” f,i ≡ ∂i f = ∂ f /∂λi. We emphasize here
that all of these are simply constant coefficients in a Taylor
expansion at a background point �λ0.

It is convenient to collect all of these yet-to-be-determined
constant coefficients in a vector of vectors, ψ j(μ), where μ

labels the collection of coefficients to be extracted. We collect
the remaining dependence on time and the background flow
in the vector of matrices T i(μ)

j ,

V i = εT i(μ)
j ψ j(μ). (50)

For this example, the vector ψ j(μ) contains the flows ψ (0) ≡
�β (1) and ψ (1) ≡ �α(1), and the others are given by

ψ j(2) ≡ β (0)kβ
(1) j
,k , (51)

ψ j(3) ≡ β (0)kα
(1) j
,k , (52)

ψ j(4) ≡ β (0)iβ
(0)k
,i α

(1) j
,k , (53)

ψ j(5) ≡ β (0)kβ (0)iα
(1) j
,ki , (54)

T i(0)
j ≡ (t − t0)δi

j + 1
2 (t − t0)2β

(0)i
, j , (55)

T i(1)
j ≡ δi

j + (t − t0)β (0)i
, j

+ 1
2 (t − t0)2

(
β

(0)k
, j β

(0)i
,k − β (0)kβ

(0)i
, jk

)
, (56)

T i(2)
j = −T i(4)

j = −T i(5)
j ≡ − 1

2 (t − t0)2δi
j, (57)

T i(3)
j ≡ −(t − t0)δi

j − (t − t0)2β
(0)i
, j . (58)

Notice that in the special case where there is no background
flow, �β (0) = 0, there is a great simplification: higher-order
terms in the Taylor expansion would not be needed.

We insert this into the matching procedure of Eq. (35),
which we repeat here for convenience. With the infinitesi-

mally shifted flow �λR = �λ + �V + O(ε2, εt3), the two different
ways to write the first-order solution are

ϕ(0)A(�λ) + εϕ(1)A = ϕ(0)A(�λR) + εϕ
(1)A
⊥ , (59)

ϕ(1)A − [
T i(μ)

j ψ j(μ)
]δϕ(0)A

δλi
= ϕ

(1)A
⊥ . (60)

To determine the coefficients in ψ , we propose minimizing
the norm of ϕ

(1)A
⊥ by defining a “cost function”

I = ‖ϕ(1)A
⊥ ‖2 =

∫ ∣∣∣∣ϕ(1)A − [
T i(μ)

j ψ j(μ)
]δϕ(0)A

δλi

∣∣∣∣
2

dt, (61)

using a Euclidean norm for the components labeled by A, and
which may also involve a spatial integration in the case of
solving PDEs. Let us define

e(μ)A
j ≡ T i(μ)

j

δϕ(0)A

δλi
(62)

as a convenient linear combination of the basis functions
δϕ(0)/δλ, and time or background dependence in T . With
respect to these vectors, the cost function becomes a quadratic
form,

I =
∫ ∣∣ϕ(1)A − ψ j(μ)e(μ)A

j

∣∣2
dt

= M(μ)(ν)
i j ψ i(μ)ψ j(ν) − 2V (ν)

i ψ i(ν) + D, (63)

where the coefficients M(μ)(ν)
i j , V (ν)

i , and D read

M(μ)(ν)
i j =

∫ (
e(μ)A

i e(ν)A
j

)
dt, (64)

V (ν)
i =

∫ (
e(ν)A

i ϕ(1)A
)
dt, (65)

D =
∫

(ϕ(1)Aϕ(1)A)dt, (66)

where summation is implied on repeated A indices. If M(μ)(ν)
i j

is an invertible and positive definite matrix, then the optimiza-
tion

∂I

∂ψ i(μ)
= 0 (67)

minimizes the cost functional for a fixed value of (μ). Such
minimization only needs the inversion of M(μ)(ν)

i j , which
yields

ψ i(μ) = (M−1)(μ)(ν)i jV (ν)
j . (68)

At every point in the background parameter space, performing
this minimization yields values of �α(1), �β (1), and possibly
higher derivative corrections from Eqs. (51)–(54). If higher
derivatives are extracted, these must be consistent with the
λ-dependence of �α(1) and �β (1). It is essential to mention that
not all of the extracted components of ψ i(μ) are relevant to
provide a “good fit” of the perturbative solutions. Hence, it is
worthwhile to assess how each component of the flow affects
the quality of the fit. In the hypothetical case in which the fit
of the perturbative solution fails, it is important to revise the
expansion order kept [e.g., in Eq. (48)] and potentially include
more terms in the fit.
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We can extend the perturbative scheme to consider higher-
order corrections in ε, recalling that (as every perturbative
scheme) it is necessary to solve for all the parameters, flows,
and derivative corrections at lower perturbative orders, as
they are sources for higher orders. Even though extending
our procedure to higher perturbative orders is not an objec-
tive of this paper, we will try to explain how this procedure
might work. There are two alternative approaches one could
follow. The first one repeats the method described above,
expanding order by order, and extracting �α, �β (including their
corresponding auxiliary higher-derivative corrections) up to
the perturbative order required. The perturbative equations of
motion in Eq. (27) need to be expanded to higher order. The
second option is identical except, at each order, replacing the
flow of �λ(t ) with the renormalized flow �λR(t ) [thus replacing
the background solution in Eq. (27) with the renormalized
solution ϕ(0)(�λR)] built from all lower orders. In either of these
cases, it is always essential to construct the naive perturbative
solution in order to understand how it diverges in powers of
(t − t0). Knowing this ensures that the renormalized parame-
ter flow contains sufficient terms to reconstruct the solutions
at every perturbative order.

To close this section, we summarize the algorithm one
follows to build the renormalized solution at first order in ε:

(1) Compute the differentials δϕ(0)A/δλi for all parameters
λi whose flows you may attempt to renormalize. These differ-
entials may be computed analytically, if an analytical solution
is available, or numerically. Notice what powers of (t − t0)
appear in each basis function.

(2) Solve the equations of motion in Eq. (27) and evaluate
the naive perturbative solution, at many background points �λ0

in the parameter space. Notice what powers of (t − t0) appear
in the naive perturbative solution ϕ(1)A.

(3) Consider a candidate set of parameters to try to fit.
This will have to be determined individually for each problem,
either by understanding the phenomenology of this problem,
or by examining the features of ϕ(1)A and δϕ(0)A/δλi, and the
different powers of (t − t0) that appear in each. This will
inform what order needs to be kept in expanding Eq. (45)
using the BCH theorem [an example being Eq. (48)].

(4) Build the cost function in Eq. (61) and extract ψ for
every simulation (each corresponding to a point �λ0 in the
parameter space). Examine ϕ

(1)A
⊥ to assess the quality of the fit

of the perturbative solution as a combination of the basis func-
tion and the extracted flows. If the residual ϕ

(1)A
⊥ still exhibits

secularly growing features, go back to item 3 and consider
more parameters, or expanding �V to higher order in (t − t0).

(5) Once the fit has captured all the secularly growing fea-
tures, we can trust the extracted values of �α(1) and �β (1), which
can then be interpolated over the � space. Solve the flow
equations in Eq. (33) using �λR(t0) = �λ0 + ε�α(1)(�λ0) as initial
conditions for the renormalized parameters. The renormalized
solution is ϕ(0)(�λR), where �λR solves the flow equations.

III. PERTURBING THE KDV EQUATION AND DRG
EXTRACTION PROCEDURE

We now proceed to our main example, which is treating
the Korteweg–de Vries–Burgers (KdVB) equation fully, using

naive perturbation theory (which suffers from secular diver-
gence), and with the numerical dynamical renormalization
group approach. The 1D KdVB equation [29] can be written
as

∂tϕ = −6ϕ∂xϕ − ∂3
x ϕ + ε∂2

x ϕ. (69)

Dropping the third derivative term gives Burgers’ equation,
while setting ε = 0 gives the KdV equation. The KdV equa-
tion is integrable and admits soliton solutions. Throughout we
will treat the ε term as a deformation of the KdV equation.
This is a dissipation or diffusion term acting on a soliton, as
seen in Fig. 3. It does not modify the principal part of the PDE,
and thus does not affect the well-posedness of the problem.

