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Instabilities in quasiperiodic motion lead to intermittent large-intensity events in Zeeman laser
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We report intermittent large-intensity pulses that originate in Zeeman laser due to instabilities in quasiperiodic
motion, one route follows torus-doubling to chaos and another goes via quasiperiodic intermittency in response to
variation in system parameters. The quasiperiodic breakdown route to chaos via torus-doubling is well known;
however, the laser model shows intermittent large-intensity pulses for parameter variation beyond the chaotic
regime. During quasiperiodic intermittency, the temporal evolution of the laser shows intermittent chaotic
bursting episodes intermediate to the quasiperiodic motion instead of periodic motion as usually seen during
the Pomeau-Manneville intermittency. The intermittent bursting appears as occasional large-intensity events. In
particular, this quasiperiodic intermittency has not been given much attention so far from the dynamical system
perspective, in general. In both cases, the infrequent and recurrent large events show non-Gaussian probability
distribution of event height extended beyond a significant threshold with a decaying probability confirming rare
occurrence of large-intensity pulses.
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I. INTRODUCTION

Instabilities in lasers have long been investigated to ex-
plain the formation of chaos [1–5], which originates, in
many cases, via Pomeau-Manneville (PM) intermittency [6].
However, chaotic pulses were accompanied by occasional
large-intensity pulses in a range of parameters, which was not
recognized as a distinctly different phenomenon. Much later,
large-intensity traveling pulses in a two-dimensional array of
frequency-disordered laser oscillators were reported [7] as
local coherent large-amplitude excitations. Around the same
time, optical rogue waves as rare giant pulses were reported
[8–10] that originated due to deterministic or stochastic non-
linear processes. In recent time, intermittent large-intensity
pulses have been reported in many laser systems, optically
injected cavity [11], solid-state laser [12], semiconductor laser
[13], and CO2 laser [14] that are recognized as extreme events
and different in character from nominal chaos with limited
amplitude below a threshold height. The threshold height is
determined by a statistical measure [15–17] from time evo-
lution of an observable for a long time. Optically injected
semiconductor lasers manifest rare ultraintensity pulses in a
narrow range of parameter region. The appearance and ter-
mination of extremely large-intensity pulses or events were
implemented by feedback control in semiconductor or diode
lasers [15,18]. In deterministic laser systems [19,20], interior-
crisis-induced intermittency [21–23] is mostly found as a
nonlinear process responsible for occasional large-intensity
pulses. Noise-induced attractor-hopping in multistable sys-
tems [10] also triggers rare large-intensity events. In spatially
extended microcavity laser, evidence of extremely large
events was found [24–26] that originated due to spatiotem-
poral chaos and intermittency.

*kingston.cnld@gmail.com

An obvious question arises as to whether these processes
are exhaustive or there exist other possible sources of insta-
bilities that may induce intermittent large events. The answer
lies in the search of extraordinary large events that may
emerge in dynamical systems, in general. In recent years,
various dynamical models had been investigated [23,27–39]
and real-time laboratory experiments [18,19,23,25,32] were
done where similar occasional large-amplitude events were
recorded. Attempts have been made to discern the underlying
mechanisms of the origin of such extremes and their sta-
tistical properties. A general perception has been developed
[17,23,40,41] that an instability region may exist in the state
space of a nonlinear system. The trajectory of the system
may occasionally visit a close vicinity of the instability region
and it is diverted to far away locations for a short duration,
but returns to the nominal state after a short duration. The
trajectory of the system otherwise remains confined, most of
the time, in the nominal state within a bounded volume of the
state space. The occasional large excursions form intermittent
large-amplitude events; the source of instabilities only differs
from system to system. The large-amplitude events usually
follow a non-Gaussian distribution with a tail (long-, heavy-
tail) and, in some special cases, a dragon-king-like distribution
[28,32,42] when the large events are outliers to a power law. A
complete understanding of the dynamical processes involved
in the origin of the rare large-amplitude events in any system
is an essential task for developing an appropriate technique for
early forecasting [38].

