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Solitary matter wave in spin-orbit-coupled Bose-Einstein condensates with helicoidal gauge potential
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We analytically and numerically study the different types of solitary wave in the two-component helicoidal
spin-orbit coupled Bose-Einstein condensates (BECs). Adopting the multiscale perturbation method, we derive
the analytical bright and dark solitary wave solutions of the system, and the stationary and moving bright (dark)
solitary waves are obtained. The effects of spin-orbit coupling, the helicoidal gauge potential, the momentum,
the Zeeman splitting, and the atomic interactions on the solitary wave types are discussed, and it is found that
the coupling of these physical parameters can manipulate different types of solitary waves in the system. The
results indicate that the helicoidal gauge potential breaks the symmetric properties of the energy band of the
system and adjusts the energy band structure, thus further effecting the solitary wave properties, i.e., stationary
or moving solitary wave, bright, or dark solitary wave. Correspondingly, the analytical predictions for exciting
stationary or moving bright (dark) solitary wave in parameter space are obtained. In particular, the helicoidal
gauge potential changes the solitary wave types drastically for the weak spin-orbit coupling, i.e., in the absence
of the helicoidal gauge potential, only dark (bright) solitary wave solutions exist in the system with repulsive
(attractive) atomic interaction; however, in the presence of the helicoidal gauge potential, both dark and bright
solitary waves can exist in the system regardless of whether the atomic interaction is repulsive or attractive. In
addition, we investigate the stability of solitary waves and obtain the stability regions of different types of solitary
waves by applying the linear stability analysis. The dynamic evolution results of the solitary waves by the direct
numerical simulation not only validate the linear stability analysis but also confirm the analytical prediction
of the solitary waves. Finally, the collision effects between solitary waves are also presented by the numerical
simulation. It is shown that the interactions between solitary waves in the system have both elastic and inelastic
collisions, which are closely related to the position of solitary wave states in the linear energy band. Our results
provide a potential way to adjust the types of solitary waves in BECs with helicoidal gauge potential.
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I. INTRODUCTION

Solitary waves are one of the most important topics in
nonlinear systems. The solitary waves are localized wave
packets that can propagate at a constant velocity without
changing their shape due to the balancing between the dis-
persion and nonlinear effects [1]. Solitons are solitary waves
that emerge unscathed from collisions with each other, up
to shifts in position and phase; this is reminiscent of par-
ticle behavior, motivating the particle-like name soliton [2].
Solitary waves and solitons play a significant role in many
branches of physics and have been observed and investigated
in various fields, such as water waves [3], plasma physics [4],
nonlinear optics [5], and Bose-Einstein condensates (BECs)
[6,7]. Among the various systems that support solitary waves,
BECs provide an ideal platform for exploring the properties of
solitary waves because of its clean and parameter-controllable
characteristics [8]. Therefore, experimental and theoretical
research concerning the nonlinear evolution of solitary waves
in BECs have been attracted more and more attention. In
the case of single-component BEC, solitary waves have been
investigated in many works, the system can have bright (dark)
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solitary wave solutions for attractive (repulsive) interatomic
interactions, respectively [9,10]. In the two-component BECs,
many combined vector solitons have been obtained, such
as dark-dark solitons [11], bright-bright solitons [12], dark-
bright solitons [13], and dark-antidark solitons [14].

Since the experimental implementation of spin-orbit (SO)
coupling in BECs, it has stimulated the extensive investigation
of the properties of SO coupled BECs. The SO coupling
not only introduces more tunable parameters, but also brings
richer soliton structures, including striped solitons [15–17],
gap solitons [18–21], gray solitons [22], and semivortex and
mixed-mode solitons [23–25]. By using a multiscale pertur-
bation method, the effects of SO coupling on solitary wave
properties in the two-component BECs have been studied.
For instance, three distinct states of bright soliton having
zero momentum, finite momentum, and stripe densities are
found in SO coupled BECs with attractive interactions [15].
Beyond this, the different types of solitary wave in such SO
coupled BECs are also presented in a unified description, and
the approximate bright and dark solitary wave solutions are
obtained for attractive and repulsive interatomic interactions,
respectively [26]. In addition, the solitary waves in SO cou-
pled spinor BECs have been studied by the same method
[27,28].
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Gauge potential is ubiquitous in various fields and can
be generated artificially in atomic systems. The potential of
practically arbitrary form can be designed by a proper combi-
nation of laser beams in atomic systems, which is possible
to engineer SO coupling in BECs [29–31]. Recently, the
inhomogeneous gauge field in BECs is a growing topic of
interest [32–37], based on the tunable SO coupling in atomic
systems and the intrinsic nonlinearity of SO coupled BECs
[38–42], the soliton dynamics in SO coupled BECs with in-
homogeneous gauge potential have been extensively studied
[34–37]. The soliton complexes and spinor dynamics in lo-
calized SO coupled BECs with a particular inhomogeneous
gauge potential has been studied [34]. The dynamics of spinor
solitons were proposed in the self-attractive SO coupled BECs
with arbitrary potentials [35]. In particular, a helicoidal gauge
potential can be implemented in the experiment through the
light propagation in the helical waveguide array [43], and
the studies [36,37] have shown that it has an important in-
fluence on the solitary wave excitation in SO coupled BECs.
In the spatially inhomogeneous BECs with helicoidal SO
coupling, the existence and stability of families of steadily
moving solitary waves are investigated [36]. For the attrac-
tive two-dimensional spinor BECs with helicoidal spatially
periodic SO coupling, the system supports a rich variety of
stable fundamental solitons and bound soliton complexes,
and the helicoidal SO coupling can make their bound states
stable [37].