From now on, we use ϕfull when referring to the full so-
lution of the KdVB equation in Eq. (69). Using the naive
perturbation ansatz, ϕ = ϕ(0) + εϕ(1), we expand the solution
up to the first order in ε. The background equation of motion
is the well-known KdV equation,

∂tϕ
(0) = −6ϕ(0)∂xϕ

(0) − ∂3
x ϕ(0). (70)

We are interested in background solutions which are a single
soliton, of the form

ϕ(0) = v

2
sech2

[√
v

2
(x − x0 − vt )

]
, (71)

ϕ(0) = v

2
sech2

[√
v

2
[x − xc(t )]

]
. (72)

This solution is parameterized by the 2D parameter space
of �λ = (x0; v), where x0 is the initial peak position, or �λ =
(xc; v), where the instantaneous peak position xc is given by

xc(t ) = x0 +
∫ t

t0

v(t ′) dt ′. (73)

Using x0 or xc as a coordinate choice in parameter space
affects whether the background β function vanishes or not.
In the x0 coordinate, �β (0) = 0. However, the time derivative of
Eq. (73) shows that

dxc

dt
= v, �β (0) = v

∂

∂xc
, (74)

i.e., the parameter v determines the zeroth-order β function
for the peak position xc. This is analogous to how �0 generates
the flow of φ◦(t ) in Sec. II A. Throughout we will use xc, since
at first order ε, we will develop a nonzero β function.

Since the KdVB equation is translation invariant, the dy-
namics can not depend on x0, except for a trivial translation.
Aside from the initial position, the one-soliton solution of
Eq. (70) is determined by the velocity v, which simultane-
ously controls the amplitude (v/2), the width (proportional
to v−1/2), and the motion of the peak position [found by the
integral in Eq. (73)].

We obtained numerical solutions for Eq. (69) and the per-
turbation equation [Eq. (75) below] using a pseudospectral
method for space and the method of lines for time integration.
We provide full details of the numerical method in the Ap-
pendix A, the space and time scales involved, and the sources
of error in the extraction of the β functions (discussed in
Sec. IV).
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FIG. 3. Left panel: Density plot and constant-time profiles (in black) of the analytic soliton solution in Eq. (72) for v = 2. Right panel:
Numerical solution of the KdVB equation for ε = 0.1 using as an initial condition the same v = 2 KdV soliton plotted in the left panel.
The full solution can be approximated by a decelerating soliton with decreasing amplitude and increasing width, which can be captured by a
renormalized solution ϕ (0)(�λR). There is also a small step in the full solution (dubbed “diluting tails” in the black rectangle), which makes the
solution asymmetric. This tail is present in the residual ϕ

(1)
⊥ [see Eq. (60) and Fig. 6] and could be used to improve the renormalized solution.

In Fig. 3 we plot the solutions for Eqs. (69) and (70), using
a KdV soliton as an initial condition released at x0 = 0.0 and
v = 2.0 in both of them. In the KdVB equation, the pertur-
bative damping coefficient is ε = 0.1. A key observation of
the full solution is that, in principle, it is reasonable to build
an approximate solution by modifying all the shape parame-
ters of ϕ(0)—i.e., the amplitude, the width, the position, and
velocity of the solitonic peaks—by time-dependent functions.
This intuition provides us with a motivation to build such an
approximate solution, which we will call ϕren from now on,
where the “bare” shape parameters are promoted to become
functions of time. The main idea is that the initial conditions
and the flow in time of the promoted parameters can be found
by the renormalization procedure shown in Sec. II. Later, in
Sec. IV, we will also show that it is consistent to build ϕren

by renormalizing the bare (xc; v) in the analytic KdV soliton
of Eq. (72), rather than promoting the amplitude and width to
independent parameters.

It is reasonable to expect that the renormalized solution
does not contain all the information of the KdVB solu-
tion, such as the small step growing horizontally behind
the decaying peak. These deviations, shown in a rectangle
in the right panel of Fig. 3, become smaller as the damp-
ing parameter ε reduces. We will show below that such
deviations can be tabulated by computing the residual ϕ

(1)
⊥

as defined in Eq. (60). We defer to future work the prob-

lem of refining the renormalized solution with these small
deviations.

We now proceed to (naive) first-order perturbation theory,
where the equation of motion reads

∂tϕ
(1) = KdV(1)[ϕ(1)] + P. (75)

Here the linear operator KdV(1) acting on ϕ(1), and the source
term P, are background-dependent, given by

KdV(1)[ϕ(1)] ≡ [ − 6ϕ(0)∂x − 6(∂xϕ
(0) ) − ∂3

x

]
ϕ(1),

P ≡ ∂2
x ϕ(0). (76)

It is important to keep in mind the explicit space and time
dependence of ϕ(0) when solving this PDE for ϕ(1). In Fig. 4
we show the solution ϕ(1) of Eq. (75), and the reconstruc-
tion ϕ(0) + εϕ(1) in naive perturbation theory, using ε = 0.01.
In this case, the perturbative solution has initial conditions
ϕ(1)(t = 0, x) = 0, and the background solution is taken to
be a KdV soliton with v = 2.0 started at x0 = 300.0 at time
t = 0.

At early times, linear perturbation theory captures the
effects of the damping term in slowing down the soliton.
However, the perturbative solution eventually grows to an
amplitude of 1/ε, signaling the breakdown of naive pertur-
bation theory. Similarly, the peak position differs by O(1) (in
units of the soliton width) on a secular timescale Tsec ∼ ε−1/2.
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FIG. 4. Left panel: Density plot and constant-time profiles (in black) with the solution of the perturbation equation in Eq. (75) for v = 2.
Right panel: Calculation of field at the first-order expansion in Eq. (25) for ε = 0.01 following the standard prescription for perturbation theory.
Secular divergences are visible in the amplitude at times t ∼ 1/ε. In this figure, the range of the x-axis is different from Fig. 3 (this is simply a
shift, allowed by translation invariance of the KdVB equation).

The first step to build an improved solution is to find which
parameters need to be renormalized, by studying how the
naive solution grows in time. We can compare the diverging
features of ϕ(1) and the differentials δϕ(0)/δλi to determine the
vectors �α(1) and �β (1) in order to renormalize the solution.

Space and time-translational invariance, as is the case of all
symmetries, play an important role in determining the struc-
ture of the β functions and, consequently, the renormalized
parameters’ dependence. The solitonic solutions of Eqs. (69)
and (70) are translational invariant since none of the terms
contained in the equations of motion have an explicit spa-
tial dependence. We expect, therefore, that the renormalized
parameters do not depend on the peak position xc. We also
make the choice that the background kinematic relationship
between v and xc [Eq. (74)] continues to hold at higher orders
in perturbation theory. Therefore we assume that the α and β

vectors take the form

�α(1) = αv (v)
∂

∂v
, �β (1) = βv (v)

∂

∂v
, (77)

i.e., that we only renormalize the velocity. In principle, we
can also add the shift αxc (v)∂xc , but this does not change our
results drastically.

As in Sec. II, we construct the first-order solution in two
ways: using naive perturbation theory, and with renormalized

(flowing) parameters,

ϕ = ϕ(0) + εϕ(1) and ϕ = ϕ(0)[�λR(t )] + εϕ
(1)
⊥ . (78)

Here ϕ(0) is the one-soliton KdV solution in Eq. (72), ϕ(1) is
the perturbative solution of Eq. (75), and ϕ

(1)
⊥ is the residual to

be minimized. For short times, the renormalized parameters
�λR(t ) ≡ (xR

c (t ); vR(t )) can be computed by using the BCH
formula as in Eq. (48),

�λR = �λ + �V , �V = ε

(
αv�t + βv

2
�t2 ; αv + βv�t

)
,

(79)

where we made use of the background flow of Eq. (74). We
find that the renormalized peak position xc(t ) [derived from
the composite flow in Eq. (45)] is consistent with our physical
intuition of a point particle moving with constant acceleration.
Here εαv gives an initial velocity shift, and εβv gives an
acceleration (the background moves at constant velocity). The
form of the background flow and the dependence in Eqs. (74)
and (77) have canceled all of the derivative corrections in
Eqs. (51)–(54).

In analogy to the procedure in Eq. (60), we match the two
expressions in Eq. (78) at first order in ε,

ϕ
(1)
⊥ = ϕ(1) − dϕ(0)( �V ), (80)
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where we must use (79), and the differential map,

dϕ(0)( �V ) ≡ δϕ(0)

δxc

(
αv�t + βv

2
�t2

)
+ δϕ(0)

δv
(αv + βv�t ).

(81)

The components of the differential map appearing are

δϕ(0)

δv
= 1

2
sech2ξ (1 + ξ tanh ξ ), (82)

δϕ(0)

δxc
= v3/2

2
sech2ξ tanh ξ, (83)

where ξ ≡ √
v(x − xc)/2 and xc = x0 + v�t . Now we have

all the elements necessary extract αv and βv , for any value of
v, by optimizing the cost functional in Eq. (63). In general,
by dimensional analysis, the coefficients multiplying �α will
always have a smaller power of �t than the corresponding
coefficients multiplying �β. This means that at longer integra-
tion times, the optimization routine is more sensitive to �β than
it is to �α.