Besides system-specific several sources of instabilities
[17,29–31,34,39,43] as reported, in the literature, we iden-
tify three fundamental sources in dynamical systems, single
systems, coupled systems and network of systems, that cre-
ate instability in the systems and may trigger intermittent
large events, interior crisis-induced intermittency [18,21,22],
PM intermittency [6,23,32], and breakdown of quasiperiodic
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(QP) motion [42,44]. Interior-crisis-induced intermittent large
events occur due to a collision of a chaotic trajectory with a
stable manifold of a saddle point or a saddle orbit that coexists
in the state space of a system. This particular phenomenon
has been observed in many model systems as well as experi-
ments in lasers as mentioned above, which appears after the
origin of chaos via a period-doubling cascade in response
to a parameter variation. As mentioned, in the beginning,
PM intermittency may lead to occasional large events, which
manifested as occasional chaotic bursting (turbulent phase)
intermediate to almost periodic oscillation (laminar phase) in
the time evolution of a state variable of a system. In some sys-
tems, chaotic bursts occasionally appear with extremely large
amplitude compared to the amplitude of the periodic flow in
the laminar phase. This particular situation was demonstrated
in a forced Liénard system [23] and a coupled neuron model
under chemical synaptic interaction [32,42]. The breakdown
of QP motion via torus-doubling is another route to chaos that
may lead to occasional large events [32]. The possibility of
extreme behavior via breakdown of QP motion was predicted
earlier [44] in a map during a study of extreme events using
statistical approaches; however, there the dynamics of large
events was not looked into.

We revisit the dynamics of the Zeeman laser model with
a large cavity anisotropy as reported earlier [45–48] using
numerical simulations. This study reported [47,48] origin of
chaos via breakdown of quasiperiodicity. However, they did
not pay attention to the complexity of dynamics beyond chaos.
We scrutinize the parameter space in the laser model for the
origin of chaos and beyond and, locate two distinctly different
instability sources. We discern the sources of instability in
parameter space: (1) breakdown of QP motion to chaos via
torus-doubling followed by another state with a tuning of
a system parameter when intermittent large-intensity pulses
originate, (2) QP intermittency, which is a relatively unknown
phenomenon so far. The time evolution of QP intermittency
shows a laminar phase of QP motion instead of a periodic
motion as usually seen during PM intermittency [6] while
the turbulent phase consists of chaotic bursting as usual. We
explain the two nonlinear deterministic processes, so far re-
main unrecognized, to demonstrate the origin of intermittent
large-intensity pulses in the laser model.

We organize the text as follows: The Zeeman laser model
is presented in Sec. II with phase diagrams in two-parameter
plane to locate the sources of instabilities that lead to oc-
casional large events. The torus-breakdown of QP motion
and the QP intermittency routes to intermittent large events
are elaborated in Secs. III and IV, respectively, with one-
parameter bifurcation diagrams, a series of temporal evolution
of system dynamics for a varying parameter, return maps
of local maxima, and their probability distributions. Finally,
results are summarized with a conclusion in Sec. V

II. ZEEMAN LASER MODEL

A monochromatic electric field interacts inside a ring cav-
ity with a homogeneously broadened medium that consists of
two-level atoms with lower (J = 0) and upper (J = 1) levels
[47,48]. With mean-field and rotating wave approximations,
and assuming a perfect resonance between the cavity and

atomic frequencies, the Maxwell-Bloch equations describe
the two-level Zeeman laser model in dimensionless form,

Ėx = σ (Px − Ex ),

Ėy = σ (Py − αEy),

Ṗx = −Px + ExDx + EyQ,

Ṗy = −Py + EyDy + ExQ,

Ḋx = (r − Dx ) − 2(2ExPx + EyPy),

Ḋy = (r − Dy) − 2(2EyPy + ExPx ),

Q̇ = −Q − (ExPy + EyPx ). (1)

The state variables Ex and Ey represent the linear polarization
components of the electric field, (Px, Py) and (Dx, Dy) are
proportional to the polarization and atomic inversion, respec-
tively, which is related to a transition |J = 1, Ji = 0〉 ↔ |J =
0〉, and Q is proportional to the coherence between the upper
sub levels |J = 1, Jx = 0〉 and |J = 1, Jy = 0〉. The parameter
r denotes the incoherent pumping rate, σ and ασ represent
the cavity losses along the x and y directions, where α is the
cavity anisotropy parameter.