Although the solitary waves in helicoidal SO coupled
BECs have been discussed in the previous studies, there is
still lacking with the detailed exploration of the mechanism
of different types of solitary waves caused by the helicoidal
gauge potential. In particular, the theoretical evidence for ma-
nipulating solitary wave types in parameter space by utilizing
the helicoidal gauge potential is unclear. Considering this is
also an important and worthful topic, so in this paper, we
investigate the excitation of different types of solitary wave
in the two-component helicoidal SO coupled BECs by us-
ing the multiscale perturbation method. This method allows
derivation of a single nonlinear Schrödinger (NLS) equation
which can obtain the analytical solitary wave solutions in
the system by starting from the one-dimensional helicoidal
SO coupled two-component Gross-Pitaevskii (GP) equations.
The influence of different physical parameters on the solitary
wave types is analyzed in detail, and the stationary or moving
bright (dark) solitary wave in parameters space is predicted
analytically. In addition, we find that the helicoidal gauge
potential plays an important role on the solitary wave types
in the system. The helicoidal gauge potential breaks the sym-
metric properties of the energy band of the system. And it can
drastically change the solitary wave types in the system for the
weak spin-orbit coupling. Finally, the stabilities and collision
effects of solitary waves are also investigated by the linear
stability analysis and numerical simulation.

The paper is structured as follows. In Sec. II, we describe
the theoretical model of the two-component BECs with he-
licoidal SO coupling and deduce the single NLS equation.
In Sec. III, the types of solitary wave are analysed in detail.
In Sec. IV, the stabilities and collision effects of the solitary
waves are studied by the linear stability analysis and the
numerical simulation. The paper is concluded in Sec. V.

II. THE MODEL AND DERIVATION OF NLS EQUATION

We consider a one-dimensional spatially inhomogeneous
two-component BECs with helicoidal SO coupling in the
presence of atomic interactions, the dimensionless GP equa-
tions describing the spinor wave function � = (�1, �2)T can
be expressed as follows [36,44]:

i
∂�

∂t
= 1

2

[
1

i

∂

∂x
+ αA(x)

]2

� + �

2
σz� + G�, (1)

where A(x) is the spatially varying gauge potential; α is
the potential amplitude; � is the Zeeman splitting; σx,y,z are
Pauli matrices; and the spatial variable x, time t , density
|�|2, and energy are expressed in normalized units a⊥ =√

h̄/(mω⊥), ω−1
⊥ (ω⊥ is the transverse trap frequency), a−1

⊥ ,
and h̄ω⊥, respectively; and m is the atomic mass. Here
G = diag(g1|�1|2 + g12|�2|2, g2|�2|2 + g12|�1|2) character-
izes the interatomic interaction with the interaction constants
g1,2 ≡ 2a1,2/a⊥ and g12 ≡ 2a12/a⊥. The a1,2 and a12 are s-
wave scattering length, they can be controlled by optical and
magnetic Feshbach resonance techniques in actual experi-
ments [45,46].

The helicoidal SO coupling A(x) = σ · n(x), where n(x) =
[cos(2βx), sin(2βx), 0] and σ = (σx, σy, σz). β is the fre-
quency of rotation, the positive and negative values of β

are defined for right-handed mode and left-handed mode, re-
spectively [43,47,48]. The helicoidal structure of the vector
potential is point translational symmetry (the shift by the
period π/β). For convenience, we use gauge transformation
� = e−i(α2+β2 )t/2e−iσzβxψ to switch to the rotating frame for
the chosen gauge field A(x) [36,44], then the point translation
symmetry of Eq. (1) becomes continuous translational sym-
metry of the transformed equations, and the continuous GP
equations for ψ are

i
∂ψ1
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= −1

2

∂2ψ1

∂x2
+ iβ

∂ψ1

∂x
− iα

∂ψ2

∂x
+ �

2
ψ1

+ (g1|ψ1|2 + g12|ψ2|2)ψ1, (2)

i
∂ψ2

∂t
= −1
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∂2ψ2

∂x2
− iβ

∂ψ2

∂x
− iα

∂ψ1

∂x
− �

2
ψ2

+ (g2|ψ2|2 + g12|ψ1|2)ψ2, (3)

where α represents the SO coupling and β represents the
helicoidal gauge potential. The number of atoms in each
component is given by Nj = ∫ +∞

−∞ |ψ j |2dx, j = 1, 2. The
stationary counterpart of Eqs. (2) and (3) is obtained by fac-
torizing ψ(x, t ) = ϕ(x)e−iμt , where μ denotes the chemical
potential.

