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Growth or decay of a coherent structure interacting with random waves
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Solitary waves interacting with random Rayleigh-Jeans distributed waves of a nonintegrable and noncollapsing
nonlinear Schrödinger equation are studied. Two opposing types of dynamics are identified: First, the random
thermal waves can erode the solitary wave; second, this structure can grow as a result of this interaction. These
two types of behavior depend on a dynamical property of the solitary wave (its angular frequency), and on a
statistical property of the thermal waves (the chemical potential). These two quantities are equal at a saddle point
of the entropy that marks a transition between the two types of dynamics: high-amplitude coherent structures
whose frequency exceeds the chemical potential grow and smaller structures with a lower frequency decay.
Either process leads to an increase of the wave entropy. We show this using a thermodynamic model of two
coupled subsystems, one representing the solitary wave and one for the thermal waves. Numerical simulations
verify our results.
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I. INTRODUCTION

The dynamics of nonlinear waves of fluids [1–3], Bose-
Einstein condensates [4], plasmas [5], and light interacting
with matter [6,7] generates in certain circumstances coherent
high-amplitude structures that emerge spontaneously from a
weakly nonlinear background of disordered waves. In this
paper, we give a statistical analysis of a solitary wave in-
teracting with random thermal waves. We show and explain
in detail that this coherent structure can either be eroded by
the surrounding random waves (Fig. 1) or it can grow by
this interaction (Fig. 2). Which of the two processes occurs
depends on the size of the solitary wave and the statistical
properties of the disordered waves.

The equation of motion under investigation [8,9] is a
generic nonintegrable Hamiltonian system, namely, the vari-
ant

i
∂φ

∂t
= ∂2φ

∂x2
+ |φ|2φ − |φ|4φ (1)

of the focusing nonlinear Schrödinger equation for a complex
field φ(x, t ). While our main result is applicable to arbitrary
dimensions, we study the system in one spatial dimension.
The quintic order term eliminates most conservation laws
that the cubic nonlinear Schrödinger equation has while its
sign ensures saturation of soliton amplitudes. This six-wave
interaction term is (unlike the trivial four-wave interaction)
not removable by a canonical transformation and it contributes
to energy transfer between modes [7]. It is obtained as the
next order term of phase-symmetric nonlinearities, e.g., of
the saturated nonlinearity φ|φ|2/(1 + |φ|2). Equation (1) is
equivalent to an equation

i
∂ψ

∂T
= D

∂2ψ

∂X 2
+ c3|ψ |2ψ − c5|ψ |4ψ,
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with arbitrary real positive coefficients D, c3, c5 via the scaling
transformation ψ (X, T ) = Aφ(x, t ) with A = √

c3/c5, x =
c3X/

√
c5D, t = c2

3T/c5 and multiplication of the equation by√
c3

5/c5
3 . More generally, positive or negative factors D, c3,

c5 yield four basic types of equations with the nonlinearities
±|φ|2φ ± |φ|4φ.

Equation (1) derives as iφ̇ = − δH
δφ∗ from the Hamiltonian

H[φ, φ∗] =
∫ L

0
(|φx|2 − 1

2
|φ|4 + 1

3
|φ|6)dx, (2)

other conserved quantities that are the wave action

A[φ, φ∗] =
∫ L

0
|φ|2dx (3)

(associated to the phase symmetry) and the momentum
P[φ, φ∗] = i

∫ L
0 (φxφ

∗ − φφ∗
x )dx (associated to the trans-

lational symmetry). L is the system size, the boundary
conditions are periodic. We denote the fixed values as H = E
(energy) and A = A, and we only consider a zero momentum
P = 0. A/L being small ensures that the amplitude |φ| is small
at least almost everywhere in real space.