In order for the variety of dynamics of the system to locate,
in parameter space, as presented in Ref. [48], we first plot the
phase diagram in the (r − α) parameter plane for a fixed value
of σ = 6.0, where the dynamics of each coordinate point is
recognized by its respective Lyapunov exponents. The system
manifests periodic (P in yellow), quasiperiodic (QP in red),
and chaotic dynamics (C in blue) as shown in Fig. 1(a). By
a closer inspection of the chaotic region (blue), we locate
two significantly disparate dynamical regions, in parameter
space, quasiperiodic breakdown (QPB) and quasiperiodic in-
termittency (QPI) (marked by dashed rectangles), where the
system exhibits intermittent large-intensity events (LIE) al-
though they are identified earlier [47] as simply chaotic in
nature. A positive value of the largest Lyapunov exponent can
distinguish chaos, but failed to recognize the LIE, which is
also chaotic in character. We discern the LIE from nominal
chaos by the size of events and comparing them against a
threshold height. If local maxima of laser intensity remain
bounded for a long time below the threshold, then we call it
nominal chaos. However, if some of the large-intensity peaks
have height larger than the threshold, then we distinguish them
as LIE. To delineate the LIE states, in parameter plane, we
plot two additional phase diagrams (lower panels of Fig. 1)
that focus on the narrow range of the parameter plane close
to the QPB and QPI regimes in Figs. 1(b) and 1(c), respec-
tively. The QPB region shows a periodic regime (P, yellow),
a quasiperiodic regime (QP, red), and the LIE region (gray),
but with a very narrow chaotic region (C, blue) in between.
QPI region also shows islands of periodic regime (yellow, P),
quasiperiodic regime (QP, red), and chaotic regime (C, blue)
with a sea of LIE state (gray). The narrow chaotic regimes
(blue) in Figs. 1(b) and 1(c) show no large events. Emergence
of LIE is presented sequentially with a variation of r along
with their statistical properties, for the two distinct sources of
instabilities, in the next sections.
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FIG. 1. Phase diagram in two-parameter plane of Zeeman laser
model. (a) Blue region represents chaotic dynamics (C), quasiperi-
odic (QP) motion in red color, and yellow region represents periodic
(P) state of the system. Zoomed versions of the (b) quasiperiodic
breakdown (QPB) and (c) quasiperiodic intermittency (QPI) region
[marked by dashed rectangles in panel (a)]. LIE region (gray color)
is delineated when any event is larger than a threshold height. Here
σ is fixed as 6.0.

III. LARGE-INTENSITY PULSES:
BREAKDOWN OF QUASIPERIODIC MOTION

A breakdown of QP motion to chaos via a cascade of
torus-doubling is a well known phenomenon in nonlinear
dynamical systems. This route was demonstrated earlier [48]
in the Zeeman laser model, but the authors ignored the origin
of LIE beyond the nominal chaotic mode. However, rare large-
intensity pulses emerge in a range of pumping rate r and are
larger in amplitude or size than a threshold height. We demon-
strate here how LIE originates from nominal chaos with a
tuning of r in the QPB region and remains indistinguishable in
the previous report [48] since LIE maintains the characteristic
feature of nominal chaos with a positive Lyapunov exponent.
For this observation, we vary r along the horizontal dashed
line drawn in Fig. 1(b) when α = 7.0 and σ = 6.0 are fixed.
A corresponding bifurcation diagram is drawn in Fig. 2(a)
against r in a range r ∈ (35.142, 36.942) with local maxima
Imax of laser intensity I = E2

x + E2
y when we see a transition

from periodic to QP motion via Neimark-Sacker bifurcation
[49] at a critical r ≈ 36.75. The bifurcation diagram is con-
tinued for a lower range of r = (35.133, 35.142) in Fig. 2(b).