IV. RESULTS

This section presents the results of the numerical DRG
extraction procedure described in Sec. III for the KdVB prob-
lem. We use the extracted values of αv and βv to build the
renormalized solution ϕren. Our approach is not restricted
to the original 2D parametrization of the one-soliton KdV
solution, as written in Eq. (72). We later consider the case
of having additional independent shape parameters, such as
the amplitude and the width of the soliton peak. We will also
test if the renormalized solution is a good approximation by
comparing it with the single-peaked solution of the KdVB
equation.

A. Original KdV parameterization

In the setup described in Sec. III, which considers a 2D
parameter space �λ ≡ (xc, v), we made the ansatz to fit only
the two components �ψ = (βv, αv ). Consequently, the cost
function I to be minimized reduces to a 2D quadratic form

I = [βv αv]

[
M(0)(0) M(0)(1)

M(1)(0) M(1)(1)

][
βv

αv

]

− 2[βv αv]

[
V (0)

V (1)

]
+ D. (84)

Here D does not participate in the optimization procedure. We
compute the matrix and vector coefficients of the vector of
differentials �e ≡ (eβ ; eα ), as detailed in Eq. (62),

�e =
(

δϕ(0)

δxc

�t2

2
+ δϕ(0)

δv
�t ;

δϕ(0)

δxc
�t + δϕ(0)

δv

)
, (85)

yielding the coefficients in Eq. (84),

M(μ)(ν) =
∫

L
dx

∫ t=Tmax

t=t0

dt e(μ)e(ν), (86)

V (μ) =
∫

L
dx

∫ t=Tmax

t=t0

dt ϕ(1)e(μ), (87)

FIG. 5. The perturbative solution ϕ (1) for v = 2, and extracted
dϕ (0)( �V ), as functions of (x, t ), shown at different instants of time.
The extracted values of αv and βv make dϕ (0)( �V ) a good fit to the
perturbative solution.

where L is the length of the simulation box, and Tmax is the
total evolution time of the perturbative solution. We find the
vector of optimum values containing βv and αv by performing
the same matrix inversion introduced in Eq. (68); since the
matrix is just 2 × 2, this is[

βv

αv

]
= 1

det M

[
M(1)(1) −M(0)(1)

−M(1)(0) M(0)(0)

]
V . (88)

Once we have the extracted values of αv and βv , it is crucial to
test the quality of the linear decomposition of ϕ(1) in terms of
the basis functions in Eqs. (82) and (83). From the definition
of ϕ

(1)
⊥ in Eq. (80), we compare ϕ(1) and dϕ(0)( �V ) in Fig. 5,

showing a good fit of the perturbative solution as a linear
decomposition in basis functions for v = 2.0. The quality of
the fit is due to both the correct choice of basis functions and
the correct values of αv and βv . The quality of the fit also
shows if we have considered an appropriate time dependence
of the infinitesimal shift �V . We define the relative difference

�ϕ
(1)
rel (t, x) ≡ ϕ

(1)
⊥ (t, x)

maxx′ ϕ(1)(t, x′)
(89)

to corroborate the goodness of the fit even at late times. In
Fig. 6 we observe that the relative difference is never greater
than 10−5 for Tmax = 50. Interestingly, the residual ϕ

(1)
⊥ (plot-

ted in white) has the same shape as the “diluting tails” shown
in the right panel of Fig. 3, suggesting that it is possible to
also recover the “instantaneous” perturbative features (those
not captured by renormalization) of the full solution with a
refinement of this method.

The upper limit in the integration time [Tmax in Eqs. (86)
and (87)] plays a significant role in evaluating the stability
of the extracted α and β functions. If Tmax is too short,
the specific choice of initial conditions becomes a dominant
feature of the solution. Therefore, it is prudent to evaluate
the perturbative solution ϕ(1) for a sufficiently long time. A
minimal consistency condition for the evolution of the system
is that, knowing the that the width of the soliton is roughly
given by v−1/2, Tmax � v−3/2 ensures that the perturbative
solution has displaced a distance much larger than a single
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FIG. 6. The relative difference �ϕ
(1)
rel for v = 2 remains small

for the duration of the simulation. White curves: The residual |ϕ (1)
⊥ |

(not scaled by the max) at different times, growing in spatial extent.
This feature coincides with the bump due to the “diluting tails” in the
right panel of Fig. 3.

soliton width. We perform the integration for a variety of val-
ues of Tmax, and then use (quadratic) Richardson extrapolation
(RE) [35,36] in powers of T −1

max to find the generators βv and
αv in the limit Tmax → ∞, and estimate their corresponding
errors, for different values of v. In Fig. 7 we show the way
the RE works, finding the values of αv and βv (in colored
squares) reported in Table I. From this figure, we notice how
the extracted values of αv and βv smoothly converge to the

FIG. 7. Quadratic RE in the limit 1/Tmax → 0. The extrapolated
values (filled squares) correspond to the values of αv and βv in
Table I. The extrapolating polynomial (solid line) is a quadratic in
powers of T −1

max, hence the unphysical blowup to the right.

extrapolated values as Tmax → ∞. Moreover, it is clear that
the extracted values of βv and αv (empty circles) do not show
large variations as Tmax grows. We observe that all of the
values of βv are negative, in agreement with the notion of a
decelerating peak, as shown by the nonlinear solution plotted
the in the right panel of Fig. 3. We estimate the errors arising
from RE [denoted σ (RE)] from the difference between the
extrapolated values and the extracted values from the largest
t = Tmax of each simulation.

Table I shows the values of αv and βv extrapolated from
each of the simulations, and their corresponding errors. The

TABLE I. Values of βv and αv extracted at different values of v, as depicted in Fig. 8, and their corresponding uncertainties. Convergence
errors are denoted σ (conv.) (see the Appendix), and Richardson extrapolation errors are denoted σ (RE), as depicted in Fig. 7. The values of
Tmax satisfy the condition for the soliton to translate much more than one width, Tmax � v−3/2.

v βv σβv (conv.) σβv (RE) αv σαv (conv.) σαv (RE) Tmax

0.0625 −1.010 × 10−3 4.352 × 10−8 3.050 × 10−5 4.482 × 10−2 4.287 × 10−5 6.484 × 10−3 2400
0.125 −4.184 × 10−3 2.976 × 10−7 2.170 × 10−6 8.828 × 10−2 1.809 × 10−4 2.780 × 10−4 1500
0.25 −1.667 × 10−2 9.255 × 10−7 2.064 × 10−5 1.334 × 10−1 7.459 × 10−4 2.688 × 10−3 2000
0.5 −6.672 × 10−2 1.236 × 10−6 6.887 × 10−6 1.887 × 10−1 2.980 × 10−4 4.469 × 10−3 600
0.75 −1.500 × 10−1 9.266 × 10−7 3.667 × 10−4 2.311 × 10−1 1.117 × 10−4 5.953 × 10−3 300
1.0 −2.667 × 10−1 1.654 × 10−6 2.250 × 10−5 2.668 × 10−1 1.991 × 10−4 4.499 × 10−3 300
1.25 −4.167 × 10−1 2.587 × 10−6 1.729 × 10−5 2.982 × 10−1 3.116 × 10−4 3.629 × 10−3 300
1.5 −6.000 × 10−1 3.724 × 10−6 1.406 × 10−5 3.237 × 10−1 4.490 × 10−4 3.098 × 10−3 300
1.75 −8.167 × 10−1 5.064 × 10−6 1.160 × 10−5 3.530 × 10−1 6.115 × 10−4 2.666 × 10−3 300
2.0 −1.067 × 100 6.599 × 10−6 9.526 × 10−6 3.774 × 10−1 7.989 × 10−4 2.338 × 10−3 300
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FIG. 8. Power-law fits to the Richardson-extrapolated values of βv and αv , as a function of v. Upper panels: Best fit for the α and β

functions (in orange) with enlarged error bars (in blue), estimated as due to RE. Error bars were enlarged by a factor of 102 for ln |βv|, and by
a factor of 10 for ln αv . Lower panels: Magnitude of the fractional errors from different sources. σ RE is the difference between the values of αv

and βv extracted by RE, and the values at finite Tmax (the last column of Table I). Convergence errors are obtained by comparing the extracted
quantities at four different resolutions, named high (hi), mid (mi), low (low), and ultralow (ult.low). The error bars in the upper panels are σ RE,
which are larger than convergence errors.

main sources of error are (1) the numerical calculation of the
perturbative solution ϕ(1) and (2) the fact that simulations are
evaluated at finite (but large) values of Tmax. Even when these
sources of error can be combined, we chose to treat them
independently. The numerical convergence error is further
discussed in the Appendix.

