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Formation of microwave frequency-chirped solitons of self-induced transparency under conditions
of cyclotron resonance absorption
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We study the formation of solitons of microwave self-induced transparency (M/W-SIT) which occurs under
cyclotron resonance interaction of an electromagnetic pulse with an initially rectilinear magnetized electron
beam. Taking into account the relativistic dependence of the gyrofrequency on the particle energy for electromag-
netic wave propagating with a phase velocity different from the speed of light (i.e., far from the autoresonance
conditions), such a beam can be considered as a medium of nonisochronous unexcited oscillators. Thus, similar
to passing light pulses in the two-level medium, for sufficiently large amplitude and duration the incident
electromagnetic pulse decomposes into one or several solitons. We find analytically the generalized solution
for the M/W-SIT soliton with amplitude and duration determined, besides the soliton velocity, by the frequency
self-shift parameter. The feasibility and stability of the obtained solutions are confirmed in numerical simulations
of a semibounded problem describing propagation and nonlinear interaction of an incident electromagnetic pulse.
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I. INTRODUCTION

The self-induced transparency (SIT) effect, well-known in
optics, manifests itself in the propagation of a short (in the
scale of relaxation times) light pulse through a resonant non-
inverted medium that normally absorbs the light but becomes
transparent when the pulse energy exceeds some threshold
value [1–4]. In this case, the incident pulse transforms into
one or more of the so-called SIT solitons, which propagate
practically without change in their shapes. Under some con-
ditions, the formation of a SIT soliton can be accompanied by
nonlinear compression of the incident light pulse.

As shown in [5–7], similar effects can be observed in mi-
crowave electronics for the case of resonant interaction of an
electromagnetic (EM) pulse with an initially rectilinear elec-
tron beam guided by a homogeneous magnetic field. Taking
into account the relativistic dependence of the gyrofrequency
on the electron energy, such a beam can be considered a reso-
nant passive medium comprising nonisochronous nonexcited
cyclotron oscillators. Thus, similarly to optics, an incident
electromagnetic pulse with sufficiently large amplitude and
duration decomposes into one or several solitons, i.e., the mi-
crowave self-induced transparency (M/W-SIT) effect appears.
It should be noted that we consider interaction with the fast
wave under the condition of the normal Doppler effect. This
is in contrast with Refs. [8,9], which consider interaction of
an initially rectilinear electron beam with a slow wave under
the anomalous Doppler effect. In the latter case, unlike SIT ef-
fects, the beam of electrons moving with a superlight velocity
can amplify and generate radiation.

In [5–7], we have found, for a particular case, the simplified
analytical solution for a M/W-SIT soliton with its ampli-
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tude and duration depending only on velocity, similarly to
single-parametric optical SIT soliton solutions obtained in the
pioneering papers of Refs. [1–4]. At the same time, direct sim-
ulations of an EM pulse cyclotron resonance interaction with
a nonexcited electron beam show that the found solution is
not universally applicable to the transformation of the incident
pulse into a soliton for all possible values of initial amplitudes,
durations, and carrier frequencies. Actually, another important
parameter associated with the shift of the soliton center fre-
quency from the cyclotron resonance may be of significance
for a description of soliton formation. In this sense, M/W-SIT
solitons resemble nonlinear Schrödinger solitons [10–13] for
a nonabsorbing medium with reactive nonlinearity.

The paper is organized as follows. In Sec. II, we formulate
the basic nonstationary model of the interaction of an inci-
dent microwave pulse with an initially rectilinear magnetized
electron beam propagating in a waveguide. In Sec. III, we
obtain a generalized form of a M/W-SIT solitonlike solution
that depends on two parameters, namely the soliton velocity
and the frequency self-shift. In Sec. IV, the feasibility and
stability of the obtained solitonlike solutions are confirmed
based on numerical simulations within the framework of an
averaged semibounded problem describing the transformation
of an incident microwave pulse. In Sec. V, we present a brief
conclusion about the obtained results, and we estimate the
possibility of experimental observation of M/W-SIT soliton
formation considering the nonlinear transformation of the mi-
crowave superradiant pulse.