FIG. 2. Bifurcation diagram of laser intensity against the pump-
ing rate in Zeeman laser. Local maxima Imax shows (a) a transition
from periodic to QP motion and then (b) a sudden change in Imax,
indicating emergence of LIE. The transition to chaos via breakdown
of QP is indicated by a transition of the largest Lyapunov exponent
λ1 from zero to a positive value of λ1 at r ≈ 35.1405 (c). LIE start
appearing at a lower r � 35.1404. The vertical dashed lines in panels
(b) and (c) indicate the transition point at r ≈ 35.1404 from nominal
chaos to LIE. A horizontal line (red line) depicts the Hs = 〈In〉 + 6σI .
The number of extreme events varies with r as plotted in red dots,
showing the count at right-side scale (c).

The transition to chaos is noticed at r ≈ 35.1405 when the
largest Lyapunov exponent λ1 shows a transition from zero
to a positive value in Fig. 2(c), yet Imax remains bounded in
Fig. 2(b), which suddenly blows up for a little detuning of
r ≈ 35.1404 (marked by a vertical dashed magenta line) when
occasional large intensity peaks start appearing. This indicates
the origin of LIE, but they are apparently intermittent as seen
in Imax = In plot in Fig. 2(b) (rare blue dots) at each r value
in the bifurcation diagram. Imax = In of LIE is larger than
a threshold height Hs = 〈In〉 + 6σI line (horizontal red line),
where 〈.〉 and σI denote long time average of In and standard
deviation, respectively. This characteristic feature of the large
event dynamics continues for lower values of r; however, Hs is
not a constant as shown in Fig. 2(b), but fluctuates (see inset).

Note that λ1 as plotted in Fig. 2(c) is estimated using a per-
turbation method [50], where an integration time of 2.0 × 107

is taken after removing a transient time of 1.0 × 106 with
a step size 0.01. At a critical value r = rc ≈ 35.1404, the
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FIG. 3. Breakdown of quasiperiodic motion via torus-doubling:
Time evaluation of laser intensity (left panels) and its corresponding
return maps (right panels). (a, b) One-torus, (c, d) two-torus, (e,
f) four-torus, (g, h) chaos, and (i, j) rare large-intensity events for
r = 36.74, 35.152, 35.149, 35.1405, and 35.1404, respectively. The
horizontal dashed (red) lines in the all time series (panels in the left
column) signify Hs = 〈In〉 + 6σI .

system exhibits rare and recurrent LIE (Imax), which are seen
as sudden sparsely populated dots (blue dots) in Fig. 2(b). For
a specific choice of initial conditions, the Zeeman laser shows
11 counts of LIE (for the above mentioned time interval) at
r ≈ 35.1404. For decreasing r values, the count (red dots) in
Fig. 2(c) of LIE gradually increases and finally saturates at
∼1100 LIE.

In the range of r ∈ (35, 37), we find a cascade of torus-
doubling, origin of nominal chaos and the transition to LIE as
occasional large-intensity chaotic events. Figure 3 presents a

FIG. 4. Probability distribution function of events. (a) Nominal
chaos for r = 35.1405, and (b) LIE for r = 35.1404. Large-intensity
events lie in a tail beyond the Hs = 〈In〉 + 6σI line.

series of temporal dynamics of laser intensity I (left column)
and their return maps in In+1 versus In plots (right column) for
different r. From a visual check of the temporal dynamics of I
in Fig. 3(a), the nature of the dynamics is not clear, however,
a closed cycle in the return map in Fig. 3(b) confirms the
origin of QP motion for r = 36.74 as seen in Fig. 2(a). The
laser system undergoes a cascade of torus-doubling as shown
in Figs. 3(c) and 3(d) and Figs. 3(e) and 3(f) when period-2
and period-4 cycles emerge in the return maps for r = 35.152
and 35.149, respectively. Finally, QP motion transits to chaos
for a pumping rate r ≈ 35.1405 as shown in Fig. 3(g) and
confirmed by a indistinct cycle boundary in the return map in
Fig. 3(h) (inset shows filled-in cycles with a messy boundary).
However, laser intensity peaks Imax remain restricted to low
amplitude, which we define here as nominal chaos. The Hs

mark (horizontal dashed red lines) lies far above the instanta-
neous I value.