Defering details to the Secs. II and III, we now outline the
main features of the simulations of Figs. 1 and 2. Equation
(1) with a system size L = 4096 and periodic boundary con-
ditions is integrated in time. The initial conditions of both
simulations comprise the same solitary wave which has a
squared amplitude |φm|2 = 0.238 and a frequency ωs = −0.1;
its momentum is zero. The surrounding waves are Rayleigh-
Jeans distributed with a high-wave number cutoff that reduces
aliasing errors. Conjugate to the two conserved quantities H
and A are the inverse temperature β (that measures the rate
of change of the entropy under changes of the energy) and
the chemical potential μ (related to the rate of change of the
entropy under changes of the wave action). The thermal waves
in the simulation of Fig. 1 initially have a chemical potential
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FIG. 1. Decay of a solitary wave interacting with thermal waves.
Equation (1) is integrated over 2 × 105 time units. The initial state
contains a solitary wave with a frequency ωs = −0.1 and an ampli-
tude |φm|2 ≈ 0.238. It is immersed in thermal waves with a chemical
potential μ = −0.2; the average amplitude is 〈|φ|2〉 ≈ 0.008. The
system size is L = 4096 with periodic boundary conditions. x = 0
in this plot is arbitrarily set in a way that the boundary x = 0 or
x = 4096 is not crossed by the solitary wave in this particular simu-
lation. (a) Time evolution (moving average over 2000 time units) of
the spatial maximum of |φ|2. The solitary wave decays from its ini-
tial amplitude |φ|2 ≈ 0.238 below the amplitude of the background
waves. (b) Initial amplitude profile |φ(x, t = 0)|2 at the starting point
of the simulation; the solitary wave is located near x = 4000. (c) Lo-
cations with |φ(x, t )|2 � 0.16 tracing the decaying solitary wave in
space and time. (d) Amplitude profile |φ(x, t = 2 × 105)|2 at the end
point of the simulation, the solitary wave is indistinguishable from
the surrounding waves.

μ = −0.2 (i.e., μ < ωs < 0), in Fig. 2, it is μ = −0.05 (i.e.,
ωs < μ < 0). The temperatures of the waves are chosen such
that the average wave action 〈|φ|2〉 = 0.008 is the same in the
two simulations.

We find that thermal waves with μ < ωs in the simulation
of Fig. 1 erode of the solitary wave so its amplitude decays and
it becomes indistinguishable from the background thermal
waves. Thermal waves with μ > ωs in the simulation of Fig. 2
cause a growth of the solitary wave. This threshold between
decay and growth at μ = ωs is found persistently in various
simulations, including varying temperatures, frequencies, and
chemical potentials. This type of transition has previously
been found in a nonlinear lattice [10], which among other
differences can have positive and negative temperatures. Our
aim is to explain the threshold between growth and decay and
the ensuing stable states. In Sec. II, we introduce a statistical
model by dividing the system into a subsystem that contains
one solitary wave (Sec. II A) and a subsystem of small-
amplitude thermal waves (Sec. II B). The coupling of thermal
waves and the solitary wave is described thermodynamically
by its effect on the equilibrium entropy of the two systems
(Sec. II C). We verify our results numerically in Sec. III. We
finally discuss the applicability of these results for changed
statistical properties of the random waves, higher dimensions,
and the role of the momentum.

FIG. 2. Growth of a solitary wave interacting with thermal
waves. The thermal waves have a chemical potential μ = −0.05,
everything else corresponds to Fig. 1. The solitary wave is initially
located at x ≈ 1000. Its amplitude grows during time evolution, it is
|φ|2 ≈ 0.5 at t = 2 × 105.

II. STATISTICAL MECHANICS OF WAVES INTERACTING
WITH A SOLITON: A MODEL OF TWO COUPLED

COMPONENTS

A. Energy of nontraveling solitary waves

We first discuss some basic properties of solitary waves
φ(x, t ) = φs(x, t ) of Eq. (1). The Hamiltonian (2) under the
constraint of a fixed wave action A = As is bounded from be-
low; the minimal energy H = Es(As) is achieved for solitary
waves that follow from the variation δ(H − ωsA) = 0 with
a multiplier ωs. The variation yields φxx + |φ|2φ − |φ|4φ =
−ωsφ, which is associated to solutions φs(x, t ) = eiωst u(x) of
(1); the frequency is given by the multiplier ωs = dEs/dAs.
The real amplitude u(x) is governed by the equation uxx =
−ωsu − u3 + u5 = −∂V/∂u of a mass in a potential

V (u) = ωs

2
u2 + 1

4
u4 − 1

6
u6. (4)

The wave action is finite if the waves are solitary, i.e.,
u(x) decays to zero quickly enough for x → ±∞. Such
waves correspond to homoclinic orbits that connect the saddle
point u1 = 0 to itself. The potential V (u) has a minimum at
u2 > 0 and a maximum at u3 > u2 if −1/4 < ωs < 0. For
−3/16 < ωs < 0, this maximum has a positive value V (u3) >