Many methods in experiment could generate solitary wave,
such as phase imprinting method [49,50] and modulational
instability [9]. In these experiments, the observed solitary
waves belong to weakly nonlinear excitations on the con-
densate background. The multiscale perturbation method
[15,17,26,51] is reasonable and very effective on the study of
weakly nonlinear excitation on the background. Furthermore,
this method utilizes proper scales and asymptotic expansions
to reduce the original model into a single NLS equation. Such
a reduction allows us to derive approximate analytical bright
and dark solitary wave solutions with positive or negative
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mass, depending on the type of the effective dispersion and
nonlinear interaction. We derive approximate solitary wave
solutions of Eqs. (2) and (3) via a multiscale perturbation
method. To proceed, we seek solutions to Eqs. (2) and (3) of
the form

ψ =
∞∑

n=1

εnunei(kx−μt ) =
∞∑

n=1

εn

⎛
⎝Un

Vn

⎞
⎠φnei(kx−μt ), (4)

where the vectors un = [Un,Vn]T φn are composed by the
coefficients Un, Vn and the unknown field envelopes φn ≡
φn(T, X ). φn(T, X ) are assumed to be functions of the slow
variables T = ε2t and X = ε(x − vt ), where v is the group
velocity. ε (ε is a dimensionless small parameter, 0 < ε � 1)
reflects the intensity of weak excitation and represents the
perturbation amplitude. Additionally, k is the momentum,
μ = ω + ε2ω0 is the chemical potential, here ω is the energy
in the linear limit, and ε2ω0 is a small deviation about this
energy [ω0/ω = O(1)].

Substituting Eq. (4) into Eqs. (2) and (3), we obtain these
equations at O(ε), O(ε2), and O(ε3), respectively:

Au1 = 0, (5)

Au2 = iA0∂xu1, (6)

Au3 = iA0∂xu2 − i
(
∂T + 1

2∂2
x − B + ω0

)
u1, (7)

where matrices A, A0, and B are defined as follows:

A =
(

ω − k2

2 + kβ − �
2 −kα

−kα ω − k2

2 − kβ + �
2

)
, (8)

A0 =
(

v − k + β −α

−α v − k − β

)
, (9)
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(

g1U 2
1

∣∣φ2
1

∣∣ + g12V 2
1

∣∣φ2
1

∣∣ 0

0 g2V 2
1

∣∣φ2
1

∣∣ + g12U 2
1

∣∣φ2
1

∣∣
)

.

(10)

At O(ε), Eq. (5) indicates that the solvability condition
det(A) = 0 yields the linear excitation energy spectrum

ω = ω±(k) = k2

2
±

√
k2α2 +

(
βk − �

2

)2

. (11)

Although solitary waves may also exist in an excited state
occupying simultaneously each energy band, we will only
investigate nonlinear states in the form of solitary wave, which
correspond to the lower-energy band ω−. Note that the lower-
energy band ω− has different behaviors depending on the
external physical parameters. We can obtain the distribution
of the energy branch ω− in momentum space k, and the results
for changing the Zeeman splitting � and the helicoidal gauge
potential β under given SO coupling α are shown in Fig. 1.

As shown in Fig. 1(a), in the absence of the helicoidal
gauge potential (β = 0), the lower-energy band ω−(k) has
a double-well structure in the case of � < 2α2 and there
are two minima at k = ±k0 = ±√

4α4 − �2/2α. However,
ω−(k) has a single-well structure in the case of � > 2α2 and
there is one minimum at k = 0. In this case, the energy band

FIG. 1. The lower branch of the linear energy spectrum: (a) for
different Zeeman splitting � with β = 0 and (b) for different heli-
coidal gauge potential β with � = 6. Here α = 1.5.

structure of the system is symmetric about the momentum
k = 0. Moreover, the lower-energy band ω−(k) of the system
changes from a double-well structure to a single-well structure
with the increase of the Zeeman splitting �. Interestingly,
the symmetry structure of the lower-energy band ω−(k) will
be broken in the presence of the helicoidal gauge potential
(β �= 0), this is clearly shown in Fig. 1(b). It can also be
seen that the lower-energy band ω−(k) of the system changes
from a single-well structure to a double-well structure with
the increase of the helicoidal gauge potential |β|, and it is
symmetric about the momentum k = 0 for the right-handed
and left-handed helicoidal gauge potential.

Then, the solution of the first-order equation O(ε) is writ-
ten as

u1 =
(

U1

V1

)
φ1(X, T ) =

(
1
Q

)
φ1(X, T ), (12)

where the parameter Q is given by

Q =
(

ω − k2

2
+ kβ − �

2

)/
kα. (13)

Note that the above parameter sets the left and right eigen-
vectors of A at 0 eigenvalue, being given by L = [1, Q] and
R = [1, Q]T , respectively.

At the order O(ε2), using the compatibility condition of
Eq. (6), LA0R = 0, the group velocity is obtained

v = ∂ω

∂k
= k − 2kα2 + 2β

(
kβ − �

2

)
2
√

k2α2 + (
kβ − �

2

)2
. (14)

It is clear that v is substantially influenced by the Zeeman
splitting �, the SO coupling α, the helicoidal gauge potential
β, and the momentum k.

Using Eq. (12), we can also obtain the form of the solution
for u2:

u2 = −i

[
1

Q + (2kv − k2 − 2ω + �)/2k2α

]
∂φ1

∂X
. (15)

Finally, we consider O(ε3). Taking advantage of the com-
patibility condition for Eq. (5), i.e., det(A) = 0, together with
Eqs. (12) and (15), we eliminate the third-order terms u3 from
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FIG. 2. Distribution of (a) group velocity v and (b) dispersion
coefficient P of different helical gauge potential β in momentum k
space. The other parameters α = 1.5, � = 6.

