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We address the old and widely debated question of the spectrum statistics of integrable quantum sys-
tems, through the analysis of the paradigmatic Lieb-Liniger model. This quantum many-body model of
one-dimensional interacting bosons allows for the rigorous determination of energy spectra via the Bethe ansatz
approach and our interest is to reveal the characteristic properties of energy levels in dependence of the model
parameters. Using both analytical and numerical studies we show that the properties of spectra strongly depend
on whether the analysis is done for a full energy spectrum or for a single subset with fixed total momentum.
We show that the Poisson distribution of spacing between nearest-neighbor energies can occur only for a set
of energy levels with fixed total momentum, for neither too large nor too weak interaction strength, and for
sufficiently high energy. By studying long-range correlations between energy levels, we found strong deviations
from the predictions based on the assumption of pseudorandom character of the distribution of energy levels.
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I. INTRODUCTION

Since the first studies of one-body quantum systems that
are strongly chaotic in the classical limit [1–5], the most
popular test widely used to distinguish between regular and
chaotic systems was the search of the form of the nearest-
neighbor-level spacing distribution (LSD) for energy levels.
Specifically, it was assumed that for a completely integrable
system the LSD has generically the form of a Poisson
distribution, P(s) = exp(−s), characterizing the absence of
correlations between energy levels. Contrarily, in the opposite
limit of strong chaos, the LSD reflects strong repulsion of
close energies, P(s) ∼ sβ (for s → 0) with the repulsion pa-
rameter β = 1, 2, 4 that depends on symmetric properties of
the system (see, for example, Ref. [6]). Although it was shown
that such a correspondence is not always exact [7–9], the
counterexamples are often considered as quite specific ones.

Historically, the interest in the properties of the LSD has
been motivated by the experimental studies of quantum spec-
tra of heavy nuclei and multielectron atoms (for references,
see, for example, Ref. [10]). One of the first applied studies
concerning the form of the LSD is traced back to 1939 [11].
Specifically, in view of the problem of phase transitions in
nuclear matter, it was assumed that the LSD has the form
of a Poisson distribution. This and other experimental studies
of the low energy neutron scattering in nuclear reactions has
triggered intensive discussions of the typical form of the LSD
(see in Ref. [10]). Finally, it was accepted that according to
scaling arguments presented by Wigner [12], the distribution
P(s) in application to heavy nuclei might be described by the
expression nowadays known as the Wigner surmise (WS).

Apart from the specific form of the repulsion of energy
levels, the WS suggests even stronger decrease of P(s) ∼
exp(−Bs2), for s → ∞ as compared with the exponential
decrease ∼ exp(−s) of the Poisson distribution. This be-
havior has been confirmed by experimental data gathered
from neutron spectroscopy groups around the world to ob-
tain the first global spacing distribution of s-wave neutron
resonances [13].

Later on, following Wigner’s studies of random matrices
[14], Dyson rigorously derived exact expressions for the tails
of P(s) for all values of β [15]. According to these results,
for β = 1, 4, the tails are described by both exponential and
Gaussian terms, and only for β = 2 the exponential term is
absent. However, as was noted by Dyson himself, one can
correctly resolve the tails of P(s) only when the number of
energy levels is very large, i.e., exceeding 105. Clearly, this
is not possible experimentally, thus the Wigner-Dyson (WD)
expression P(s) = Asβ exp(−Bs2) (with A, B being normal-
ization constants) can be used as a good approximation in
many applications.

Numerous experimental data obtained in the study of en-
ergy spectra of heavy nuclei, complex atoms, and molecules
have confirmed the emergence of the WD distribution (see, for
example, references in Ref. [16]). It was, however, understood
that the absence of level repulsion does not necessarily mean
absence of strong chaos. The point is that in the analysis
of experimental or numerical data one has to be sure that
the considered energy spectrum does not contain any sub-
set associated with some specific quantum numbers. Indeed,
since such subsets are independent one from each other, the
energy levels associated with different quantum numbers are
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uncorrelated thus giving rise to the apparent absence of level
repulsion. Thus, by superimposing the subsets of energies
belonging to different quantum numbers, one can get a LSD
which may not show noticeable repulsion, while when fixing
all quantum numbers a quite good correspondence to the WD
distribution can be found. For the first time, this effect has
been discussed in Ref. [17] in application to nuclear reactions
for which quantum numbers might not be known in advance.