0 [Fig. 3(a)] so homoclinic orbits with an amplitude um <√
3/2, V (um) = 0 exist [Fig. 3(b)]. For ωs = −3/16, the po-

tential has the two maxima V (u1 = 0) = V (u3 = √
3/2) = 0,

a pair of heteroclinic orbits connecting them corresponds to
domain walls between the domains u1 = 0 for x → ∓∞ and
u3 = um = √

3/2 at x → ±∞. All these localized structures
are nontraveling; traveling solitary waves have higher energies
as they correspond to extrema of the Hamiltonian with the
additional constraint by a nonzero momentum P.

The analytical expression of the solitary wave of (1) is [8,9]

u2(x) = − 12ωs

3 + √
9 + 48ωs(2 cosh2(

√−ωsx) − 1)
,
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FIG. 3. (a) Potential V (u) (4) for ωs = −0.1 and for ωs =
−3/16. (b) Homoclinic orbits u(x), uxx = −dV/du of the saddle
point at u1 = 0 for ωs = −0.1 and for ωs � −3/16. The homoclinic
orbit for ωs = −0.1 corresponds to a nontraveling solitary wave with
a shape similar to the soliton of the focusing nonlinear Schrödinger
equation. The homoclinic orbit for ωs � −3/16 corresponds to a
nontraveling solitary wave with a broad plateau at its maximum.

the energy and frequency are [8]

Es(As) = 3

16
(
√

3 tanh

(
As√

3

)
− As) (5)

and

ωs = dEs(As)

dAs
= − 3

16
tanh2

(
As√

3

)
(6)

(Fig. 4). In the limit of small As with 0 < −ωs 
 3/16, the
quintic term is negligible and the solitary wave matches the
soliton u(x) = √−2ωssech(

√−ωsx) of the focusing nonlin-
ear Schrödinger equation with the energy Es ≈ −As

3/48 and
ωs ≈ −3A2

s /16.
For ωs � −3/16, the amplitude um of the homoclinic orbit

is close to u3. The solitary wave has a broad plateau with
u(x) �

√
3/2 [Fig. 3(b)] and a width �x that diverges to

infinity for ωs → −3/16. The energy of the walls
∫ L

0 |φx|2dx
is negligible for a broad solitary wave. The bulk energy scales

FIG. 4. Frequency ωs(As) = dEs(As )/dAs (6) of solitary waves.
Inset: Lower boundary Es(A) (5) of the Hamiltonian, points on the
line correspond to nontraveling solitary waves. Any other states
(traveling solitary waves, spatially extended waves, etc.) correspond
to points above this line. The Hamiltonian cannot have values in the
shaded area below this line.

as Es ≈ (−u4
3/2 + u6

3/3)�x = −9�x/64 and the bulk wave
action as As ≈ u2

3�x = 3�x/4, so Es ≈ −3As/16 (Fig. 4).
A solitary wave may be represented by a nonlinear

oscillator with Es(A) (5) being a Hamiltonian where A
and α are action-angle variables. The canonical equations
are α̇ = −∂Es(A)/∂A = ωs and Ȧ = ∂Es(A)/∂α = 0.
The microcanonical partition function (written with
the Dirac-δ) is 
s = ∫ 2π

0

∫ ∞
0 δ(Es(A) − Es(As))dAdα =

2π/|∂Es(As)/∂As| = 2π/|ωs|; the translational degree of
freedom yields the system size as an irrelevant factor of this
number. Notwithstanding the fact that this single oscillator
system is far from the thermodynamic limit, we introduce
an entropy ln 
s = − ln |ωs| + const, which decreases as a
function of |ωs| and increases as a function of the energy Es.
Of course, this entropy is extremely small as it is associated to
one degree of freedom only. The corresponding temperature,

β−1
s = −

(
∂Es

∂As

)2/
∂2Es

∂A2
s

= 3
√

3

32
sinh2

(
As√

3

)
tanh

(
As√

3

)
,

is positive and grows as a function of As; for small amplitudes,
it behaves as β−1

s ≈ A3
s /32.