II. BASIC MODEL

We consider the microwave SIT effect under interaction
of radiation with a copropagated initially rectilinear electron
beam [Fig. 1(a)] guided by a homogeneous magnetic field
�H = �z0H0. The electric field of an electromagnetic wave can
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FIG. 1. (a) Scheme of the formation of M/W-SIT solitons in
a waveguide (1) under cyclotron resonance interaction of an inci-
dent electromagnetic pulse (2) with an initially rectilinear (at z = 0)
electron beam (3). (b) Dispersion diagram of a waveguide mode W
(ω = √

c2h2 + ω2
c ) and the beam line e (ω−hV||0 = ω0

H ); A is the
resonant point for interaction with a copropagating electron beam.

be presented as

�E = Re{ �E (�r⊥)A(z, t ) exp (iωrt − ihrz)}, (1)

where A(z, t ) is the slow-varying wave amplitude, �E (�r⊥) is the
transverse structure of a T Emn waveguide mode, the frequency
of the exact cyclotron resonance [Fig. 1(b)]

ωr − hrV||0 = ω0
H (2)

is chosen as the reference one, V||0 = β||0c is the initial
translational velocity of electrons, ω0

H = eH0/mecγ0 is the un-
perturbed gyrofrequency, γ0 = (1−β2

||0)−1/2, and hr = h(ωr )
is the axial wave number at the frequency ωr . Note that in the
process of cyclotron absorption, an electromagnetic wave can
increase the transverse momentum of electrons p⊥, which is
assumed to be zero at the entrance to the interaction space
z = 0. Such a beam can be considered as an analog of a
resonant medium consisting of nonexcited (noninverted) cy-
clotron oscillators, while rotating beams [which are usually
used in gyroresonant devices, namely cyclotron-resonance
masers (CRMs)] form active inverted media [14–16].

The systems of equations describing the electron-wave
interaction under the indicated conditions can be obtained
from the well-known equations of the theory of cyclotron-
resonance masers [15,16], in which we must set p⊥0 = 0.
Thus, the CRM equations are reduced to the set of two equa-

tions for the normalized wave amplitude Ã and the complex
transverse momentum p̃+:

∂Ã

∂z
+ 1

Vgr

∂Ã

∂t
= − G

ωr

c

p̃+
p̂||

,

∂ p̃+
∂z

+ 1

V||0

∂ p̃+
∂t

+ i p̃+
ωr

c

μ| p̃+|2
p̂||

= ωr

c

Ã

p̂||
, (3)

where the beam of initially nonexcited cyclotron oscillators is
described by a single equation of motion. Note that for active
rotating beams, the averaging over initial cyclotron rotating
phases is needed (i.e., an electron beam is described by a
set of motion equations for electron fractions that differ in
the gyrophase at the system entrance). In Eqs. (3), we use
following dimensionless variables and parameters:

Ã = eAJm−1(νnrb/rw )

mecωr

1 − β−1
ph β||0

2β2
||0γ0

√
1 − β2

ph

,

p̃+ = px + ipy

mecγ0β||0
e−iωr t+ihr z,

where μ = β||0(1−β−2
ph )/2(1−β−1

ph β||0) is the bunching pa-
rameter (the parameter of the nonisochronism [16]), b =
β||0/2βph(1 − β||0/βph ) is the recoil parameter characterizing
the change in the translational momentum of electrons p̂|| =
p||/mV||0γ0 = 1− b| p̂+|2, Vgr = βgrc and Vph = βphc are the
group and the phase velocities of a resonant T Emn wave at
a frequency ωr ,

G = eIb

mec3

2μβph
(
1 − β−1

ph β||0
)2

γ0β
3
||0

J2
m−1(νnrb/rw )

J2
m(νn)

(
ν2

n − m2
) ,

Ib is the current of a tubular beam with an injection radius rb,
rw is the waveguide radius, νn is the nth root of the equation
dJm(x)/dx = 0, and Jm(x) is the Bessel function.