The temporal evolution of I in Fig. 3(i) confirms a dense
boundary of low amplitude events, but accompanied by in-
termittent very large spiking events and many of them cross
the Hs mark (horizontal dashed line) and some of them are
even almost three times larger the limit of nominal chaos for
r ≈ 35.1404. The return map shows a dense region (dense
blue) in Fig. 3(j) like a comet-head with a tail of rare points
(blue dots) scattered at a distance that appears as a dusty
cloud. The scattered points denote rare large-intensity pulses
called LIE, which are distinctly different from small ampli-
tude nominal chaos and especially, different by their statistical
properties. Noteworthy that E2

x and E2
y also exhibit LIE when

plotted separately, the details of which are presented in the
Appendix.

The probability distribution function (PDF) of all the peaks
Imax = In against peak size of laser intensity In is shown in
Fig. 4. The distribution in Fig. 4(a) for nominal chaos is
bounded within a low range of In values below the Hs mark
(vertical magenta lines) as expected, while it shows non-
Gaussian probability distribution of events decaying with the
size of events in Fig. 4(b) that confirms low probability of
occurrence of LIE beyond the Hs mark (vertical magenta line)
for r = 35.1404. For plotting this PDF, we have taken the
t-span length as 5.0 × 109 after discarding sufficiently long
transients, and confirmed that the shape of the distribution
does not change with respect to the t-span length.
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FIG. 5. (a) Bifurcation diagram of laser intensity against pump-
ing rate r. Inset shows a transition from period-4 to QP state. Other
parameters are σ = 6.0, α = 3.995. (b) Plot of Lyapunov exponents
λ1,2. Inset shows a magnified version of a section marked by a dashed
rectangle. Count (red dots) of LIE is plotted against r. LIE start
appearing at a critical r = 29.4754.

IV. LARGE-INTENSITY PULSES:
QUASIPERIODIC INTERMITTENCY

Quasiperiodic intermittency is unusual in dynamical sys-
tems, in general, when QP motion is interrupted intermittently
by chaotic bursts as found in Zeeman laser. This unique source
of instability leads to occasional LIE as shown here in our
numerical experiments. The origin of LIE by QP intermittency
was ignored by the authors of the earlier study [48]. For a
demonstration of the origin of large events, once again we
refer to the phase diagram in Fig. 1(c). The dynamics shows
a parameter range of periodic state (P, yellow), a region of
quasiperiodic state (QP, red), a narrow region of small nomi-
nal chaos (C, Blue) and a sea of LIE state (gray). For a better
understanding of the transition from one to the other states, we
draw a single parameter bifurcation diagram in Fig. 5 against r
that follows the horizontal dashed line in Fig. 1(c). Figure 5(a)
shows a transition from P (period-4) to QP motion (see inset)
then to the LIE state. A plot of the largest Lyapunov exponent
λ1 (blue line) and the second Large lyapunov exponent λ2

(black line) in Fig. 5(b) confirms the transition from P to QP
motion at a critical r ≈ 29.4722 when λ2 joins λ1 at zero (see
inset). The laser dynamics finally transits to the LIE state at
another critical r = 29.4754 value when a sudden large in-
crease in amplitude occurs as shown in Fig. 5(a). No nominal
chaotic state appears here, QP motion directly transits to QP
intermittency in a discontinuous manner against r. The large
events start appearing infrequently as revealed by a sparse
distribution of points (blue dots) above the Hs line (red line).
The Hs line is drawn to make a visual impression how large
is the size of the LIE. In addition, we plot a count (red dots)