B. Statistical mechanics of linear waves

We now review the basics of thermally distributed waves
φ(x, t ) = φw(x, t ) of (1). For A/L 
 1 the amplitude is
small almost everywhere. This suggests describing the small-
amplitude part of the system with a Hamiltonian H2[φ, φ∗] =∫ L

0 |φx|2dx. The nonlinearity is taken into account only as
a weak interaction between modes that allows the waves to
thermalize.

Waves with a small amplitude φw = ∑
akeikx can be

described by the linear approximation ak ∼ eiωkt with the
frequencies ωk = k2. Thermalization maximizes the wave en-
tropy S = ∑

ln nk with nk = 〈|ak|2〉. The extremum of the
wave entropy under the constraint of fixed energy Ew =∑

ωknk and wave action Aw = ∑
nk with multipliers β

and μ,

δ(S − β(Ew − μAw )) = 0,

yields the Rayleigh-Jeans distribution

nk = β−1(ωk − μ)−1;

nk > 0 requires μ < 0.
The second variation of the constrained wave entropy,

δ2(S − β
∑

(ωk − μ)nk ) = − 1
2β2

∑
(ωk − μ)2δn2

k,

is negative, the Rayleigh-Jeans distribution is the maximum of
the entropy under variations that redistribute the wave action
among modes in a way that keeps the total wave action and
energy constant.

As a general feature of the classical equilibrium statistics
of continuous dynamical systems, the energy Ew = ∑

ωknk

diverges for a canonical or grandcanonical ensemble where
β−1 �= 0 and possibly also μ are fixed. In other words, if the
wave system is coupled to an infinite reservoir of energy and
wave action, modes that are associated to infinitesimal wave
lengths absorb an infinite amount of energy from the reservoir.
For a microcanonical ensemble (energy and wave action of the
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thermal wave system solitary wave system

transfer of energy

transfer of wave action

growth of the solitary wave

shorter waves, higher entropy

longer waves, lower entropy

FIG. 5. Thermodynamic model: The dynamical coupling of a
solitary wave and thermal waves is reduced to a thermodynamic
coupling that enables the transfer of energy and wave action be-
tween the two systems. The sketch shows a growth process of the
solitary wave: Wave action is transferred from the thermal waves
to the solitary wave, energy is transferred in the opposite direction.
Flows of each conserved quantity in the opposite direction lead to a
decreasing solitary wave. Which of the two processes occurs depends
on whether the flow of energy or of wave action has a greater entropic
effect, which in turn depends on the chemical potential μ of the
thermal waves and the frequency ωs of the solitary wave.

waves are fixed), the energy spreads out over all modes, which
each absorb only an infinitesimal amount of these quantities.
To avoid such ultraviolet divergences, we introduce a finite
cutoff wave number kmax beyond which all degrees of freedom
are ignored. In our numerical simulations in Sec. III, the initial
wave action of waves beyond |kmax| = π/2 is zero. The sim-
ulations show that spreading energy to higher wave numbers
is a slow process compared to growth or decay of the solitary
wave.

C. Thermal waves interacting with solitary waves

To represent the complete system (1), we now combine
the solitary wave system φs and the thermal wave system
φw. A dynamical description of the combined system in-
volves the nonlinear coupling of the waves φs and φw. In
the thermodynamics of the combined system, this coupling
can be reflected by enabling a transfer of energy and wave
action between the two subsystems (Fig. 5). Each subsystem
is still described by its proper Hamiltonian (the quadratic
approximation

∫ L
0 |φx|2dx for the thermal waves and the full

Hamiltonian at its lower bound for the solitary wave). The
sums Aw + As = A and Ew + Es = E are conserved, growth
or decay of the solitary wave correspond to transfers of these
quantities. We consider the situation of the thermal waves
being a large reservoir of wave action Aw  As and energy
Ew  |Es|. Its temperature and chemical potential can be
treated as being constant as long as the changes |�Aw/Aw|,
|�Ew/Ew| of the conserved quantities are small.

Whether the soliton grows or decays depends on the impact
of these processes on the entropy of the small-amplitude ther-
mal waves. The entropy of the solitary wave itself is neglected.
The change of entropy S(Ew, Aw ) is

dS = β(dEw − μdAw ). (7)

Changes of the energy and wave action content of the solitary
wave are connected by

dEs − ωsdAs = 0.