A famous example is the Bunimovich billiard [18] for
which there are four independent energy subsets due to the
symmetry of the boundary with respect to reflections in
both vertical and horizontal directions. Correspondingly, there
are four kinds of eigenstates specified by their symmetric
properties in the configuration space. Thus, only by select-
ing a particular subset of energy levels related to a specific
symmetry of the eigenstates, the true WD distribution can
be observed. Interesting enough, one can expect that for a
N-dimensional Bunimovich billiard with N � 1 the level
spacing distribution P(s) should be very close to the Poisson
distribution when considering the total spectrum, and to the
WD distribution when analyzing one of the subsets associated
with a particular symmetry of the eigenstates. As one can
see, the question about the type of P(s) characterizing the
spectrum statistics of a given system is, strictly speaking,
meaningless, unless all conditions are specified. It should be
also noted that, even if the corresponding classical system is
completely ergodic and chaotic (as in the case of the Buni-
movich billiard) in the lower part of the energy spectrum
the quantum effects always suppress chaos that prevents the
emergence of the WD distribution. The transition from a
Poisson to a WD distribution as a function of the energy and
the geometric shape of the billiard have been investigated in
Ref. [19] for the slightly perturbed Bunomivich billiard.

The emergence of the Poisson form of the LSD widely
treated as an indication of integrability, has attracted much
attention from the viewpoint of its mechanism. Indeed, the
integrability of a quantum system is closely related to regular
sequences of energy levels. However, the Poisson distribution
itself is known to appear in statistical physics as a strong
property of randomness. The source of apparent randomness
for the LSD has been studied, for the first time, in Ref. [20],
where the Poisson distribution was explained within a semi-
classical approach to quantum systems with the well defined
classical limit. Note that for one-dimensional systems the
LSD is highly nongeneric (and typically far from either the
Poisson or the WD). So far, the Berry-Tabor conjecture [20]
of the Poisson form of P(s), as a generic property of quantum
systems that are integrable in the classical limit, has not yet
rigorously proved, in spite of intensive mathematical studies
(see, for instance, Refs. [21–23] and references therein).

In more details, the mechanism of pseudorandomness of
the LSD was firstly demonstrated in Ref. [24] in the nu-
merical study of the rectangular billiard which is trivially
integrable in both classical and quantum description. It was
shown that despite the regularity of the energy spectrum,
En,m = αn2 + m2 (with an irrational value of α and integers
n, m) the LSD demonstrates quite good correspondence with
the Poisson distribution. This means that the mechanism of
apparent pseudorandomness of the energy spacings has here
a geometric nature, emerging due to the reduction of the

two-dimensional set of the values En,m to a one-dimensional
set of energies Eα . Specifically, in spite of a regular grid of
values En,m on the plane n, m, the number of points En,m

within the area bounded by the curves E and E + ds changes
randomly when changing the value of E . However, strong
deviations from the Poisson distribution have been detected
in the region of very small s spacings [24]. Moreover, other
sensitive statistical tests of the randomness of energy levels
(such as the absence of correlations between distant energy
levels) have shown that the sequence of energy levels can-
not be considered truly random. Another interesting example
of many-body noninteracting integrable system characterized
by a LSD strongly different from Poisson can be found in
Ref. [25]. All these data indicate that statistical properties of
energy spectra of integrable models have a restricted corre-
spondence to the properties associated with a truly random
process at least as far as noninteracting integrable systems
are concerned. But what about many-body integrable systems
with interacting particles?

In this paper, we focus on the properties of energy spec-
tra of the paradigmatic Lieb-Liniger (LL) model [26–28], to
which a huge number of works are devoted (see, for example,
Refs. [29–32] and references therein). This model describes
one-dimensional (1D) bosons on a circle interacting with a
two-body pointlike interaction. The model belongs to a pecu-
liar class of quantum integrable models solved by the Bethe
ansatz [33,34]; in particular, it is possible to show that it has
an infinite number of conserved quantities. Apart from the
theoretical interest, many related problems have been recently
discussed in view of various experiments with atomic gases
[35–37]. Since this model has no classical counterpart, it is
extremely interesting to shed light on the mechanism for the
emergence of randomness, if any, in the energy spectrum, and
quantify its statistical properties. Moreover, using the Bethe
equation it is possible to extract an arbitrary large number
of energy levels within an arbitrary small numerical error.
This fact renders the LL model really unique in the class of
interacting integrable quantum many-body systems.