For a general application of the numerical DRG, one would
have to rely on interpolation of �α(1), �β (1) over the �λ parameter
space, in order to numerically solve the β function equations.
For our particular problem of the KdVB equation, we can
make an argument that αv (v) and βv (v) will be pure power
laws in v (this analytical argument came only after our numer-
ical explorations). The background (ε = 0) KdV equation has
a scaling symmetry, such that if ϕ(t, x) is a solution, then so is
γ 2ϕ(γ 3t, γ x). This corresponds to a simultaneous change of
length and time units, under which velocity should change to
be γ −2v; and dimensional analysis shows that ε should change
to be γ −1ε. We expect the renormalized solution will inherit
the background’s symmetry. We allow some undetermined
transformations αv → γ cαv and βv → γ dβv . Applying the
scaling transformation to the infinitesimal flow, we have

v → v + ε(αv + βv�t ), (90)

γ −2v → γ −2v + γ −1ε(γ cαv + γ dβvγ 3�t ). (91)

We find the powers c and d in order to make this homogeneous
in γ , namely, c = −1 and d = −4. This is satisfied with αv ∝
v1/2 and βv ∝ v2. As we were completing this manuscript, we
learned of Ref. [37], whose results also imply a power law for
βv . Therefore, instead of using interpolating functions, we fit
power laws for αv and βv .

Given the extrapolated values in Table I, we use the ansatz

ln |βv| = m ln v + b, (92)

and similarly for αv . The best-fit power law is plotted in the
upper panels of Fig. 8. The fractional error bars are plotted in
the bottom panels, which are too small to see without magni-

fication in the top panels; we omit error bars in later plots. The
quality of the fit needs to be as good as possible, since errors
in the fit will incur secular errors in the renormalized solution.
Later, in Sec. IV C, we will compare the renormalized solution
against the full solution of the KdVB equation.

We used the standard nonlinear fit routine curve_fit in
scipy [38], with weights coming from the estimated RE
errors (the convergence errors are much smaller, as seen in
the lower panels of Fig. 8; see the Appendix for full details
on convergence testing). The curve_fit routine returns the
optimal fits, in Table II, and covariance matrix estimates on
the two parameters (m, b) for each of the two fits,

�2
βv =

[
8.7 × 10−9 −5.5 × 10−9

−5.5 × 10−9 3.6 × 10−9

]
, (93)

�2
αv =

[
4.8 × 10−6 5.1 × 10−6

5.1 × 10−6 1.3 × 10−5

]
. (94)

These fits agree (very well for βv , less so for αv) with the
scaling argument for the power laws βv ∝ v2 and αv ∝ v1/2.
The quality of both fits improves (more substantially for αv)
if we omit the point with v = 0.0625.

With these α and β functions in hand, we can now
construct the renormalized solution ϕren = ϕ(0)(�λR) as a semi-
analytic expression of the form

ϕ(0)(�λR) = vR(t )

2
sech2

[√
vR(t )

2

[
x − xR

c (t )
]]

. (95)

TABLE II. Linear regression coefficients and errors for ln |βv|
and ln αv as functions of ln v.

m b

βv 1.99976 ± 9.3 × 10−5 −1.32158 ± 6.0 × 10−5

αv 0.52537 ± 2.2 × 10−3 −1.33342 ± 3.6 × 10−3
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FIG. 9. Left panel: Renormalized solution in Eqs. (95) for v = 2 and ε = 0.1 built from the solution of the renormalized flow of Eqs. (96)–
(97). Here the damping effects can be clearly noticed as the peak decelerates, its amplitude attenuates, and it becomes broader. Right panel:
Fractional difference between the renormalized and full solutions. The small difference between the position of the peaks is visible in the
separation of the two red density profiles. The peaks of the renormalized and full solutions have very similar amplitudes. At t = 50 (much
longer than ε−1/2), the distance between the peaks is roughly half a peak width.

This approximate solution is simply constructed by replac-
ing v → vR(t ), xc(t ) → xR

c (t ) in the background solution of
Eq. (72), where these components of �λR satisfy the flow equa-
tions

dvR

dt
= 0 + εβv (vR) = −ε eb vm

R , (96)

dxR
c

dt
= vR + εβxc = vR, (97)

subject to the initial condition vR(t0) = v0 + εαv (v0) repa-
rameterized by αv , whereas xR

c (t0) is not shifted, according
to the argument above Eq. (77). The values in Table II suggest
that the analytical β function is

βv = − 4
15v2. (98)

As we were completing this paper, we learned of an analytical
calculation in [37] which implies this same β function. If one
takes a time derivative of their Eq. (53), and performs some
algebra, one can recover our Eq. (98).

In Fig. 9 we show the renormalized solution for ε = 0.1,
and compare it with the one-soliton solution of the KdVB
equation. From the left panel of this figure, it is clear that the
amplitude of the renormalized solution does not increase as
the naive perturbative solution plotted in the right panel of

Fig. 4. Moreover, this evolving solution is not substantially
different from the KdVB solution depicted in the right panel
of Fig. 3, except for the absence of the small step dubbed
as “diluting tails” in the evolution of ϕfull. In the right panel,
we depict the difference between the renormalized expression
and the full solution by introducing a fractional difference
variable, �ϕrel, defined as

�ϕrel(t, x) ≡ ϕfull (t, x) − ϕren(t, x)

maxx′ ϕfull (t, x′)
, (99)

where the expression in the denominator corresponds to the
decreasing amplitude of the peak at each instant of time.
The main differences between the full and the renormalized
solutions are the presence of diluting tails in the solution (a
horizontally growing “bump” to the left of the two peaks,
which was also visible in the black rectangle of the right panel
of Fig. 3), and the secular position error between the peaks. It
is interesting to note that the magnitude of the “diluting tails”
coincides with the residual ϕ

(1)
⊥ multiplied by ε, as plotted in

Fig. 6.
The initial shift v → v + εαv changes the initial soliton’s

amplitude, velocity, and width by a small amount com-
pared to the original shape parameters. At time t = 0, this
small change only amounts to around 3% of the amplitude.
However, if we had omitted the αv reparameterization, the
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maximum fractional error �ϕrel secularly grows, increasing
by 10% by t = 50, due to starting with the wrong initial
velocity.

The main question about the renormalized solution is
whether it captures secular effects of the true solution,
which has several secular timescales. For quantities whose
background flow vanishes, the estimate Tsec ∼ (εβ (1) )−1 of
Sec. II B is still valid. These quantities include the velocity,
and derived features such as the width and amplitude. Investi-
gating our solution, we find that the velocity error is bounded,
even on much longer times, t � (εβ (1) )−1. The amplitude and
width follow the same behavior. These differences will be
further detailed in Sec. IV C.

However, the peak position is sensitive to an even shorter
timescale, due to the “deceleration” of the peak, and this leads
to the dominant error. The background flow Eq. (74) generates
the acceleration-like term ε�t2 in the infinitesimal generator
�V in Eq. (79). This leads to the shorter secular timescale

Tsec ∼ 1√
εβv

. (100)

Notice that the difference between the renormalized peak
position and the full solution is only half the peak’s width
at t = 50. This time t = 50 is vastly longer than the secular
time (εβv )−1/2 ≈ 1.9 for v = 2 and ε = 0.1. Naive pertur-
bation theory had already failed by this time Tsec. Thus, the
renormalized solution presented in Eq. (95) represents ϕfull

far better than the naive perturbative expression ϕ(0) + εϕ(1)

in Eq. (25).
In what remains of this section, we will introduce the

amplitude, width, and peak position as additional independent
parameters of the system. We evaluate their corresponding α

and β functions using (1) our minimization scheme and (2)
by direct evaluation of the KdVB solution (in Sec. IV C). We
will verify that the renormalized solution can be written us-
ing only two flowing parameters, (xc(t ), v) → (xR

c (t ), vR(t )),
similar to the background KdV soliton. This also allows us to
perform a more detailed comparison of the features between
the renormalized and full solutions. The reader can safely skip
these subsections to learn about different applications of this
technique in Sec. V.