FIG. 6. (a) Lower boundary Es(As ) of the Hamiltonian corre-
sponding to of the energy of solitary waves. (b) Wave entropy surface
S(Aw, Ew ) of thermal waves for β = 10, μ = −0.1. The green line
is an isentrope S = const, with dEw/dAw = μ. The energy and wave
action of the thermal waves can change by transfers of these quanti-
ties from or to growing or decaying solitary waves. This corresponds
to a time evolution along the boundary curve from (a) projected onto
the entropy surface. Growth of large solitary wave (ωs < μ < 0)
increases the entropy (blue curve), while for small solitary wave
(μ < ωs < 0) it is decay that increases the entropy (red curve). The
tangential point ωs = μ = −0.1 corresponds to an unstable equilib-
rium of the solitary and the thermal waves.

With the conservation of total energy dEw + dEs = 0 and of
wave action dAw + dAs = 0, the entropy can be expressed as
a function S(Es(As), As) of the wave action of the solitary
wave. Growth (dAs > 0) or decay (dAs < 0) of the solitary
wave translates to entropy changes

dS = β(μ − ωs)dAs (8)

of the thermal waves. At ωs = μ, the wave entropy change
vanishes in linear order (8), the quadratic order is

d2S = −β
d2Es

dAs
2 dAs

2 > 0, (9)

so this point is a minimum of the entropy with respect to
growth or decay processes of the solitary wave.

Equation (8) gives the thermodynamic reason for growth
or decay of the solitary waves. As a visualization of the
entropy in the presence of a solitary wave, Fig. 6(a) shows
the lower boundary Es(As) of the Hamiltonian, i.e., the energy
of solitary waves. Energies in the shaded area beyond this
line are inaccessible (compare Fig. 4). Figure 6(b) shows the
entropy surface S(Ew, Aw ) of the thermal waves expressed as
S(Ew, Aw ) = β(Ew − E − μ(Aw − A)) + const, with β and
μ being constant. The conservation laws Ew − E = −Es and
Aw − A = −As project the energy boundary Es(As) of the
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solitary energy of Fig. 6(a) to a boundary line Ew(Aw ) on the
entropy surface of Fig. 6(b); it corresponds to the entropy of
thermal waves that coexist with a solitary wave. The shaded
region beyond that line (corresponding to a higher entropy)
is again not accessible. The region below this line has by
∂S/∂Ew = β > 0 and ∂S/∂Aw = −βμ > 0, a lower entropy
under variations dEw < 0 and dAw < 0; in this region, a co-
herent wave whose energy is not extremal may coexist with
thermal waves; entropy maximization pushes the coherent
structure to the boundary. In other words, the solitary wave
is stabilized by the thermodynamic forces β and μ.

We now discuss how the system can evolve along
this boundary line. The isentrope S(Ew, Aw ) = const,
dEw/dAw = μ is tangential to the curve Ew(Aw ) at the
point where ωs = dEs/dAs = dEw/dAw = μ This is the
lowest entropy along the curve Ew(Aw ). In that sense, ωs = μ

is a saddle point of the entropy. This point separates two
regimes in which either growth or decay of the solitary wave
leads to an increase of the entropy along the curve Ew(Aw ).

A solitary wave with smaller values As and |Es| will de-
crease when it interacts with the thermal waves: a gain of
wave action dAw > 0 increases the entropy of the thermal
waves by −βμdAw; at the same time, they lose energy dEw =
ωsdAw < 0, which decreases their entropy by βωsdAw. By
(8), the entropic effect of the transfer of wave action is bigger
than the effect of the transfer of energy for μ < ωs < 0. The
solitary wave evolves along the red part of the curve Es(As) to-
ward As = 0, Es = 0 and, correspondingly, Ew = E , Aw = A.

A solitary wave with As and |Es| above the tangential
point grows by interacting with the waves: It evolves along
the blue part of curve Ew(Aw ), releases energy to the waves
which increases their entropy; at the same time, this growth
reduces the wave action of the thermal waves, but by (8)
in this regime the entropic effect of the energy transfer is
dominant. Two stages of growth can be distinguished: First,
the amplitude and frequency ωs of a smaller solitary wave with
|ωs| < 3/16 grows as a function of As; once the frequency
approaches |ωs| = 3/16 its width grows as a function of As

while its amplitude and ωs saturate. In an infinite system, the
solitary wave is expected to grow indefinitely, in a large finite
system, it will approach a two-phase equilibrium state, one
low-amplitude phase, and one high-amplitude phase of the
plateau of the solitary wave. This equilibrium is achieved by
transferring enough energy and wave action so (at variance to
the previous discussion) the chemical potential of the waves
is not constant but approaches the same limit as ωs.