For a weak inter-particle interaction the LL model can be
described in the mean-field (MF) approximation. Contrarily,
for a strong interaction, the 1D atomic gas enters the so-called
Tonks-Girardeau (TG) regime in which the density of the
interacting bosons becomes identical to that of noninteracting
fermions (keeping, however, the bosonic symmetry for the
wave function) [28]. The crossover from one regime to the
other is governed by the ratio between the boson density
and the interaction strength. The interaction is inversely pro-
portional to the 1D interatomic scattering length and can be
experimentally tuned with the use of the Feshbach resonance
(see, for example, Ref. [38] and references therein).

II. THE MODEL

The Hamiltonian of the LL model with N bosons interact-
ing on a ring of length L by a pointlike interaction, has the
form

H = H0 + cV = −
∑

i

∂2

∂x2
i

+ 2c
∑
i �= j

δ(xi − x j ). (1)
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Here we have used the units in which h̄/2m = 1 and the key
parameter c stands for the strength of the δ-like interaction
between bosons.

For the reader’s convenience we report here the standard
procedure for finding eigenvalues and eigenfunctions; see,
for instance, Refs. [29–32]. The solution for the eigenvalue
problem can be obtained firstly by restricting the configuration
space to the sector x1 � x2 � . . . � xN where the Bose wave
function �(x1, . . . , xN ) is completely determined. Thus, the
system becomes a system of free particles with the interac-
tion playing a role only as a boundary condition, for any
k = 2, . . . N , [

∂�

∂xk
− ∂�

∂xk−1

]
xk=xk−1

= c�.

Now, we search the �-function (in the sector defined
above) written in the form

�(x1, .., xN ) =
∑

P

aP exp

[
i

N∑
k=1

xkλP(k)

]
, (2)

where aP are phase factors and the sum is over the N! permu-
tations of 1, .., N . Imposing the latter to be a solution of the
stationary Schrodinger equation allows one to get the phase
factors in terms of the rapidities λP(k).

Then, by fixing periodic boundary conditions on the circle
of length L, namely, �(..., xk, ...) = �(..., xk + L, ...), one
obtains a system of N Bethe equations (see, for example,
Ref. [29]), i = 1, ..., N ,

λi = 2π

L
mi − 2

L

N∑
k �=i

arctan

(
λi − λk

c

)
(3)

for the rapidities λi. Each set of distinct “quantum numbers”
{mi}N

i=1 is composed by integers (or half integers) for an odd
(or even) number of particles N .

Extending the wave function to the whole configuration
space, each set of N rapidities {λi}N

i=1 defines an eigenstate
|α(λ1, ..., λN )〉. The set of all eigenstates serves as a complete
basis in the completely symmetric many-body Hilbert space.
We label with α the N rapidities related to the eigenstates |α〉
in the following way: {λα

i }N
i=1.

The rapidities completely specify the energy of the
eigenstate |α〉

E
(
λα

1 , ..., λα
N

) =
N∑

i=1

(
λα

i

)2
, (4)

the momentum

P
(
λα

1 , ..., λα
N

) =
N∑

i=1

λα
i , (5)

and also the infinite set of conserved charges with k > 2,

Qk
(
λα

1 , ..., λα
N

) =
N∑

i=1

(
λα

i

)k
. (6)

In the following for simplicity we restrict our study by taking
an odd value of N and setting L = 2π .

FIG. 1. (a) Density of many-body states for different values of
the cutoff M = 50, 75, 100 for interaction n/c = 0.01. (b) Eigenval-
ues Eα as a function of the index label α for different interactions
strengths n/c as indicated in the caption, together with the analytical
solutions for the infinite and zero interactions. The data are obtained
for N = 5 particles and fixed total momentum P = 2.