B. Alternative parametrizations: The multiparameter case

One potential unknown in the numerical DRG procedure
is whether the parameterization for the renormalized solution
is sufficiently general. It can happen that the background
problem has one dimensionality, but upon being perturbed,
the dimensionality increases [21]. In this subsection, we
check if this happens in our KdV example by proposing a
higher-dimensional parametrization for the background KdV
soliton. This allows us to confirm that our previous 2D
parameterization was actually sufficient, by testing the con-
sistency between different parameters’ flows. We parametrize
the zeroth-order solution by labeling the shape parameters as

ϕ(0) = Asech2[M(x − xc)], (101)

where we can identify the amplitude A = v/2 and inverse
width M = √

v/2, in terms of the original parameters of
the KdV solution. If these background relationships are

maintained upon renormalization, then we would have the
relationships

αA = αv

2
, αM = αv

4
√

v
, (102)

βA = βv

2
, βM = βv

4
√

v
. (103)

If these relationships are maintained, then the flows are tan-
gent to a 2D solution manifold described by (xc; v), within
the ambient 4D space �λ = (A;M; xc; v). This is similar
to the example in Sec. II A, where we saw that the RR
and �R components of the β function in Eq. (20) are not
independent—they are related by preserving the form of Ke-
pler’s law.

To check the dimensionality, we calculate the first-order β

functions for A and M following the same renormalization-
based scheme suggested in Sec. II, as well as in previous
instances of the current subsection. To do so, first we pose
the �α, �β ansatz

�β (0) = v
∂

∂xc
, (104)

�α(1) = αA(v)
∂

∂A + αM(v)
∂

∂M + αv (v)
∂

∂v
, (105)

�β (1) = βA(v)
∂

∂A + βM(v)
∂

∂M + βv (v)
∂

∂v
, (106)

where the addition of a shift in the initial peak position
αxc (v)∂xc does not alter our results significantly. This gives the
flow equations

dAR

dt
= 0 + εβA(vR),

dMR

dt
= 0 + εβM(vR), (107)

dvR

dt
= 0 + εβv (vR),

dxR
c

dt
= vR + εβxc = vR, (108)

that is, (A;M; v) have vanishing background flows, and the
flow of xc maintains its kinematic meaning.

Now we compute the first-order deformation flow �V using
the BCH theorem in Eq. (47), which in the (A;M; xc; v)
coordinates is given by

�λR = �λ + �V ,

�V = ε

(
αA + βA�t ; αM + βM�t ;

αv�t + βv

2
�t2; αv + βv�t

)
. (109)

Next we compute the differentials by taking partial derivatives
of Eq. (101), which are given by

δϕ(0)

δA = sech2ξ, (110)

δϕ(0)

δM = −4Mξsech2ξ tanh ξ, (111)

δϕ(0)

δxc
= 4M3sech2ξ tanh ξ, (112)

δϕ(0)

δv
= 0. (113)
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FIG. 10. All the values of α and β for different values of Tmax. Dashed lines represent the intervals of Tmax where the values of α or β have
not been computed. All the β functions have converged to a fixed value before the dashed lines, but αA and αM have not converged to stable
values at large Tmax. This indicates that we have not found their correct time dependence at the infinitesimal level.

Here ξ ≡ √
v(x − xc)/2, and xc = x0 + v�t follows from the

background flow definitions in Eqs. (74) and (104). It is worth
mentioning that the new parametrization splits the original
dependence in v, seen in Eq. (72), between A and M. The
only v dependence is in the implicit background flow of the
peak position xc—there is no explicit v dependence. This
causes the differential δϕ(0)/δv to vanish in Eq. (113).

To extract �α(1) and �β (1), we reuse the previous numerically
computed naive first-order solutions of Eq. (75), with the same
velocities as before. We calculate ϕ

(1)
⊥ as the residual after

fitting the perturbative solution ϕ(1) as a linear combination
of basis functions, in the same way detailed in Sec. II, and
build a new cost function I for this case,

I =
∫

L
dx

∫ Tmax

t0

dt

{
ϕ(1) − δϕ(0)

δxc

(
αv�t + βv

2
�t2

)

−
[
δϕ(0)

δλ j
(α j + β j�t )

]}2

. (114)

Here j sums over the parameters in the subspace �λ =
(A;M; v). As before we minimize I , looking for the critical
point δI/δ �ψ = 0, giving the 6D vector �ψ = (�α(1), �β (1) ).

Examining the extracted values �α(1) and �β (1), as functions
of Tmax, is crucial to verify if the time dependence and pertur-
bative order proposed in Eq. (109) is sufficient to capture the
parameter flows. In Fig. 10 we show that all the β functions
smoothly converge to fixed values when Tmax is sufficiently
long, which provides clear evidence of finding the correct
time dependence in �V . Interestingly, there are no significant
differences between (1) the values of αv and βv extracted

from the minimization procedure in the 2D parameter case
(in Sec. IV A), and (2) the (αv, βv) values extracted using the
4D parametrization in this section. The dashed lines represent
values of Tmax longer than the simulation time, where the α

and β functions have not been extracted.
In all of the cases we plotted, the β functions have

converged to a stable value within the simulation time. Mean-
while, even though αv is stable with Tmax, the same cannot
be said about all of the α functions: αA and αM have not
converged to stable values by a time Tmax ≈ 103. This may be
due to the minimization of I being more sensitive to β i than
to αi, since, by dimensional analysis, there is one more factor
of �t in front of β i. It is possible that this parametrization is
insufficient, or that going to higher order in ε or �t would
improve the convergence of these α.

Since αA and αM have not converged, we can not check
the consistency conditions in Eq. (102). But we can check
the β function tangency conditions in Eq. (103). In the upper
panel of Fig. 11, we show |βv| and what should be two
equivalent expressions, if tangency is satisfied: 2|βA|, and
4
√

v|βM|. In the lower panel, we plot the fractional errors
|(βv/2 − βA)/βA| and |(v−1/2βv/4 − βM)/βM|, finding
that the deviations from a tangent flow are very small. The
errors in the tangency conditions for v < 0.5 can be reduced
by increasing the resolution (though this is computationally
expensive, since we must increase Tmax as v becomes smaller).

The conclusion seems to be that the β functions for the
flow are consistent with being tangent to the 2D submanifold.
Meanwhile, the α functions setting the initial conditions can
not be tested for consistency, since only αv has converged.
This type of test would be prudent when applying the numeri-
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FIG. 11. Testing tangent flows in parameter space as a function
of v. In the upper panel, we observe that βv , 2βA, and 4

√
vβM are

consistent with the relations in Eq. (103). In the lower panel, we plot
the relative deviations in the reconstructed βA and βM against the
appropriate function of βv if the flow is tangent; the deviations are of
the order of 1%.

cal DRG, unless one knows a priori the functional form of the
renormalized solutions.

C. Comparing DRG α and β functions against
the full KdVB solution

In this subsection, we extract the amplitude, width, posi-
tion, and velocity of the peak from the single-peaked solution
of the full KdVB equation of Eq. (69), as well as their evo-
lution in time. The study of the full solution enables us to
explore the ε-dependence of DRG, and the accuracy of the
α and β functions extracted using the procedure described in
Sec. II. To do so, we first need to determine the peak position,
amplitude, and width at each time of both ϕren and ϕfull. For
the renormalized solution, we numerically integrate the flow
Eqs. (96) and (97) using our numerical fits. This immediately
gives vR(t ) and xR

c (t ). We get the renormalized amplitude
AR = vR/2 from the background relationship. For the width,
we use the full width at half max (FWHM): the difference in x
values where the value of ϕ(x) is half of its peak value. From

the form of the soliton solution, this is given by

WR = 4 cosh−1
√

2√
vR(t )

≈ 3.525√
vR(t )

. (115)

We caution that although the symbol M used throughout
Sec. IV B has units of inverse width, it is not exactly the
reciprocal of the FWHM W that we use in this section—they
differ by a multiplicative constant.

To find the same parameters from the full solution, we
use Fourier interpolation [39] to evaluate ϕfull at points not
tabulated in the collocation grid. We use Newton’s method to
root solve for the peak location xfull

c (t ), determined by

∂ϕfull

∂x

∣∣∣∣
x=xfull

c

= 0. (116)

We can calculate the instantaneous velocity vfull of the peak
for ϕfull by calculating the numerical time derivative of the
peak position. In our implementation, we used a fourth-order
accurate finite difference (we only evaluate at interior times so
that we only need to implement the central finite difference).
Once we find the peak position, we obtain the amplitude of
the peak at each time,

Afull (t ) = ϕfull
(
t, xfull

c (t )
)
, (117)

again using spectral interpolation.
Calculating the FWHM of the peak Wfull from ϕfull requires

finding the set of two points x1/2(>) and x1/2(<), to the right and
left of the peak, satisfying

ϕfull (t, x1/2(≶) ) = Afull (t )

2
(118)

at each instant of time. We again use Fourier interpolation and
Newton root polishing. Then the FWHM at a given instant
of time is Wfull = x1/2(>) − x1/2(<). Notice that the peak is
asymmetric due to the presence of the “diluting tails” in the
full solution.