III. NUMERICAL SIMULATIONS OF SOLITARY WAVES
IMMERSED IN THERMAL WAVES

We verify the predictions of Sec. II by integrating (1)
numerically with the same pseudospectral method as in Figs. 1
and 2. The nonlinearity is computed in real space and the time
integration of (1) is carried out in Fourier space. The linear
term −k2ak (corresponding to φxx) in the equations of motion
for the Fourier modes ak is removed by a transformation
bk (t ) = e−ik2t ak (t ). The resulting nonstiff equations for ḃk are
integrated in time using a multistep (Adams) method. The
system size is L = 212 with periodic boundary conditions and
with 212 modes with wave numbers −π < k � π . The results

FIG. 7. Time evolution of the spatial maxima of |φ(x, t )|2 for
a solitary wave with the initial frequency ωs = −0.1 and an ini-
tial squared amplitude |φm|2 = 0.238 (corresponding to the smaller
solitary wave in Fig. 3) immersed in thermal waves with various tem-
peratures and chemical potentials. The temperatures are chosen so
the average squared amplitude is 〈|φw|2〉 = 0.012 for all simulations.
The lines are running time averages over 2000 time units. The ten
blue lines correspond to thermal waves with chemical potentials from
μ = 0 to μ = −0.09, the black line corresponds to μ = −0.1, and
the ten red lines correspond to values from μ = −0.11 to μ = −0.2.
Increase indicates growth of the solitary waves which approach the
shape of the bigger structure in Fig. 3. Decrease indicates the the
erosion of the initial solitary waves which eventually decay below
the amplitudes of the thermal waves.

are verified for larger (L = 214) system sizes and for various
numerical accuracies. The weakness of the interaction of the
solitary wave and the random waves requires relatively long
and accurate integrations. The conservation of A is monitored
as a measure for the numerical accuracy, where the relative
error is <10−4 over the period of the numerical integration.
The code has also been tested for solitary waves without noise
and for soliton-soliton collisions for the integrable focusing
nonlinear Schrödinger equation.

The initial condition is a state of one solitary wave that
is immersed in but not covered by low-amplitude random
waves. These waves have random phases, a Gaussian ampli-
tude distribution and a Rayleigh-Jeans spectrum for −π/2 �
k � π/2. Waves with π/2 < |k| � π have zero amplitudes
initially. Only a small amount of wave action flows into this
region during the simulation, |ak|2 drops by at least two orders
of magnitude at the cutoff. The spreading of energy to very
short waves is a comparatively slow process.

Figures 7 and 8 give results for the same set of 21 nu-
merical simulations for different chemical potentials which
are varied from μ = −0.2 to μ = 0 with a step size 0.01.
The temperature is adjusted so the average square amplitude
of the background waves has the same value 〈|φw|2〉 = 0.012
for the initial conditions of all simulations; this makes the
timescale of growth and decay processes for different val-
ues of μ more comparable without influencing the transition
behavior. For μ = 0, the wave action is gathered at k = 0.
The solitary wave has initially a frequency ωs = −0.1 in each
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FIG. 8. Spatial maxima max(|φ|2) of the squared amplitude at
t = 4 × 105 for the simulations of Fig. 7. With the exception of
outliers at μ = −0.11 and μ = −0.08, the solitary wave that has
an initial frequency ωs = −0.1 grows and approaches the maximum
amplitude |φ|2 = 3/4 for −0.1 < μ � 0, and decays and vanishes in
the background waves for μ < −0.1.

simulation. About 4% of the total wave action is stored in
the solitary wave and 96% is stored in the thermal waves for
these initial conditions; the chemical potential and tempera-
ture change only slightly when the solitary wave is eroded.