Eq. (7) and obtain a single NLS equation for the unknown
field envelope φ1 = φ:

i
∂φ

∂T
= −1

2
P

∂2φ

∂X 2
+ S|φ|2φ − ω0φ, (16)

where the coefficients are given by

P = ∂2ω

∂k2
= 1 + {4Qα + (2kv − k2 − 2ω + �)/k2

− 2(v − k + β ) − (v − k − β )[(2kv − k2 − 2ω

+ �)Q/k2α + 2Q2]}/(1 + Q2), (17)

S = g1 + 2g12Q2 + g2Q4

1 + Q2
. (18)

III. ANALYSIS OF THE SOLITARY WAVES

In this section, we will focus on the solitary waves cor-
responding to the lower-energy band. Based on the analysis
of the systematic energy band structure in the previous sec-
tion, we also plot the group velocity v as a function of the
momentum k in Fig. 2(a) corresponding to Fig. 1. When v is
zero, we can obtain stationary solitary waves; however, when
v is nonzero, moving solitary waves can be obtained. It can
be seen from Fig. 2(a) that the variation of group velocity
v with the momentum k is linear in the absence of the heli-
coidal gauge potential (β = 0), and has a nonlinear oscillation
character near the momentum k = 0 in the presence of β.
Furthermore, the group velocity v = β [see Eq. (14)] is no
longer zero at k = 0 when β �= 0. We can also see that v for
the right-handed and left-handed helicoidal gauge potential
β shows a large difference when the value of |k| is small;
however, it will become consistent with larger |k|. It can also
be observed from Fig. 2(a) that the number of the points at
which v(k) = 0 [i.e., the number of points at which the curve
v = v(k) intersects the v = 0 axis] can be changed from 1 to
3 as the strength of |β| increases, which means that the value
of β can significantly affect the number of stationary solitary
waves in the system.

In order to further analyze the influence of β on the number
of stationary solitary waves in the system, we also plot the
dispersion coefficient P with the momentum k in Fig. 2(b)
because of P = ∂v/∂k, where the values of α and � are the

same as those in Fig. 2(a). From ∂P/∂k = 0, the minimum
value of P is obtained when k = β�/[2(α2 + β2)] as Pmin =
1 − 2

√
(α2 + β2)3/

√
α2�2. Setting Pmin = 0, we can obtain

β2 = C0 = 3

√
α2�2

4
− α2. (19)

Next, we will discuss that according to the positive and nega-
tive value of Pmin in the following two cases.

(a) When β2 � C0, Pmin � 0 is constant [e.g., the black,
red and blue lines in Fig. 2(b)]. In this case, the relationship
between v and k is always linear and the curve v = v(k)
intersects the v = 0 axis at one point, which means that there
is only one stationary solitary wave in the system [e.g., the
purple line in Fig. 2(a)].

(b) When β2 > C0, Pmin < 0, there exists intervals of mo-
menta for P > 0 and P < 0 simultaneously [e.g., the purple
and green lines in Fig. 2(b)], where we set the momentum
value k for P = 0 as kA, kB. Correspondingly, there are two
extrema of v, which are set as v(kA) and v(kB), respectively.
Note that the number of the points at which v(k) = 0 in the
v-k plane, i.e., the number of stationary solitary waves in the
system, is closely related to the value of v(kA)v(kB), which
can be discussed into the following three cases:

(i) When v(kA)v(kB) > 0, there exists only one point at
which v(k) = 0 in the v-k plane and the system has one
stationary solitary wave.

(ii) When v(kA)v(kB) = 0, there are two points at which
v(k) = 0 in the v-k plane. However, one of the points cor-
responds to an extreme point of v(k), then the dispersion
coefficient P = ∂v/∂k = 0 in the NLS equation, so naturally
there is no solitary wave solution. Therefore, in this case, the
system still has only one stationary solitary wave.

(iii) When v(kA)v(kB) < 0, there are three points at which
v(k) = 0 in v-k plane and the system has three stationary
solitary waves.

In the following, we will concretely obtain the parameter
space of the number of stationary solitary wave in the system
according to the above three cases. From P = 0, we can obtain

kA,B = β� ∓
√

3
√

4α4�4(α2 + β2) − α2�2

2(α2 + β2)
. (20)

Substituting Eq. (20) into Eq. (14), and then v(kA)v(kB) = 0
can be expressed as

−4(α2 + β2)2 + 6
3
√

2α2�2(α2 + β2)

+�2 − 3
3
√

4α4�4 = 0. (21)

It can be seen that Eq. (21) is a quadratic equation with one
variable about β2, and its corresponding function image is
downward. Solving Eq. (21), we can obtain the analytical
results

β2 = C1,2 = −α2 + 3 3
√

2α2�2

4
∓

√
4�2 − 3 3

√
4α4�4

4
.

(22)

According to Eq. (22), when � < 3
√

3/4α2, C1,2 have no real
solutions and v(kA)v(kB) < 0, corresponding to the case (iii),
the system has three stationary solitary waves. When � �
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TABLE I. Summary of the Stationary Solitary Wave Numbers in Helicoidal SO Coupled BECs.