It should be noted that for development of microwave
self-induced transparency, the fundamental factor is the non-
isochronism of cyclotron oscillators, which is caused by the
relativistic dependence of the gyrofrequency on the electron’s
energy [14–16]. However, under interaction with traveling
waves, it can be partially compensated by the recoil effects
arising in the process of wave radiation or absorption. For the
phase velocity of the wave equal to the speed of light (au-
toresonance [17]), full compensation occurs, and the electrons
behave like linear oscillators [18]. Thus, the considered M/W-
SIT effects develop only outside the autoresonance regime,
i.e., with the nonzero parameter μ. Actually, under the as-
sumption of the low current density, the condition

√
Gb/μ �

1 should be satisfied. It allows us to reduce Eqs. (3) to a
simpler form:

∂a

∂Z
− ∂a

∂τ
= −p,

∂ p

∂Z
+ ip|p|2 = a, (4)

where p = p̃+μ1/2G−1/4, a = Ãμ1/2G−3/4, τ =√
Gωr (t−z/V||0)(β−1

|| − β−1
gr )−1, and Z = √

Gωrz/c are
used as new independent variables. Here, we assume that the
wave group velocity is larger than the translational velocity
of electrons (βgr > β||). This situation is typical for cyclotron
interaction with copropagating nonrelativistic electron beams
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in waveguides and for the gyrofrequency exceeding the cutoff
frequency of an operating waveguide mode. Note also that the
above-mentioned anamalous Doppler effect [8,9] is described
by equations similar to Eqs. (4), accurate to the sign in the
right part of the motion equation.

For solution of the semibounded problem for propagation
of an incident pulse, Eqs. (4) should be supplemented with
boundary conditions at the input cross-section Z = 0 of the
interaction space. According to the above explanation, we
assume that the electron beam is injected into the system
without the initial orbital velocity:

p|Z=0 = 0. (5)

The incident pulse at the system’s entrance is given in the
form

a|Z=0 = ainsin2(πτ/T )e−iδτ , (6)

where δ = β||0G−1/2(ωin − ωr )/ωin is the detuning of the
pulse carrier frequency ωin from the reference frequency ωr ;
ain and T are the amplitude and the duration of the pulse, re-
spectively. Equations (4) with boundary conditions (5) and (6)
are used in Sec. IV for simulations of stability of solitonlike
solutions which are obtained in Sec. III for the case of an
unbounded medium formed by a nonexcited electron beam.

To conclude this section, we note that equations similar
to Eqs. (4) can be used (up to notation) for a description
of different physical situations, including interaction with a
relativistic electron beam moving in a nonmagnetized back-
ground plasma, or transverse (across a static magnetic field)
propagation of an incident electromagnetic pulse through the
magnetized cold plasma [5].

III. GENERALIZED SOLITONLIKE SOLUTION
FOR MICROWAVE SELF-INDUCED TRANSPARENCY

IN AN UNBOUNDED SYSTEM

As mentioned above, the simplest form of solitonlike so-
lutions for microwave self-induced transparency was derived
in [5], where some assumptions were used under which the
amplitude and duration of the M/W-SIT soliton depended only
on its velocity. In this section, we obtain a more general form
of a soliton solution, in which the dependence on the detuning
of the soliton carrier frequency from the reference one is taken
into consideration.

Further, for convenience, we represent the complex
field amplitude and the transverse momentum in the form
a(Z, τ ) = âei
 and p(Z, τ ) = p̂ei� , where â = |a(Z, τ )|, p̂ =
|p(Z, τ )|. Thus, Eqs. (4) can be rewritten for real and imagi-
nary parts:

∂ â

∂Z
− ∂ â

∂τ
= −p̂ cos χ,

∂ p̂

∂Z
= â cos χ, (7)

∂


∂Z
− ∂


∂τ
= p̂

â
sin χ,

∂�

∂Z
= â

p̂
sin χ − p̂2, (8)

where χ = 
−� is the phase difference. Then, we will
search for the solutions of Eqs. (7) and (8) in the form of the
stationary wave:

â = â(ξ ), p̂ = p̂(ξ ), χ = χ (ξ ), (9)

assuming that the absolute values of the field amplitude â and
the transverse momentum p̂ as well as the phase difference
χ depend only on the variable ξ = Z + Uτ , where U is the
normalized soliton velocity. It is important to note that tak-
ing into account the condition (∂/∂τ−U∂/∂Z )χ (ξ ) = 0, the
phase terms 
 and � depend not only on ξ but also on τ :


 = ϕ(ξ ) + �τ, � = ψ (ξ ) + �τ, (10)

where � is the frequency self-shift. In view of the indicated
assumptions, we can represent Eqs. (7) and (8) as

dâ

dξ
= p̂

U − 1
cos χ,

d p̂

dξ
= â cos χ, (11)

dχ

dξ
= − sin χ

(
1

U − 1

p̂

â
+ â

p̂

)
+ p̂2 + �

U − 1
. (12)

Taking into account that for an unbounded medium we
should set â, p̂(∞) = 0, from Eq. (11) we have the integral
of motion:

p̂ = sâ, (13)

where s = √
U−1 characterizes the difference between the

soliton velocity and the unperturbed (i.e., without an electron
beam) group velocity of radiation Vgr in a waveguide. It should
be noted that this relation can be considered as a direct conse-
quence of the energy conservation law. As a result, Eqs. (11)
and (12) reduce to the following form:

d p̂

dξ
= p̂

s
cos χ,

dχ

dξ
= −2

s
sin χ + p̂2 + �

s2
. (14)

Equations (14) have stationary states:

p̂0 = 0, sin χ0 = �

2s
, (15)

where the second relation describes the equilibrium point of
the saddle type (except for the case of cos χ0 = 0). The soliton
solution corresponds to the separatrix passing through the
indicated points:

p̂2(χ ) = 4

s
(sin χ − sin χ0). (16)

Using relation (16), we can integrate Eqs. (14) for the phase
difference χ , yielding

χ (ξ ) = 2 arctan

(
tg(χ0/2) + exp [2s−1ξ cos χ0]

1 + tg(χ0/2) exp [2s−1ξ cos χ0]

)
. (17)

A combination of relation (16) and solution (17) as well as
the integral of motion (13) results in the solitonlike solution
for the absolute value of the field amplitude:

â(ξ ) =
√

4

s3

(
1 − sin2χ0

sin χ0 + cosh [2s−1ξ cos χ0]

)
. (18)

Note that formula (18) reduces to the simplified form ob-
tained in [5] for the special case sin χ0 = 0:

â(ξ ) = 2s−3/2[sech(2s−1ξ )]1/2. (19)

We should emphasize that soliton solutions (18) and (19)
have a meaning only for U > 1 when s = √

U−1 is the real
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value. In coordinates (z, t ), it corresponds to the fact that the
soliton velocity Vs satisfies the inequality

V|| < Vs < Vgr. (20)

Thus, in waveguides, M/W-SIT solitons propagate faster
than electrons but slower than the incident pulse in the absence
of an electron beam.

For the normalized soliton energy, we get from solution
(18)

W =
∫ +∞

−∞
â2(τ ′)dτ ′ = 4

s2

(
π

2
− χ0

)
,

χ0 = arcsin

(
�

2s

)
∈

(
−π

2
,
π

2

)
. (21)

We also introduce the instantaneous self-shift of the soliton
carrier frequency, which determines the frequency chirp:

�� (ξ ) = ∂


∂τ
= U

dϕ(ξ )

dξ
+ �

= �

(
1 + U

s2

)
− U

s
sin (χ (ξ )). (22)

According to relation (22), the instantaneous frequency
self-shift varies over the soliton profile; it reaches its minimum
value at the maximum of the amplitude (soliton center),

��|ξ=0 = �

(
1 + U

s2

)
− U

s
, (23)

and it tends asymptotically to a constant at the soliton edges,

��

ξ→±∞−−−−→ �

(
1 + U

2s2

)
. (24)

At the same time, for a chosen soliton velocity, formula
(15) yields that a soliton exists in the following range of �:

−2s < � < 2s. (25)

Profiles of M/W-SIT solitons given by solution (18) and
corresponding frequency chirps depend on two parameters:
soliton velocity U and frequency self-shift � (Fig. 2). A de-
crease in the soliton velocity U leads to a decrease in the full
width at half-maximum (FWHM) duration of the soliton while
its peak amplitude and the energy W increase [see formula
(21)]. The most intensive solitons with the shortest duration
are realized for negative values of the frequency self-shift
�, which correspond to the case when the soliton carrier
frequency is lower than the reference frequency.