Figure 7 shows the time evolution of the spatial max-
ima of |φ|2 for 21 runs, red branches correspond to −0.2 �
μ < −0.1, blue branches to −0.1 < μ � 0, the black branch
corresponds to μ = −0.1. The end points of these simula-
tions are plotted in Fig. 8 as a function of μ. We find that
the solitary waves decay for μ < −0.1, with the exception
of the simulation with μ = −0.11 in which it grows. Soli-
tary waves with −0.1 < μ grow, with the exception of μ =
−0.08. Our simulations occasionally produce such outliers
near the transition at μ = ωs = −0.1. This is a consequence
of the finite amplitude of the random waves that can push
the initial solitary wave just above or below the threshold.
Growing solitary waves develop a broad plateau similar to the
bigger solitary wave in Fig. 3. Due to random-wave fluctua-
tions, the maxima are slightly above the maximum |φ|2 = 3/4
of solitary waves. Decaying solitary waves decay below the
level of the highest amplitudes of the random waves.

IV. DISCUSSION AND CONCLUSIONS

We now briefly discuss to what extent our results can be
generalized. The distinctive property of solitary waves amid
all other coherent structures is that they have the lowest possi-
ble energy for a given wave action. This makes solitary waves
thermodynamically favorable, the thermodynamic forces β

and μ push coherent structures toward the lower boundary of
the Hamiltonian (Fig. 4). A solitary wave can evolve along this
lower boundary of the Hamiltonian (Fig. 6). Small solitary
structures decay when they interact with thermal waves if
μ < ωs < 0. In this case, the entropic effect of transferring
wave action from the solitary wave to the thermal waves
outweighs the entropic effect of the energy transfer in the op-
posite direction. The state of thermal waves without coherent

structures corresponds to a local maximum of the entropy. It
is metastable in the statistical sense that it attracts almost all
deviating states that are below a threshold; the deviations that
are most favorable for growth are solitary waves for which
the threshold is ωs = μ. Escaping from the metastable state
would require to decrease the wave entropy down to the saddle
point of Fig. 6(b), which will occur only on extremely long
timescales.

Large solitary waves with ωs < μ < 0 grow as they in-
teract with thermal waves. In this case, the entropic effect
of an energy transfer to the thermal waves exceeds the ef-
fect of the flow of wave action in the opposite direction,
which leads to a sustained growth of the coherent structure.
The entropy resulting from this process ultimately exceeds
the entropy of the small-amplitude state that corresponds
to the point (0,0) in Fig. 6(b). In other words, the vast major-
ity of microstates in the microcanonical ensemble contain a
solitary wave [11]. In that sense, the small-amplitude phase is
a marginal but physically relevant part of the microcanonical
ensemble.

The regimes of growth and decay are separated by an un-
stable equilibrium state of a solitary wave and thermal waves
with ωs = μ. It corresponds to a tangent point dEs/dAs =
dEw/dAw|S=const of an isentrope and the lower bound of the
Hamiltonian in Fig. 6(b). The entropic effects of transfer of
wave action and energy under growth or decay of the coher-
ent structure cancel each other in linear order. By (9) with
d2Es/dA2

s < 0, this is the minimum of the entropy (Fig. 6). At
the same time, it is maximal with respect to variations dAs > 0
with dEs = 0 and dEs > 0 with dAs = 0, in that sense it is a
saddle point. The assumption [12] that this is the maximum
of entropy would be true for a coherent structure with the
property d2Es/dA2

s > 0.
Our arguments are based only on the entropic effect of

the allocation of the two conserved quantities to the ran-
dom waves and the coherent structure. This is independent
of the details of the interaction of the coherent structure and
the random waves. Reference [13] discusses two dynamical
processes for this; first, the direct interactions of solitary
and small-amplitude waves, second, the interaction of a large
solitary wave with smaller solitary waves. Such smaller soli-
tary waves can emerge spontaneously from a modulational
instability when |μ| is small and β−1 is sufficiently large.
When such small solitary waves collide with a primary (and
bigger) solitary wave, they transfer wave action to the bigger
one while small amplitude waves are emitted [13,14]. The
thermalization is then mediated by a gas of interacting soli-
tary waves in which the largest structures gain an increasing
amount of power.