3
√

3/4α2, C1,2 have real solutions. Here it can be obtained
from the calculation that C2 > C0 is inevitable. However,
the relationship between C0 and C1 can be divided into the
following two cases. When C1 > C0 (i.e., 3

√
3/4α2 � � <

2α2), then v(kA)v(kB) � 0 when C1 � β2 � C2 correspond-
ing to the case (i) and (ii), and v(kA)v(kB) < 0 when β2 < C1

or β2 > C2 corresponding to the case (iii). When C1 � C0

(i.e., � � 2α2), then v(kA)v(kB) < 0 when β2 > C2 corre-
sponding to the case (iii), and v(kA)v(kB) � 0 when β2 � C2

corresponding to the case (i) and (ii). Through the above
calculation, we can obtain the number of stationary solitary
waves in momentum space k and the summary are shown in
Table I. The results given in Table I are further confirmed in
Fig. 2. As Fig. 2(a) shows, when � = 6, α = 1.5, � � 2α2,
and C2 	 3.69, it can be seen from Table I that when β = ±1,
β2 < C2, the system has one stationary solitary wave; when
β = ±3, β2 > C2, the system has three stationary solitary
waves. In particular, when � = 2α2, it can be obtained from
Eq. (22) that C1 = 0, C2 = α2. In this case, there has one
stationary solitary wave when |β| � α and three stationary
solitary waves when |β| > α. In addition, when � = 0, it can
be obtained from Eq. (14) that there are always two stationary
solitary waves in the system at k = ±

√
α2 + β2, and this

result is consistent with that in Ref. [36].
To further explore the coupled effects of the SO coupling

and the helicoidal gauge potential on the group velocity v,
Fig. 3 illustrates v = 0 in the α-β plane for different momenta
k. It is clear that when β = 0, the system has always two
stationary solitary waves at α = ±

√
(k2 + √

k4 + �2)/2 [see
Eq. (14)]. Note that the change of β can significantly affect
the number of stationary solitary waves in the α space, which
may be 0, 1, 2, 3, or 4. It can also see from Fig. 3 that the plot
of v = 0 in the α-β plane is asymmetric about β = 0 when
|k| is small, and it is different for the positive and negative k.
However, with the increase of k, the plot will become symmet-
ric gradually about β = 0 and will become consistent for the
positive and negative k. Furthermore, it is noted that the plot
of v = 0 is always symmetric about α = 0 in the α-β plane,
and the regions of v > 0 (k > 0) and v < 0 (k < 0) gradually
diffuses outward with the increase of momentum |k|.

Now we analyze different types of solitary waves in the
system. It is known that the effective NLS equation (16) has
solitary wave solutions, and the sign of the dispersion P and
nonlinearity S of Eq. (16) is crucial in determining the types
of solitary waves. When the signs of P and S are same, i.e.,
PS > 0, the system exists dark solitary waves. When the signs

are opposite, i.e., PS < 0, the system exists the bright solitary
waves. Note that dark solitary waves exist inside the linear
band (ω0 > 0), while the bright solitary waves are found in the
infinite gap below the lower-energy band (ω0 < 0) [15,17,26].
Generally, when the dispersion coefficient P > 0 (P < 0), the
solitary wave is called positive (negative) mass solitary waves.
As can be seen from the Eq. (18), the sign of S mainly de-
pends on the atomic interactions, and the repulsive (attractive)
atomic interactions correspond to S > 0 (S < 0) respectively.
Unlike S, the sign of P is determined by the coupled effects
of α, β, �, and k. In the presence of the Zeeman splitting
�, P > 0 when β2 < C0, which means that the system ex-
ists the positive mass dark (S > 0) or bright (S < 0) solitary
waves in this case; when β2 > C0, P > 0 and P < 0 coexist
in the momentum space k, thus there exist the positive mass
dark solitary waves (P > 0, S > 0), the positive mass bright
solitary waves (P > 0, S < 0), the negative mass dark solitary
waves (P < 0, S < 0), and the negative mass bright solitary
waves (P < 0, S > 0). Specifically, in the absence of the Zee-
man splitting (� = 0), the dispersion coefficient P = 1 > 0 is
a constant, and there exist the positive mass dark (S > 0) or
bright (S < 0) solitary waves.

In Fig. 4, the dark and bright solitary wave regions in the
α-β plane are shown for different k, which are obtained by
plotting PS = 0. Interestingly, the helicoidal gauge potential
β changes the solitary wave types drastically for the weak SO

FIG. 3. The group velocity region (i.e., v < 0, v = 0, v > 0) for
different k in α-β plane. Here � = 6.
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FIG. 4. Bright and dark solitary wave regions for different k in α-β plane. (a) S > 0 with g1 = g2 = g12 = 1. (b) S < 0 with g1 = g2 =
g12 = −1. Here � = 6.

coupling, i.e., when β = 0, only dark (bright) solitary wave
solutions exist in the system with repulsive (attractive) atomic
interaction; however, when β �= 0, both dark and bright soli-
tary waves can exist in the system regardless of whether
the atomic interaction is repulsive or attractive. As can be
seen from Fig. 4(a), with the repulsive atomic interactions
(i.e., S > 0), the bright solitary wave region in the α-β plane
presents lemniscates and is always symmetrical about α = 0
and decreases with the increase of momentum |k|. Clearly,
when |k| is sufficiently large, only dark solitary wave solutions
exist. It can also be found that the bright and dark solitary
wave regions of the system are also symmetrical about β = 0
for ±k. Meanwhile, the bright solitary waves mainly appear
in the region of β > 0 (β < 0) for the positive (negative)
momentum k. Figure 4(b) illustrates that the region of dark
and bright solitary waves with the attractive interactions (i.e.,
S < 0) is just opposite to that when the interaction is repulsive
(i.e., S > 0). To summarize, the moving or stationary bright
(dark) solitary waves can be obtained by choosing different
physical parameters. We next present various exact solitary
wave solutions of Eq. (16). In the case of PS > 0, with
ω0 > 0, we obtain the following dark solitary wave solution of
Eq. (16):