Once we have calculated the values of the shape parameters
from both the full and the renormalized solutions, we compare
our results by defining the difference

�W ≡ Wfull − WR, (119)

and similarly for the amplitude A, the peak velocity v, and
the peak position xc. In Fig. 12 we show the evolution of the
errors of all of these quantities, at four different values of the
perturbation parameter ε, for simulations with v = 2. We see
that �v, �A, and the relative error �W/Wfull are bounded
in time. We scale these three quantities by ε−1, showing that
each is proportional to ε. Similarly we used εt as the time axis
for these three panels, showing that our solutions are valid at
secularly large times, t � ε−1 � ε−1/2. For the values of ε

reported in the figure, we observe that the difference �W is
never larger than 4.5% of the FWHM Wfull.

Meanwhile, the position error in units of width �xc/Wfull

is proportional to ε but growing linearly in time, due to error
in the initial velocity (we discuss this more below). Still, the
position error is at most half a width by time t = 50, as seen
in Fig. 20 below.

From the extracted position xfull
c , we can also try to directly

reconstruct βv . Still using the kinematic intuition of the flow
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FIG. 12. Comparing the shape parameters of the KdVB solution (for four ε values) vs the parameters of the renormalized solution ϕren as
functions of time. The errors in peak velocity �v and amplitude �A are bounded in time, and proportional to ε, even for times significantly
larger than 1/

√
ε. The error in peak position �xc (in units of width) is linear in time and linear in ε at late times, due to the bounded velocity

error. �W/Wfull is linear in ε, bounded, and approaches a constant for t � 1/
√

ε.

of xc, we use another finite difference to compute

1

ε

d2xfull
c

dt2
= 1

ε

dvfull

dt
= βv

full. (120)

In Fig. 13 we compare the reconstructed β functions using
the acceleration of the peak position for different values of ε,

FIG. 13. Using the kinematic definition of the peak velocity, we
reconstruct the β function from the peak position of the full solu-
tion ϕfull, at different values of ε [using Eq. (120)]. These converge
to the DRG-computed |βv| (extracted in Sec. IV A) as ε becomes
smaller. We note that if the horizontal axis is reparameterized to be
v − εαv

full(v), all of the curves coincide.

with the numerical DRG β function plotted in the left panel
of Fig. 8. We solved the full KdVB equation for each ε to
a maximum time of Tmax = 50. Therefore, the length of the
curves increases as the damping ε grows: the larger the value
of ε, the wider the range of velocities explored before the fixed
Tmax. The curves with different values of ε converge towards
the numerical DRG curve as ε → 0, confirming the validity of
our procedure. Figure 13 uses the kinematical velocity v as the
horizontal axis, rather than the v coordinate, which is related
by the αv diffeomorphism. From this dataset alone we can
not perform this reparameterization; however, if we use αv

full
found below, and plot v − εαv

full(v) on the horizontal instead
of v, then all of the curves coincide.

We can similarly numerically extract βv from time deriva-
tives of Wfull and Afull. From Eq. (115), we should have

βv
full ≈ − ε−1

2 cosh−1
√

2
v

3/2
full

dWfull

dt
. (121)

Here the approximate equality is due to the peaks of the full
solution not being symmetric. Similarly, from the original
parametrization of the amplitude, we should have

βv
full = 2

ε

dAfull

dt
, (122)

which is also seen in Eq. (103).
In Fig. 14 we plot the spread of the curves representing all

of the “equivalent” forms of βv [from Eq. (120), (121), and
Eq. (122)]. For each choice of ε, we shaded the areas con-
taining all of the curves with a different color. Notice that the
curves tend to spread more as ε becomes larger, and therefore
the colored regions grow in the same manner. As before, the
case ε = 0.01 limits the range of velocities, and determines
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FIG. 14. Convergence of the β function curves in Eqs. (120)–
(122) built from the different shape parameters. The colored regions,
containing all of the alternative forms of the β function, expand as ε

becomes larger.

the size of the horizontal axis in which all the regions can be
compared. The DRG-extracted value of βv (yellow curve in
Fig. 13) overlaps with the region shaded in black in Fig. 14
after reparameterizing the horizontal axis with αv

full. Therefore
this result is consistent with the system being described by the
2D flow, as seen in Sec. IV B.

We can also determine αv
full from ϕfull. To do so, we

parametrize each time snapshot of the full solution of Eq. (69)
as

ϕfull = vfit

2
sech2

[√
vfit

2

(
x − xfit

c

)]
, (123)

and fit vfit and xfit
c using curve_fit. We can reconstruct the

reparameterization αv
full by computing the difference

|αv
full| = 1

ε

∣∣∣∣vfit − dxfit
c

dt

∣∣∣∣. (124)

That is, the reparameterization captures the difference be-
tween the kinematical velocity dxfit/dt versus the shape
parameter named vfit. In Fig. 15 we plot this quantity versus
the DRG-extracted value of αv (in the right panel of Fig. 8).
Our results show that there is no convergence towards the
renormalized α function as ε → 0, as in the case for the β

function βv . The slope seems to be correct, but the value of
the α function extracted using our renormalization procedure
is smaller than |αv

full| by a factor of 2. If we use αv
full as a shift

in the initial velocity to reconstruct the renormalized solution,
we notice a slight reduction in the relative error, compared
to what is reported in the right panel of Fig. 9. We do not
currently understand the origin of this difference. We leave
the resolution of this mismatch for a future project.

V. POTENTIAL APPLICATIONS

As already surveyed in several textbooks [2–5] and arti-
cles [9,19,21], there are a wide range of physical problems

FIG. 15. Mismatch between αv , extracted using the DRG, and
αv

full, extracted by fitting the full solution (at four different values of
ε). There is an unexplained ratio of approximately 2 between them.

where secular effects need to be captured properly. The DRG
unifies several approaches to secular perturbation theory and
can thus be applied to any such secular problem. We expect
our addition of a numerical formulation of DRG will further
extend its applicability to include problems which can only be
solved numerically. One potential application is to compute
the β functions for long-lived cosmological solutions, such as
oscillons [40–45]. It might be possible to produce oscillons
(quasibreathers) from continuous deformations of the sine-
Gordon breather [46]. Concretely, our method can be applied
to find an estimated lifetime of such oscillons.

Our original motivation to implement the numerical DRG
arose from a certain problem in gravitational physics. We are
interested in the gravitational waves emitted by black hole
binary systems. As we have already seen in Sec. II A, the post-
Newtonian regime (where 1/c is a perturbation parameter) can
be treated using the DRG analytically. As an update of the
results in [31], the work of Yang and Leibovich uses the DRG
to include spin-orbit effects in the inspiral [47]. The extreme
mass-ratio inspiral (EMRI) problem [48], which is treated
perturbatively in powers of the small mass ratio, should also
be amenable to the DRG. There are several secular timescales
in the EMRI problem, all of which need to be controlled (see,
e.g., [49]).

The specific problem of interest is in how the inspiral and
resulting gravitational waves are modified by the presence of
corrections to Einstein’s theory of general relativity [50]. For
most beyond-GR theories, the status of the initial value prob-
lem is open, though it is expected that most of these theories
lack a good initial value formulation [51]. Instead, the only
sound way to treat such a theory is as a perturbation around
GR, where a parameter ε controls the strength of the defor-
mation away from GR; this is the viewpoint of effective field
theory (however, for a different nonperturbative proposal, see
[52–54]). This is also in line with observations, which to date
are consistent with the predictions of general relativity [55].
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Indeed, treating beyond-GR theories as perturbations to
GR has been successful for finding stationary solutions
[56,57], where there are no secular effects; and even for
addressing the post-Newtonian regime of the binary inspiral
problem, which does suffer from secular effects (Refs. [57,58]
treated these secular effects with traditional secular perturba-
tion theory, rather than the DRG).

The challenge now is to handle the late inspiral and merger
phase of a binary black hole system in a beyond-GR theory
such as dynamical Chern-Simons gravity (dCS) [59]. The
merger phase can only be treated with full numerical relativity,
not by any analytical means. The beyond-GR perturbation is
similarly treated numerically, expanded about the nonlinear
GR solution [60–63]. This perturbative solution however suf-
fers from secular growth, as predicted in [60] and confirmed
in [61–63]. Similarly, secular growth appears when applying
naive perturbation theory to Einstein-dilaton-Gauss-Bonnet
gravity [63].