FIG. 6. Temporal evolution of laser intensity (left panels) and
return maps (right panels). Period-4 state (a, b), QP motion (c, d),
and QP intermittency (e, f) for r = 29.4721, 29.475, and 29.4754,
respectively. Hs is marked by horizontal lines in the temporal evolu-
tion (red lines).

of LIE against the pumping rate r in Fig. 5(b) that increases
with r along with increasing λ1. LIE counts (red dots) start
appearing from the transition point at r = 29.4754. The count
of LIE increases monotonically with r and finally saturates at
≈1200.

The transition from period-4 to QP motion and QP inter-
mittency is more clear in Fig. 6 where a series of snapshots
of temporal dynamics (left panels) and return maps In+1 ver-
sus In of local maxima Imax = In (right panels) are displayed
for different r. The temporal dynamics of laser intensity in
Fig. 6(a) and the In+1 versus In return map in Fig. 6(b) for r =
29.4721, confirm period-4 oscillation. The return map shows
four distinct points as a clear indicator of period-4 oscillation.
The period-4 oscillation becomes QP motion for a larger
r = 29.475 as shown in Fig. 6(c). This is confirmed by its
return map in Fig. 6(d), where four distinct cycles evolve from
four distinct points in Fig. 6(b). For a larger r ≈ 29.4754, QP
motion transits to QP intermittency, which is apparent from
the time evolution in Fig. 6(e). QP motion is interrupted by
occasional chaotic bursts: a typical signature of intermittency
except that the laminar phase is now quasiperiodic. Rare large-
intensity spikes are seen during the chaotic bursting that are
much larger than the Hs line (red line). Rare large-intensity
pulses are reflected in the return map in Fig. 6(f) as scattered
points (blue dots) far from a densely populated central region
(dense blue region). The dense region is centered around the
four cycles of the quasiperiodic motion as shown in the inset
of Fig. 6(f).
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FIG. 7. Probability distribution function of intensity peaks dur-
ing QP intermittency in Zeeman laser. The distribution of laser
intensity peaks is non-Gaussian and extended beyond the Hs thresh-
old (vertical dashed line) with a decaying probability with larger In

for r = 29.4754.

PDF for all the events (Imax = In) during QP intermittency
is shown in Fig. 7. The distribution is non-Gaussian and
slowly decays (a heavy tail) with increasing height of large
events beyond the Hs line (vertical magenta line).

V. CONCLUSION

Origin of chaos via period-doubling followed by crisis-
induced-intermittency and PM intermittency are common
sources of instabilities that may originate intermittent large
intensity pulses in lasers. Two other nonlinear processes that
lead to chaos, were reported earlier [48] in the Zeeman laser
model, namely, breakdown of QP motion via torus-doubling
and QP intermittency. While the breakdown of QP motion
via torus-doubling and origin of chaos is well known, in
the literature, the QP intermittency is unusual in dynamical
systems, in general. We revisited the dynamics of the Zeeman
laser model, especially focused on the parameter regions of
the sources of instability leading to chaos. Our study has been
extended beyond chaos with rigors of numerical simulations,
using phase diagrams in two-parameter plane and one param-
eter bifurcation diagrams and, focuses on the smaller range of
parameters where transition to chaos occurs. Two reasonably
significant parameter regions are found where the dynamics
is distinctly different from nominal chaos. The nominal chaos
is defined here as bounded in amplitude below a well defined
threshold height. When the pumping rate of the Zeeman laser
is extended beyond the nominal chaos, intermittent large-
intensity pulses emerge denoted here as LIE. This information
was missing in the previous report [48], may be because LIE
have same characteristic feature of chaos as having positive
Lyapunov exponent. Yet LIE are distinct by their height larger
than a threshold and their occasional departure from nominal
chaos as seen in a long observation.