φd =
√

ω0/|S|(cosθ tanhzd + isinθ ), (23)

where zd = √
ω0/|P|cosθ [X − X0(T )]. Here θ is the solitary

wave phase angle, X0(T ) is the solitary wave center, and the
solitary wave velocity is dX0/dT = √

ω0/|P|sinθ .
In the case of PS < 0, with ω0 < 0, the bright solitary wave

solution of Eq. (16) is

φb = ηsechzbexp(iκX ), (24)

where zb = η
√−S/P[X − X0(T )]. Here η is the solitary wave

amplitude and satisfies the relation ω0 = (η2S/P − κ2)/2,
where X0(T ) is the solitary wave center. The solitary wave ve-
locity is connected to the wave number κ , i.e., dX0/dT = Pκ .

We next obtain the first-order approximate solitary wave
solutions of the original Eqs. (2) and (3):(

ψ1

ψ2

)
≈

(
1
Q

)
ε
√

ω0/|S|(cosθ tanhzd + isinθ )

× exp[ikx − i(ω + ε2ω0)t], (25)(
ψ1

ψ2

)
≈

(
1
Q

)
εηsechzbexp[i(k + εκ )x − i(ω + ε2ω0)t].

(26)

Here Eqs. (25) and (26) are the dark and bright solitary wave
solutions, respectively.

IV. NUMERICAL RESULTS

A. Stability and dynameics of solitary waves

It is also important to research the stability of solitary
waves. In the following, we will use two different approaches
to examine the stabilities of the solitary waves. We first
perform the linear stability analysis for the stationary solu-
tions. Our analysis relies on the study of the Bogoliubov–de
Gennes excitation spectrum around a stationary solitary wave
solution ϕ(x) = [ϕ1(x), ϕ2(x)]T of Eqs. (2) and (3), with
chemical potential μ. The spectrum is obtained as follows.
We consider small perturbation to the solution ψ(x, t ), in the
form

ψ1(x, t ) = {ϕ1(x) + ε[eλt a1(x) + eλ∗t b∗
1(x)]}e−iμt , (27)

ψ2(x, t ) = {ϕ2(x) + ε[eλt a2(x) + eλ∗t b∗
2(x)]}e−iμt , (28)

where ε � 1, λ measures the growth rate of the perturbation
instability, a1,2(x) and b1,2(x) are the perturbation eigenfunc-
tions of the linearized eigenvalue problem, and “∗” denotes
complex conjugation. Substituting Eqs. (27) and (28) into
Eqs. (2) and (3) and after a simplification, then we obtain that
the linear stability of the solitary wave solutions obeys
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(a) (b)

FIG. 5. The contour plots show the evolution of the total density for stationary solitary waves, bright solitary waves for g1 = g2 = g12 =
−1, κ = 0 in (a1) and (a2) and dark solitary waves for g1 = g2 = g12 = 1, θ = 0 in (b1) and (b2). The other parameters α = 1.5, β = 3,
� = 6, and k = −3.34. [(a) and (b)] Maximum growth rates of perturbation as functions of the chemical potential for the stationary bright
solitary wave and dark solitary wave, respectively. The insets in (a) and (b) are the density profiles of solitary waves at t = 0.

the following eigenvalue equations:

iλa1(x) =
[

H1 + iβ
∂

∂x

]
a1(x) + g1ϕ

2
1 (x)b1(x) +

[
− iα

∂

∂x
+ g12ϕ1(x)ϕ∗

2 (x)

]
a2(x) + g12ϕ1(x)ϕ2(x)b2(x),

iλb1(x) = −g1ϕ
∗2
1 (x)a1(x) +

[
− H1 + iβ

∂

∂x

]
b1(x) − g12ϕ

∗
1 (x)ϕ∗

2 (x)a2(x) +
[

− iα
∂

∂x
− g12ϕ

∗
1 (x)ϕ2(x)

]
b2(x),

iλa2(x) =
[

− iα
∂

∂x
+ g12ϕ

∗
1 (x)ϕ2(x)

]
a1(x) + g12ϕ1(x)ϕ2(x)b1(x) +

[
H2 − iβ

∂

∂x

]
a2(x) + g2ϕ

2
2 (x)b2(x),

iλb2(x) = −g12ϕ
∗
1 (x)ϕ∗

2 (x)a1(x) +
[

− iα
∂

∂x
− g12ϕ1(x)ϕ∗

2 (x)

]
b1(x) − g2ϕ

∗2
2 (x)a2(x) +

[
− H2 − iβ

∂

∂x

]
b2(x), (29)

where H1 = −1/2∂xx + �/2 + 2g1|ϕ1(x)|2 + g12|ϕ2(x)|2 −
μ, H2 = −1/2∂xx − �/2 + 2g2|ϕ2(x)|2 + g12|ϕ1(x)|2 − μ.
The above linear eigenvalue problem (29) can be solved
numerically by the help of Fourier collocation method [52].
If there exists eigenvalues λ (at least one) which satisfies
Re(λ) > 0, then the solitary wave solutions are linearly
unstable; otherwise, the solutions are stable. The stability of
solitary waves is also confirmed numerically by the nonlinear
dynamical evolution. The solitary wave solutions are added
a perturbation with a noise of strength 5% of their initial
amplitudes, which are used as the initial conditions for the

GP equations (2) and (3) and then numerically solved by the
fourth-order Runge-Kutta method.