The Hamiltonian corresponding to (1) in two and three
dimensions is again bounded from below and supports cir-
cular or spherical solitary waves (minimizing the surface
energy) with Es � −3As/16 as energy minima. Our statis-
tical arguments can again be applied. The thermalization in
two dimensions was studied in Ref. [8]: Starting from a
modulational instability, droplets of the high-amplitude (or
high-density liquid) phase and bubbles of a low-amplitude
gas phase emerge and coalesce so the two phases become
increasingly cohesive in a way similar to one-dimensional
studies [13,14]. The coalescence of two droplets with the same
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density is driven by the release of coupling energy from their
boundaries that increases the wave entropy. Note that the fluc-
tuations on top of the solitary waves provide a relevant entropy
contribution if this high-amplitude phase fills a relevant part of
the space.

Expressing our findings in this liquid-gas picture, the gas
phase is metastable; droplets with a moderate density evap-
orate while droplets with a density above a critical threshold
accumulate more particles which first leads to a further in-
crease of the density, and subsequently a growth of the droplet
size without further change of the density.

Our study did not involve nonzero momenta, and we
observe only slow motions of the solitary wave caused by ran-
dom interactions with the thermal waves. Nonzero momenta
could be incorporated in both subsystems, which would lead
to an additional balance of the speed of the solitary wave
and a parameter v of the Rayleigh-Jeans distribution nk =
1/(β(ωk − vk − μ)). vk shifts the Rayleigh-Jeans distribution
in wave-number space and absorbs some energy.

What is the physical status of classical thermal equilibria
in Hamiltonian partial differential equations? For a canonical
ensemble where the system is coupled to an external heat bath
with a temperature β−1, the infinitesimal-wavelength degrees
of freedom absorb an infinite amount of energy. This was
studied, e.g., in Ref. [15] for a fixed wave action. If energy
and wave action are both fixed, the finite coupling energy is
shared by all modes, so it flows to infinitesimal wavelengths
[11]. The physical relevance of the attracting set is its influ-
ence on the dynamics at the scale where the wave equation
is applicable. However, the spatial fluctuations on short (and
certainly on infinitesimal) scales are outside the applicability
of macroscopic wave equations, notably of envelope equations
such as the nonlinear Schrödinger equation. Other effects such
as the quantization of electromagnetic waves and viscosity
of fluids are predominant at short scales. Our approach of
a finite-k cutoff of nk in the initial conditions is suitable for
predicting growth and decay processes that occur at a shorter
timescale than the spreading of energy towards short space
scales. The cutoff can also have direct physical relevance:
In photonics, a natural cutoff has been found as a result of
higher-order dispersion terms that lead to truncated [16] or
anomalous [17] thermalization, another effective cut-off can

be caused by proximity to the integrable case [18]. Finally,
spatial discreteness of lattices confines the wave number to the
Brillouin zone. Notably, the discrete nonlinear Schrödinger
systems possess an additional transition between positive and
negative temperatures [10,19–22].

With dissipation often superseding the wave dynamics at
short scales, wave turbulence can emerge as a nonequilibrium
state [1–3]. It can involve a direct cascade from long scales
into the dissipation range and, if wave action is a second
conserved quantity, and inverse cascade toward longer scales.
This is generic in two or three dimensions as it requires
nontrivial resonances of waves, but it has also been found in
one dimension when the dispersion is suitably modified [23].
Kolmogorov-Zakharov distributed waves with nk ∼ ω

−q
k ; q >

1 can, in principle, support growth of coherent structures even
more strongly than Rayleigh-Jeans distributed waves. The
buildup of coherent structures is then a strongly nonlinear
mechanism that feeds energy into the waves and that can
coexist with the interaction of weakly correlated waves of
turbulence [24]. The formation of localized structures can be
a relevant contributor to dissipation [25].

To conclude, we have found either progressive growth or
erosion of a coherent structure that interacts with random
waves in a generic nonintegrable and noncollapsing nonlinear
Schrödinger equation. Growth is at variance to wave collapses
the result of an interaction with surrounding waves that supply
wave action to the coherent structure. The erosion process
drives the waves into a metastable low-amplitude thermal
state. The threshold between growth and decay represents an
unstable equilibrium that depends on a statistical property of
the random waves (their chemical potential), and a dynamical
property of the solitary wave (the angular frequency). The
behavior that we have found is generic in the sense that it is
a consequence of the entropy maximization under the con-
straints of conserved quantities; it can be expected to happen
in various equations, dimensions, and types of spectra of the
surrounding waves.
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