The origin of this secular growth is easy to understand. The
background (GR) solution inspirals at a particular rate; the
correction to GR includes a change in the energy radiated, thus
changing the rate of inspiral. This also has a simple analogy
with the KdV equation, which motivated this study. Both
the KdV problem and the binary black hole inspirals in GR
have nonlinear background solutions, and these background
solutions both have nonvanishing flows �β (0). In both cases,
the perturbation removes energy from the system, causing
the true speed (of the soliton or inspiral) to deviate from the
background speed.

It is this secular growth that we seek to control. As a
reminder, the initial-value problem for most beyond-GR the-
ories can only be formulated in naive perturbation theory.
Below we sketch this naive perturbation theory approach,
which breaks down, and then how the numerical DRG will
be used to renormalize the secularly growing solutions. We
do not claim that this is the only or the best approach to
this problem. Indeed if there was another viable approach
available (e.g., that proposed in [52–54]), it would be pru-
dent to compare the independent methods to assess their
merits. However, no other general-purpose approach is avail-
able which has been shown to simulate arbitrary beyond-GR
theories.

The equations of motion of such beyond-GR theories can
be cast as a deformation of Einstein’s field equations,

Gab + εCab = 8πTab, (125)

where Cab is generating the correction to GR, and is controlled
by the parameter ε. The metric is expanded as an ordinary
perturbation series,

gab = g(0)
ab + εg(1)

ab + O(ε2), (126)

and similarly for any other degrees of freedom. The back-
ground solution g(0)

ab satisfies the nonlinear Einstein field
equations (and already contains gravitational waves). The
correction due to beyond-GR effects, g(1)

ab , satisfies the lin-
earization of Eq. (125) and can be integrated alongside g(0)

ab ,
as was first demonstrated in [61]. It is this g(1)

ab which suffers
from secular growth, as seen in [62].

Let us review the ingredients needed to implement the nu-
merical DRG in this case. The first necessary condition is that
the problem can be described by a finite-dimensional attractor
manifold. This may not be clear since GR is a field theory and
thus has an infinite number of degrees of freedom. But, as long
as the initial data are close to a binary of black holes, any small
gravitational fluctuations will radiate away rapidly, leaving a
system with a finite-dimensional solution manifold, parame-
terized by the two black holes’ masses, spins, and separation
(here we ignore eccentricity). In this finite-dimensional pa-
rameter space �, so-called surrogate models [64,65] have
been highly successful in giving a faithful numerical model
for the asymptotic waveform at infinity, which we will denote
as simply

hSurr[�λ], (127)

where �λ ∈ � are the system parameters. This quantity may
come from a spline interpolant (or other reduced order model),
and therefore we also have access to the differentials

δhSurr

δ�λ , (128)

which are then also spline interpolants. The parameters �λ
already experience a background flow, d�λ/dt = �β (0)(�λ), since
the binary inspirals, and the spins (and orbit) precess. Using
this background flow, we can build the infinitesimal flow �V
using the BCH theorem, and thus have a model for h(1)

‖ , the

secularly growing part of g(1)
ab , in terms of the first-order �α(1)

and �β (1). Finally, since we have access to the numerical first-
order solution g(1)

ab , we fit the model h(1)
‖ , getting numerical

�α(1) and �β (1) as fit parameters, for some individual beyond-GR
simulation. After fitting, we also have the residuals h(1)

⊥ .
If we repeat the fit for many beyond-GR simulations, we

can then interpolate �α(1) and �β (1). Finally, we can solve the
deformed flow equations

d�λR

dt
= �β (0) + ε�β (1), (129)

to find �λR(t ). This renormalized flow captures the different
rate of inspiral due to the beyond-GR effects. Finally, we can
evaluate the renormalized asymptotic waveforms,

hR = hSurr[�λR(t )], (130)

which do not suffer any secular effects. Although this captures
most of the beyond-GR effects, there are still O(ε) “instanta-
neous” corrections in h(1)

⊥ , which should also be incorporated.

VI. DISCUSSION

In this paper, we proposed a systematic numerical method
to applying the dynamical renormalization group to finite-
or infinite-dimensional dynamical systems, even in situations
when analytical perturbation theory is not possible. To make
this possible, we formulated the DRG in the language of
differential geometry, in Sec. II B. From the geometric point
of view, naive perturbation theory finds tangent vectors in
solution space, which are then integrated together to find
the whole DRG flow. This geometric formulation is general
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enough that the DRG can be applied to systems that already
have a background flow in parameter space, so that the DRG
may be iterated to higher order.

As a proof of concept, in Secs. III and IV we applied
this method to the Korteweg–de Vries equation, deform-
ing it to the Korteweg–de Vries–Burgers equation. We used
naive perturbation theory, numerically, and as expected, found
secularly growing solutions. We fit these solutions using
appropriate basis functions, which are computed from deriva-
tives of the background solution with respect to parameters,
δϕ(0)/δ�λ, along with knowledge of the background flow �β (0).
By minimizing an appropriate cost functional, we extract
values of the generators �α(1) and �β (1), for each numerical
simulation. Just finding these values already gives deep in-
formation about the structure of parameter space. Now one
can numerically solve the deformed parameter flow d�λR/dt =
�β (0) + ε�β (1), for example by interpolating through parameter
space. Finally we find the renormalized solution ϕ(0)[�λR(t )].

This example highlights a number of key features of the
numerical DRG approach. Most importantly, we have con-
trolled the secular divergence on the shortest timescale in the
problem, Tsec ∼ ε−1/2. The numerical β function we extracted
is highly suggestive of a power law ∝ v2, in agreement with
an analytical calculation suggested by [37] (a numerical fit
to the power-law index differs only in the fourth decimal
place). Despite the excellent agreement in the β function, the
reparameterization generator αv seems to disagree with an
independent check we performed in Sec. IV C. Nonetheless,
even using this wrong value of α gives results that are better
than using no α reparameterization at all, and the solution is
still valid on secularly long times. Finally, in Sec. IV B we
demonstrated how to test if the perturbation has increased the
dimensionality of the parameter space, by considering a more
general parameterization to the one-soliton KdV solution. For
the KdV problem, we found that solutions lie in a submanifold
with the original dimensionality, so dimensionality was not
increased.

There are a plethora of potential applications for the nu-
merical DRG. We discussed some possibilities in Sec. V,
including finding oscillon lifetimes, secular divergences in
extreme mass-ratio inspirals, and gravitational waves from
beyond-GR theories. There are also still unanswered ques-
tions raised by the KdV example of this work. For example,
we do not yet understand the apparent factor of two discrep-
ancy in the α function, found in Sec. IV C. Our example
demonstrated control of the secular effects, which are most
important for the breakdown of perturbation theory, but there
are also “instantaneous” perturbative effects that we did not
include. We noticed in Sec. IV A that both the residual ϕ(1)

⊥ and
the true solution ϕfull contain “diluting tails.” However in this
work we restricted attention to the renormalization procedure
and the solution ϕren = ϕ(0)(�λR(t )), so we made no effort
to capture the O(ε) instantaneous effects. The formalism to
include information from ϕ

(1)
⊥ still needs to be developed.
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APPENDIX: NUMERICAL SETUP AND ERRORS IN THE
α AND β FUNCTIONS

In this Appendix, we describe the numerical setup to evolve
the first-order perturbations of the KdV equation in Eq. (75)
and the full KdVB equation in Eq. (69). We followed a stan-
dard algorithm described by Boyd [39] to solve the KdVB
equation, and depicted it in Fig. 16. This is pseudospectral
in space, using the Fourier basis, and the method of lines for
time evolution. The essence of this algorithm is to compute
the time derivative by finding real-space operations (like prod-
ucts) in the collocation basis, but computing any derivatives
in the spectral domain, and afterwards transform back to the
collocation domain for time evolution. We use fftw3 [66] in
our implementation to perform fast Fourier transforms (FFTs)
and their inverses. As every spectral approach, working in the
Fourier domain has several benefits:

FIG. 16. Simplified scheme showing the solution algorithm for
the KdVB equation in Eq. (69), the solution for the perturbation
ϕ (1) follows a similar process. The symbol F−1 denotes the inverse
Fourier transform.
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FIG. 17. Left panel: Power spectrum of ϕfull at t = 50, corresponding to the final snapshot of the numerical evolution from Eq. (69). We
considered a KdV soliton as an initial condition with v = 2. Right panel: Power spectrum of the perturbation solution of Eq. (75) at Tmax = 300,
where the background is a v = 2 soliton. In both panels, we observe that the high-frequency contribution remains in the levels of round-off
errors in double precision.

(1) It simplifies the representation of spatial derivatives as
multiplying by powers of the wavevector k.

(2) It does not require any explicit preparation of boundary
conditions since these are periodic by definition.

(3) The output data allows spectrally accurate operations,
such as spatial differentiation, integration along the x-axis,
and interpolation.