The goal of this paper is to find all possible eigenvalues in
a finite energy region and to study in a very accurate way their
statistics. To do that we first fix a large integer number M and
consider all possible sets of N different integers |mj | < M.
For each set we compute all possible sets of rapidities (that
determine the energies) satisfying Eq. (3). Let us call Emax(M )
the maximal value of the energy for a given value M of the
cut-off. After, we consider another cut-off number M ′ > M
and compute again all possible rapidities and energies. In
this way we obtain more energy levels in the region with
the maximal value Emax(M ′) > Emax(M ), but, most impor-
tantly, we obtain many missing energy levels in the interval
[0, Emax(M )]. We continue the procedure of increasing M up
to the complete filling of the interval [0, Emax(M )], meaning
that a further increase of M does not produce any new eigen-
value in the specified energy range. Typically, we have found
that M ′ ∼ 2M is enough to find all eigenvalues in the interval
[0, Emax(M )].

To solve the nonlinear Eq. (3), we have used the standard
Newton solver with the precision ε = 10−15 in finding the
rapidities. As initial conditions we provided an educated guess
taking into account that we know explicitly the solution in two
simple limit cases:
• infinite interaction (fermionization, free fermions),

c = ∞, λα
j = 2π

L
mα

j ; (7)

• no interaction (free bosons),

c = 0, λα
j = 2π

L

(
mα

j − j + N + 1

2

)
. (8)

Since any eigenenergy is the sum of N squared distinct
integer numbers [see Eq. (4)] it is obvious that the distribution
P(s) is dramatically different from a Poisson in both limits
above.

As an example of spectrum, we compute all energy eigen-
values by taking three different values of M. Results for
density of states are shown in Fig. 1(a). As one can see, for this
N value, the spectrum is linear in energy, with the bell shape
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which is simply due to the cutoff M. It is clear that in the
infinite case (M → ∞) only the linear unbounded spectrum
remains. Needless to say, we consider the eigenvalues taken
from the linear part of the energy spectrum only, in which the
values of energies are not suffered by the cutoff. An example
of the spectrum, as a function of the label α and for different
interaction strengths n/c is given in Fig. 1(b). In this figure and
below, the density of bosons is n = N/L = N/2π . Here and
below we use the rescaled parameter n/c of the interaction,
which was found to be the key characteristic for the crossover
from to the mean-field to the Tonks-Girardeau regime.

III. INDEPENDENT SPECTRA

Before starting to analyze the spectral properties, let us
consider the fundamental role played by the total momentum
P. Since the arctan in Eq. (3) is an odd function of its argu-
ment, the total momentum for our choice (L = 2π and N odd)
is an integer number,

P =
N∑

i=1

λi =
N∑

i=1

mi.

Arranging the eigenvalues according to (i) its momentum and
for each fixed momentum according to its growing energy,
one can see that the Hamiltonian matrix has an infinite block
diagonal structure. Each block matrix has been obtained by
bracketing eigenstates having the same total momentum P,
and it is disconnected from any other block (due to the mo-
mentum conservation there are no matrix elements connecting
states with different total momenta). Moreover, a careful anal-
ysis has led to the unexpected result indicating that the energy
levels in different energy subsets corresponding to different
values of the total momentum P, are strongly correlated. To
show that let us first start from Eq. (3) written as

λi = mi +
∑
k �=i

f (λi − λk ), (9)

with f (x) ≡ arctan(x/c)/π . Here, each set of different inte-
gers {mi}N

i=1 determines a set of rapidities {λi}N
i=1 character-

izing completely an eigenstate with the energy E (λ1, ..., λN )
and the momentum P(λ1, ..., λN ), see Eq. (4).

Let us now consider another (shifted) set of quantum num-
bers m′

i = mi + k with k a positive or negative integer number.
It is clear that the shifted rapidities λ′

i = λi + k satisfy the
same Eq. (9),

λ′
i = m′

i +
∑
k �=i

f (λ′
i − λ′

k ), (10)

but with a shifted momentum and energy given, respectively,
by

P{λ′
i} =

∑
i

(λi + k) = P + kN (11)

and

E{λ′
i} = ∑

i(λi + k)2 = E{λi} + ν, (12)

where ν = 2kP + k2N is an integer number.
This means that for a given number N of particles, all the

energies corresponding to some fixed momentum P, turn out

FIG. 2. (a), (b) First 25 energies rescaled by the factor ν for the
interaction n/c = 1 and N = 5 particles, for different total momenta:
(a) P = 0, (b) P = 1, and (c) P = 2.

to be shifted by the same constant integer number ν (and
thus the levels statistics for the energy subset with fixed total
momentum, will be the same). In particular, let us note that
for k = −2P/N (consider here that only k integer is valid) we
have ν = 0 and P{λ′

i} = −P{λi}. Thus, we recover the fact
that P and −P are related to the same eigenenergy.