According to the above theoretical analysis, we not only
obtain different types of the solitary waves but also study the
stability of solitary waves. Figures 5 and 6 demonstrate the
evolution of the total density |ψ1|2 + |ψ2|2 for the stationary
and moving bright (dark) solitary waves and their linear sta-
bility analysis, respectively. In order to obtain the stationary
solitary wave of the system, we select the appropriate param-
eters corresponding to bright or dark solitary waves with zero
group velocity and zero solitary waves velocity. Here we use
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(a) (b)

FIG. 6. The contour plots show the evolution of the total density for moving solitary waves, bright solitary waves for β = 1.2, κ = 1 in (a1)
and (a2), dark solitary waves for β = −2, θ = π/10 in (b1) and (b2). The other parameters α = 1.5, g1 = g2 = g12 = 1, � = 6 and k = 1.5.
[(a) and (b)] Maximum growth rates of perturbation as functions of the chemical potential for the moving bright solitary wave and dark solitary
wave respectively. The insets in (a) and (b) are the density profiles of solitary waves at t = 0.

the parameters α = 1.5, β = 3, and � = 6 in Fig. 5, and we
can obtain that the solitary wave is stationary at k = −3.34 by
solving Eq. (14) [see Fig. 2(a)]. Combining Fig. 4, when g1 =
g2 = g12 = −1, there should be the stationary bright solitary
waves in the system, as shown in Figs. 5(a1) and 5(a2); when
g1 = g2 = g12 = 1, there should be the stationary dark soli-
tary waves in the system, as shown in Figs. 5(b1) and 5(b2).
Figures 5(a) and 5(b) illustrate the linear stability analysis of
the stationary bright and dark solitary waves respectively by
depicting the maximum value of Re(λ) versus the chemical
potential μ. It can be seen that MaxRe(λ) of both stationary
bright and dark solitary waves are zero in a reasonable range
of chemical potential, i.e., these solitary waves are stable. And
then we plot the corresponding solitary wave evolutions by
selecting the points A1 (μ = −8.473) and A2 (μ = −8.773)
in Fig. 5(a) and the points B1 (μ = −8.273) and B2 (μ =
−7.973) in Fig. 5(b) [see Figs. 5(a1), 5(a2), 5(b1) and 5(b2)].
It is obviously that the shape, amplitude, and position of the
stationary solitary waves do not change during the evolution
process, indicating that these solitary waves are dynamically
stable, which are in agreement with the results of linear sta-
bility analysis. Note that the insets in Figs. 5(a) and 5(b) are
the total density profiles of solitary waves at t = 0. And it
can be seen that with the increase of energy deviation ε2ω0,
the amplitude of solitary wave increases and the wave width

decreases. In Fig. 6, we use parameters α = 1.5, k = 1.5,
g1 = g2 = g12 = 1, and � = 6. From Fig. 3 and Fig. 4, when
β = 1.2, it can be judged that there are moving bright solitary
waves in the system and the group velocity v > 0, the soli-
tary waves propagate in the positive direction. This is clearly
shown in Figs. 6(a1) and 6(a2). Similarly, when β = −2, there
are moving dark solitary waves in the system, and the solitary
waves propagate in the negative direction (v < 0), which are
shown in Figs. 6(b1) and 6(b2). Furthermore, the linear sta-
bility analyses of moving bright and dark solitary waves are
shown in Figs. 6(a) and 6(b) by depicting MaxRe(λ) versus
μ. Here it can be observed from Fig. 6(a) that MaxRe(λ) > 0
occurs with certain μ, indicating that the bright solitary wave
becomes unstable and is stable sufficiently close to the linear
energy band ω. We also plot the bright solitary wave evolu-
tions in Figs. 6(a1) and 6(a2) by selecting the points A1 (μ =
−1.435) and A2 (μ = −1.470) in Fig. 6(a). It can be seen
that the bright solitary wave evolution in Fig. 6(a1) is stable.
However, it is apparent from Fig. 6(a2) that the bright solitary
wave has a significant emission of radiation and distortion
during the evolution process, which means that the bright soli-
tary wave is unstable. These numerical results are consistent
with the linear stability analysis. Similarly, from Fig. 6(b) and
Figs. 6(b1) and 6(b2), the linear stability analysis and the
dynamical evolution show that the moving dark solitary waves
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(a1) (b1) (c1) (d1)

FIG. 7. The top row: The contour plots of the evolution of the total density for the moving solitary waves. The bottom row: Head-on
collisions of the solitary waves which corresponds to the top row in the (x, t ) plane, where κ = 3 (κ = −3) for all left-moving (right-moving)
solitary waves. The insets in the bottom row are the schematic diagrams of the position of solitary wave states in the linear energy band. The
other parameters α = 1.5, � = 6, g1 = g2 = g12 = −1, and ε2ω0 = −0.3.

are stable within a reasonable chemical potential region. The
insets in Figs. 6(a) and 6(b) are the total density profiles of
solitary waves at t = 0. And the amplitude and wave width of
the solitary waves with the increase of energy deviation ε2ω0

also increase and decrease, respectively.
The above investigations indicate that our analytical results

are in excellent agreement with the numerical results.