In one region of parameter space, LIE appears beyond
nominal chaos that emerges via torus-doubling of QP motion.
An interior-crisis is possibly involved during the transition

from chaos to the origin of LIE, which needs further rigors
of study to confirm. From the extreme events’ perspectives,
origin of intermittent large pulses via instability of QP motion
is not so common although reported earlier [32] in a coupled
neuron model under repulsive synaptic interactions. In another
region of parameters, LIE originate via QP intermittency that
is, particularly, new and not reported so far, in other dynamical
systems, to the best of our knowledge. Another distinct feature
of LIE is their probability distribution in an observable that
shows an extended tail beyond the threshold height. In con-
trast, PDF is bounded below the threshold height for nominal
chaos.
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APPENDIX

We confirm here that all the dynamical and statistical char-
acteristics of I are present in E2

x and E2
y as illustrated here with

their separate observation. The temporal dynamics of E2
x and

E2
y for fixed α = 7.0, σ = 6.0 are presented here separately

for two different r values. For r = 36.74, the laser exhibits

FIG. 8. QPB route to LIE in Zeeman laser model. Temporal
dynamics of E 2

x (black line) and kE 2
y (red line), (a) in antiphase QP

motion for r = 36.74 and no LIE, (b) LIE are prominent in E 2
x plot

(black line) for r = 35.1404 when the antiphase correlation with E 2
y

(red line) is lost. k = 20 (arbitrarily chosen) for an enhanced visual
comparison against E 2

x .
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FIG. 9. Quasiperiodic breakdown route to LIE. Probability dis-
tribution function of E 2

x (a), and E 2
y (b) for r = 35.1404 that depict

extended decaying distributions beyond their respective threshold
height hsx ,sy (dashed vertical lines).

QP mode of oscillation in Fig. 8(a) where the temporal dy-
namics of E2

x (black line) and E2
y (red line) manifest antiphase

correlation. Since E2
y is much smaller in size, we have scaled

up E2
y by k = 20 (arbitrarily chosen) to make it comparable

in size with E2
x for an enhanced visualization. For a pumping

rate r = 35.1404 when the Zeeman laser exhibits LIE, the
antiphase correlation between two signals E2

x and E2
y breaks

down as shown in Fig. 8(b). The signature of intermittent
large-intensity pulses is present in both the signals, however, it
is dominantly present in E2

x , in particular, with larger size by
approximately k = 20-fold compared to E2

y . To identify the
LIE, we have to define two new threshold heights as denoted
by hsx,sy = 〈mx,y〉 + 6σx,y, where super-subscripts (x, y) repre-
sent (E2

x , E2
y ) signals, and mx is the local maxima of E2

x , my is
the local maxima of E2

y , σx,y are their corresponding standard
deviations. PDF of E2

x and E2
y are displayed in Figs. 9(a)

and 9(b), respectively, and both of them show non-Gaussian
and extended distribution with a decreasing probability of
occurrence of LIE beyond their respective threshold height
(dashed vertical line). PDFs are similar to Fig. 4(b).

FIG. 10. QPI route to LIE in the Zeeman laser model. Time
evolution of E 2

x (black line), and kE 2
y (red line) in quasiperiodic an-

tiphase state (a) for r = 29.475 and LIE (b) for r = 29.4754, where
k = 8 (arbitrarily chosen) for a better visualization. The antiphase
correlation is lost during LIE.

We show the temporal evolution of E2
x and E2

y for the QPI
case in Fig. 10(a) for r = 29.475 (QP state), and Fig. 10(b)
for r = 29.4754 (LIE). Other parameters are α = 3.995 and
σ = 6.0. It is clear that E2

x and E2
y and manifest antiphase

correlation during QP motion once again and when LIE origi-
nate, the antiphase relation is lost. For this case, we arbitrarily
scaled up E2

y by eight times here in both Figs. 10(a) and 10(b)
as done for the QPB case. PDFs of both E2

x and E2
y follow the

same trend as shown in Fig. 7 for In and hence we decide as
redundant for presentation here.
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