Figure 2 provides a simple interpretation of the M/W-SIT
effect, which confirms its analogy with the optical case. The
dependence of the transverse momentum p̂(ξ ) shows that the
transverse oscillations of electrons are excited by absorbing
electromagnetic energy at the leading front of an incident
pulse, and then electrons return to the nonexcited state by
reradiating this energy to the field at the pulse trailing front.
As a result, due to the reemission of the absorbed radiation,
the EM pulse transforms to the soliton, which travels with
anomalously low energy loss and unchanged shape. Note that
an increase in the soliton amplitude and electron transverse
momentum is replaced by their decrease as the phase differ-
ence χ (ξ ) passes through the point π/2. Correspondingly, the
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FIG. 2. Soliton profile â(ξ ), phase difference χ (ξ ), frequency
chirp �� (ξ ), and amplitude of transverse momentum p̂(ξ ) for differ-
ent values of the soliton velocity U and soliton frequency self-shift
parameter �.

faster the phase difference χ (ξ ) changes, the faster the energy
is transferred from the EM wave to the electrons in the leading
and trailing edges of the M/W-SIT soliton.

IV. DEMONSTRATION OF THE STABILITY OF SOLITON
SOLUTIONS BASED ON SIMULATIONS OF A

SEMIBOUNDED PROBLEM

The results of numerical simulations of Eqs. (4) with the
boundary conditions (5) and (6) presented in Figs. 3 and 4
confirm the analogy with self-induced transparency effects
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FIG. 3. Typical regimes of propagation of an electromagnetic
pulse in an initially rectilinear electron beam under cyclotron res-
onance condition: (a) cyclotron resonance absorption pulse (ain = 1,
T = 5, δ = 0); (b) microwave self-induced transparency with the
formation of a M/W-SIT soliton (ain = 5, T = 3, δ = 0); (c) soli-
ton formation with compression of the incident EM pulse (ain = 5,
T = 6, δ = 3); (d) decomposition of the incident pulse into several
solitons (ain = 5, T = 10, δ = 0).

in optics. When the amplitude and duration of an incident
electromagnetic pulse are small, the cyclotron absorption
(A-zones in Fig. 4) is observed [Fig. 3(a)]. This process is
accompanied by a quasiperiodic energy exchange between the
electromagnetic pulse and electrons that is similar to optical
Rabi oscillations of the population inversion [4]. As the en-
ergy of the initial microwave pulse increases, the self-induced
transparency effect occurs when the incident pulse transforms
into a M/W-SIT soliton (S-zones in Fig. 4), and after that
it propagates practically without damping [Fig. 3(b)]. The
amplitude of the formed M/W-SIT soliton can exceed the
amplitude of the incident signal [Fig. 3(c)], i.e., the regime of
nonlinear compression takes place (C-zones in Fig. 4). Rather
long and high-power incident signals decompose into several
solitons [Fig. 3(d)] with different amplitudes, durations, ve-
locities, and frequency chirps (M-zones in Fig. 4).

In Fig. 4, zones of different interaction regimes are pre-
sented on the plane of the parameters “amplitude ain - duration
T ” of the incident pulse depending on the parameter of the res-
onance detuning δ. For positive δ, when the carrier frequency
of the incident pulse is higher than the reference frequency,
the structure of interaction zones is similar to the case of
the exact cyclotron resonance δ = 0 [Fig. 4(a)]. However,
with an increase in δ, the interaction zones shift towards a
higher energy of the incident pulses [Fig. 4(b)]. For negative
δ, compression of the input signal occurs practically in the
entire zone of formation of single solitons [Fig. 4(c)].
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T

FIG. 4. Zones of different interaction regimes on the plane “am-
plitude ain - duration T of the incident pulse” for different detuning
parameters δ: A, cyclotron resonance absorption; S, self-induced
transparency; C, compression of the incident pulse in the process of
SIT soliton formation; M, multisoliton regime.