B. Collisions of solitary waves

Collisions are also one of the important dynamic properties
of solitary waves, which have attracted extensive research
interest [2,12,36]. In Fig. 7, we study the head-on collisions
between two stable moving solitary waves in the system by
taking the bright solitary waves as an example via the di-
rect numerical simulation. We consider four pairs of solitary
waves located at the four extremum points in the energy band
structure of Fig. 1(b), which are k = −3.34 and k = 3.31 for
β = 3 and k = −3.31 and k = 3.34 for β = −3, to study the
head-on collisions between solitary waves. The top row of
Fig. 7 demonstrates the dynamic evolution of each pair of
bright solitary wave moving in opposite direction. It can be
seen that all the solitary waves here are stable. Next, we place
the each pair of solitary wave moving in opposite direction
at the spatially symmetrical position at the initial time, so
that they can have head-on collisions. The collision evolution
results of the above four pairs of solitary waves are shown in
bottom row of Fig. 7.

Figures 7(a1) and 7(d1) respectively show the collision sce-
narios when the solitary waves are at the minimum points k =

∓3.34 in the energy band of β = ±3 [see Fig. 1(b) and the
insets in Figs. 7(a1) and 7(d1)]. It can be clearly observed that
the velocity directions of the left-moving and right-moving
solitary waves after collision are just opposite to the initial di-
rections. Nevertheless, the parameters of the left-moving and
right-moving solitary waves including the amplitude, width,
and velocity magnitude do not change after collision, which
remarkably indicate no energy exchange between them. That
is the collisions of solitary waves in Figs. 7(a1) and 7(d1) are
nearly elastic.

Figure 7(b1) shows the collision scenario when the solitary
wave at another extremum point k = 3.31 in the energy band
of β = 3 [see Fig. 1(b) and the inset in Fig. 7(b1)]. From
Fig. 7(b1), it can be clearly seen that the left-moving and
right-moving solitary waves pass through each other after
collision, and the directions and the velocity magnitude of
the two solitary waves both have obvious changes. Obviously,
the velocity of the left-moving solitary wave becomes larger
but the right-moving solitary wave becomes smaller. More-
over, the amplitude of the two solitary waves also have great
changes after collisions. Concretely speaking, the amplitude
of the left-moving solitary wave gets enhanced significantly,
and at the same time the amplitude of the right-moving soli-
tary wave diminishes significantly, which means that there is
an energy exchange between the two solitary waves. These in-
dicate that the collision in Fig. 7(b1) is inelastic. Interestingly,
the evolution of solitary waves after collision is also related to
the right-handed and left-handed helicoidal gauge potential.
Figure 7(c1) shows the collision scenario when the solitary
wave at the extremum point k = −3.31 in the energy band of
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β = −3 [see Fig. 1(b) and the inset in Fig. 7(c1)]. We can
observe that the solitary wave collision here is also inelastic
and the change of motion trajectory and the amplitude for the
left-moving and right-moving solitary waves are just opposite
to those in Fig. 7(b1).

The above numerical results show that in this system, the
interactions between solitary waves have both elastic and in-
elastic collisions, which are closely related to the position of
solitary wave states in the linear energy band. It is easy to
excite elastic collision when solitary waves are at the mini-
mum point in the energy band, while the inelastic collision
can be excited when solitary waves are at another asymmetric
extremum point.

V. CONCLUSIONS

In summary, we investigated the different types of the soli-
tary wave in the two-component helicoidal spin-orbit coupled
BECs by using the multiscale perturbation method. A single
NLS equation was derived and the solitary wave solutions
of the system were obtained. Our analysis indicates that the
helicoidal gauge potential breaks the symmetry of the energy
band and adjusts the energy band structure, thus further ef-
fecting solitary wave excitation in the system. Furthermore,
the analytical prediction of different solitary waves (i.e., sta-
tionary or moving or bright or dark solitary waves) of the
system in parameter space was also given. In particular, the
helicoidal gauge potential changes the solitary wave types
drastically for the weak spin-orbit coupling, i.e., when in the
absence of the helicoidal gauge potential, only dark (bright)
solitary wave solutions exist in the system with repulsive
(attractive) atomic interaction; however, when in the presence
of the helicoidal gauge potential, both dark and bright solitary

wave solutions can exist in the system regardless of whether
the atomic interaction is repulsive or attractive. In addition,
we investigated the stability of solitary wave and obtained
the stability regions of different types of solitary waves by
applying the linear stability analysis. It is found that in such
a nonlinear system, the stationary solitary waves are stable,
and there are both stable and unstable moving solitary waves.
Among them, the moving bright solitary waves is stable when
the chemical potential is sufficiently close to the linear energy
band. The dynamic evolution results of the solitary waves by
the direct numerical simulation not only validate the linear
stability analysis, but also confirm the analytical prediction
for the solitary wave types. Finally, the collision effects be-
tween solitary waves were also displayed by the numerical
simulation. It is shown that the interactions between solitary
waves in the system have both elastic and inelastic collisions,
which are closely related to the position of solitary wave states
in the linear energy band. It is easy to excite elastic collision
when solitary waves are at the minimum point in the energy
band, while the inelastic collision can be excited when solitary
waves are at another asymmetric extremum point. Our results
provide a potential way to adjust the types of solitary waves
in BECs with helicoidal gauge potential.
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