We exploited all of these advantages during the postpro-
cessing phase of our simulation results. It is also possible
to build a code with perfectly matched layers, in addition
to periodic boundary conditions. This procedure prevents the
reentry of fast or high-frequency modes in the simulation box
after transforming oscillatory modes into decaying modes by
analytic continuation [67]. We will use such an implementa-
tion in a future project.

We use the method of lines for the collocation data to
evolve in the time domain. Our time integration routine is
an explicit eighth-order accurate Gauss-Legendre integrator
[68], which is A-stable and symplectic for Hamiltonian prob-
lems. In order to understand the timescales involved, we
write the space and time Fourier transform of the linear
operator KdV(1), with “frozen coefficients,” to derive the high-
frequency dispersion relation from the homogeneous part of
Eq. (75),

ωϕ
(1)
k = [6kϕ(0) + 6i∂xϕ

(0) − k3]ϕ(1)
k , (A1)

where the background and its derivatives are smooth and
bounded functions. For v < 10, the dominant contribution to
the dispersion relation comes from the third spatial derivative
(the contribution of the two other terms is comparable to k3

only when v � 10). Therefore we find the time step for evo-
lution is limited by the Courant-Friedrichs-Lewy condition, in
this case,

�tCFL ≈ 1

k3
max

. (A2)

As there are real and imaginary parts of the frequency,
we can observe the presence of attenuated oscillatory modes
propagating to the left with a phase velocity proportional to
k2. It is important to notice their presence since it is possible

for these modes to travel and propagate through the periodic
domain and deform the solitonic peak and the perturbative
solution. If it is not controlled, the propagation of these oscil-
latory modes introduces oscillations in all the evolution plots
of the shape parameters shown in Figs. 12 and 13. In order
to avoid or minimize those effects, we use a large simulation
domain with length L = 2560 to allow the attenuation of
oscillatory modes as these propagate.

From the solitonic initial condition in Eq. (72) we notice
that as the parameter v grows, the peak becomes more acute
and hence the solution has more power in higher frequencies.
This not only results in smaller time steps for resolving the
system correctly, but the solution becomes prone to develop
high-frequency instabilities. Thus, the selection of the range
of parameter values for v demands us to proceed with caution.
The largest v probed in our study is v = 2. In the left panel
of Fig. 17, we plot the power spectrum of the final snapshot
at t = 50 of the full KdVB solution. Here we used the KdV
soliton in Eq. (72) with v = 2 as the initial condition. In the
right panel, we plot the power spectrum at Tmax = 300 for the
perturbative solution, where the background is a KdV soliton
with v = 2, and the initial conditions for the perturbation van-
ish at time t = 0. The floor at high frequencies corresponds
to round-off error at the level of machine precision, showing
that our results are free of high-frequency instabilities. Still,
the convergence error grows with v, as can be seen in Table I.

Depending on the resolution, we used either N = 212,
N = 213, or N = 214 collocation nodes on an equally spaced
Fourier grid. We calculated the perturbative solution ϕ(1)

at four different resolutions specified in Table III with the
purpose of finding the convergence errors for all the extracted
α and β values. In the range of v < 0.5, where the solution
peaks are wider and have a slower propagation, it is conve-
nient to shift the resolutions to also consider 212 collocation
points with a time step �t = 0.01. As can seen in the table,
in the range of v < 0.5, such a new configuration becomes
the ultralow resolution, the “u-low” case for v � 0.5 is now
the “low” resolution, and each of the remaining resolutions
for v � 0.5 are promoted to be the next highest resolution for
v < 0.5.
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TABLE III. Resolutions and their corresponding values for the
time step and the number of collocation points in Fourier grid. These
are the same resolution levels used to produce the convergence errors
represented in Fig. 8.

v � 0.5 v < 0.5

Resolutions �t No. of nodes �t No. of nodes

High (hi) 0.00005 214 0.0001 214

Mid (mi) 0.0001 214 0.001 213

Low (low) 0.001 213 0.002 213

Ultralow (ult.low) 0.002 213 0.01 212

Extracting the values of the β functions requires spatial
integration of the coefficients in Eqs. (86) and (87) along
the full simulation domain, which can be computed spectrally
accurately by using the Fourier transform,∫ L/2

−L/2
f (x) dx = L f̃ (k = 0), (A3)

where f̃ (k) is the Fourier transform of the integrand. For the
time integrals we used the standard Simpson integration rule,
which is second-order accurate.

All the derivatives of the background solution (i.e.,
δϕ(0)/δλi) reported in this paper are computed from analytic
expressions, and thus do not introduce errors in the extraction.
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FIG. 18. Convergence plots for αv and βv as functions of the
solution parameter v. The differences between the values of βv and
αv reduce as the quantities are extracted from better resolved data
sets. The differences σαv and σβv , reported in Table I, correspond to
the error curves in red.

FIG. 19. Using an enlarged version of the covariance matrix in
Eq. (93) (multiplied by 500), we represent the region where the
extracted α function can be found.

From the evaluation of the expressions in Eq. (88) at different
resolutions, it is possible to calculate the α and β functions
using Eq. (68) at each resolution for every tabulated value
of the varying parameter. The convergence errors reported
in Table I [dubbed σαv ,βv (conv.)] were computed as follows.
First, we compute α and β at all the resolutions in Table III.
Second, we calculate the differences of the values of αv and
βv extracted at the highest resolution with the corresponding
values at the other three lower resolutions. These differences
are plotted in Fig. 18. Notice that the errors decrease as the
resolution increases, forming a clear convergence pattern for
all values of v. To be extremely conservative, we used the
difference hi-low, plotted in red in Fig. 18, as the convergence
errors. The vast majority of the values shown in Fig. 18 are
significantly smaller than the RE error reported in Table I.
These values were plotted as a complement to the results
visible in the lower panels of Fig. 8, showing in detail the
convergence errors σαv (conv.) and σβv (conv.) evaluated at
different resolutions. In the future, we may instead perform
independent Richardson extrapolation at each resolution; and
then check convergence of the Richardson extrapolants across
resolutions.

The values of αv , βv , and their Richardson extrapolation
errors all entered into the power-law fits, producing the opti-
mal values in Table II and estimated “covariance matrices” in
Eqs. (93) and (94). These are not statistical covariances, all
being due to systematic errors; nonetheless we can interpret
them as Gaussian distributions in order to show the region
of the (ln v, ln αv ) plane where the true αv may be found.
This is plotted in Fig. 19, using the package fgivenx [69].
To produce a visible output, it was necessary to multiply the
covariance matrix by a factor of 500 for ln αv . The same
can be applied to find the possible region for βv in the
(ln v, ln |βv|) plane, in the context of a pure power-law β

function.
In the right panel of Fig. 9, for ε = 0.1, we observe that

the greatest difference between the renormalized and the full
solution comes from a shift in the peak position xc. Here we
test whether this is due to errors in our fits for αv and βv , or
due to truncation errors in the time integration when solving
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FIG. 20. Comparing the peak position of the renormalized so-
lution with the peak position of ϕfull in a ratio with the width. The
renormalized solution is generated by picking two, six, and 10 differ-
ent values of βv from Table I and αv|v=2 at ε = 0.1 to reparameterize
the initial velocity. Changing the number of points does not introduce
any significant difference in the error variable �xc/Wfull.

the numerical DRG equations for (vR(t ), xR
c (t )). To assess the

importance of truncation error in the DRG time integration,

we performed the integration with �t = 0.5, 0.01 and 0.001,
using the same underlying power-law fits for αv and βv as
reported in Table II. We did not observe any visible differences
between the outcomes for the different time step choices. This
is a clear indication of the subdominance of the integration
error. To assess if the power-law fit errors are under-reported,
we changed the number of points for fitting ln |βv| as a linear
function of ln v. The left panel of Fig. 8 already provides
enough evidence of the linear relation between these vari-
ables. Therefore, in principle we only require two points of
the sample in Table I to determine the coefficients m and b.
We reconstructed βv as a function of v choosing two, six,
and 10 of the points in the table (the points v = 0.125 and
v = 2 are considered in all three cases, we did not include
the extremum v = 0.0625 in the case with two points since it
has the largest relative error). We then integrated the coupled
system in Eqs. (96) and (97) for all of the β functions gener-
ated by each of these choices, and plot the results in Fig. 20
(normalized by the width Wfull, computed as in Sec. IV C).
The results are not affected by changing the number of points
included in the fit, again suggesting that the fits are not the
responsible for the error �xc. Having ruled out either of these
possibilities, we suspect that the main source of this error
comes from the mismatch between αv and αv

full discussed in
Sec. IV C.
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