Obviously, the analytical soliton solutions obtained in
Sec. III are asymptotic. Nevertheless, these solutions can be
approximately compared with the results of solving the semi-
bounded problem (4)–(6) for a sufficiently large length of
the interaction space (cyclotron absorber). Such a comparison
was carried out for various parameters of the incident pulses
entering at the input of the cyclotron absorber with a length
of L = 50. To reconstruct the soliton shape from the results
of numerical simulations, the peak values of the transverse
momentum of electrons pmax and the soliton amplitude amax

were determined, which makes it possible to find the soliton
velocity U based on the integral of motion (13):

U = 1 + (pmax/amax)2. (26)

Simultaneously, the frequency self-shift � is determined
from Eq. (16) taking into account Eq. (15):

� = s2 p2
max/2 − 2s. (27)
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FIG. 5. Comparison of M/W-SIT solitons profiles (top) and
frequency chirps (bottom) found in numerical simulations of the
semiboundary problem (black solid curves) with the generalized
analytical solutions (18) and (22) (red dashed curves). Black dashed
curves correspond to the simplified soliton solutions found in [5] for
a particular case χ0 = 0. Parameters of the input pulse in simulations:
(a) ain = 5, T = 3, δ = −1; (b) ain = 5, T = 3, δ = 1.

Note that each pair of parameters U, � corresponds to a
single analytical solution (18).

Field profiles and frequency chirps found based on numer-
ical simulations of the semibounded problem are shown in
Fig. 5. According to relations (26) and (27), for the initial
pulse parameters ain = 5, T = 3, δ = −1, the formed soliton
has the normalized velocity U = 1.26 and the soliton fre-
quency self-shift � = 0.15 which corresponds to sin χ0 ≈ 0.
Thus, the analytical solution (19) obtained previously in [5]
[dotted line in Fig. 5(a)] is practically coincident with the
numerical results. At the same time, for the initial pulse with
ain = 5, T = 3, δ = 1, parameters of the analytical solution
U = 1.13 and � = 0.5 correspond to sin χ0 ≈ 0.7. In this
case, the numerically found soliton profile is also approxi-
mated well by formula (18), but it is significantly different
from the profile given by the simplified solution (19).

V. CONCLUSION

We have shown that M/W-SIT solitons arising in cyclotron
resonance interaction of an incident electromagnetic pulse
with an initially rectilinear electron beam have a number of
common features with optical SIT solitons and, at the same
time, are governed by two parameters resembling the nonlin-
ear Schrödinger solitons.

To conclude, we estimate the possibility of experimental
observation of the formation of M/W-SIT solitons considering
nonlinear transformation of the microwave superradiant (SR)
pulse at the central frequency of 90 GHz with the following
parameters [19]: a duration of 0.7 ns, a peak power of 160
MW, and a transverse structure of the TE11 mode of a cylin-
drical waveguide with a radius of 6 mm. Under the assumption
that such a pulse interacts with an initially rectilinear near-axis
electron beam with an energy of 100 keV and a current of 100
A guided by a magnetic field of H0 = 15 kOe, the normalized
parameters correspond to the case of soliton formation pre-
sented in Fig. 3(b). Thus, the initial SR pulse is transformed
into a soliton over a length of the interaction region of 30 cm.
An increase in the interaction length leads to compression of
the formed M/W-SIT soliton. In particular, for an interaction
length of 2 m, the formed soliton will have a peak power of
530 MW and a FWHM duration of 0.1 ns. Note that the length
of the compression region can be significantly reduced (to
20–30 cm) in the case of interaction with a counterpropagating
electron beam, when the input pulse enters from the collector
end of the system. The soliton profile in this case is also
described analytically by a formula similar to (18) up to the
replacement U → −U .

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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