Let us now analyze Eqs. (11) and (12) in more detail. Set-
ting, for instance, k = 1 the energy spectrum for P and P + N
is simply shifted by the factor ν = 2P + N . This suggests
that, at most, only the spectra for P = 0, 1, ...N − 1 might be
independent. However, it is not the case. Actually, the energy
subsets for P = 1 and P = N − 1 have the same spectrum
(with a constant shift). To see this, one has to simply take
k = 1 and P = −1 in Eq. (12) and to observe that P = 1
and P = −1 give the same spectrum. In the same way the
energy subsets for P = 2 and P = N − 2 are the same with
respect to a constant shift, and so on. The bottom line is that
for an odd number of particles N only the spectra with the
momentum values P = 0, 1, ..., (N − 1)/2 are independent,
all the other being simply shifted by a constant. This is a
quite unexpected property of the energy spectra since it is
completely independent of the interaction strength c.

A numerical verification of the above mathematical proof
is shown in Fig. 2. There, we present the first 100 energy levels
for the LL model with N = 5 bosons, rescaled due to the shift
ν for the interaction n/c = 1. The energy levels have been
obtained by solving the Bethe equations for few values of the
total momentum, namely, for 0 � P � 9, and plotted together
with the energies corresponding to the momenta P = 0, 1, 2.
The data demonstrate that all eigenvalues, properly shifted by
factor ν, are exactly the same.

IV. STATISTICS OF CLOSE ENERGIES

As we explained above, one can exactly compute an
amount of eigenvalues in a given energy region by choosing
a large enough value of the cutoff M. In this way we can
explore the statistical properties of energy spectra without the
influence of spectrum truncation, at least for a not very large
number of particles and for not very high energies.

One of the conclusions from our study is that it is mean-
ingless to expect the Poisson form of the LSD when speaking
of the total energy spectrum. Namely, from our analysis it is
clear that there is strong clustering of energy levels that does
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FIG. 3. LSD distribution for N = 5 particles, fixed momentum P = 2 and n/c = 1 (a), n/c = 0.1 (b), and n/c = 0.01 (c). The data are
obtained taking the first 104 different energy levels starting from the beginning of the energy spectrum at fixed momentum. Black curves
indicate the Poisson distribution.

not allow to speak about the Poisson distribution. There are
two mechanisms of such clustering. The first is the influence
of a high degeneracy of energy levels in two limit cases (ei-
ther zero or infinite inter-particle interaction). And the second
mechanism is due to very strong correlations between the
subsets of energy levels, belonging to different values of the
total momentum (see the proof above).

Much more interesting is the question about the statistical
properties of energy spectra for a fixed total momentum. In
this situation there is only the first mechanism of clustering
for a relatively weak or very strong interaction. Let us consider
for instance the LSD for the first 104 energy levels for three
different interaction strengths. Results are shown in Fig. 3. As
one can see, the clustering of energy levels for small values of
s persists both for a relatively weak interaction, n/c = 1, and
for a very strong interaction, n/c = 0.01. In both cases one
can see that the LSD has a very pronounced peak at the origin,
at variance with the Poisson distribution shown for compari-
son. Also, a clear similarity between these two cases is seen.
As for the intermediate interaction strength, one can see that,
formally, the LSD can be treated as the Poisson one. We did
not explore this distribution more carefully (for example with
the use of the χ2 test), instead, we have used other famous
tests for the check of the absence of correlations between
nearest energy levels. As a result, concerning the Poisson form
of the LSD in the Lieb-Liniger model, one can conclude that it
can be observed under specific conditions only (for fixed total
momentum, plus not weak or strong inter-particle interaction).

Let us now discuss another test recently suggested for
the discriminating the Poisson statistics from the Wigner-
Dyson one. Specifically, we focus on the ratio of consecutive
level spacings that is used in the literature (see, for instance,
Refs. [39–42] and references therein) when analyzing the
repulsion between nearest levels. This test has the advantage
of not requiring the unfolding of the spectrum since it involves
the two closest energy levels only. Following this approach,
we introduce the variables

ξα = sα

sα−1
, sα = Eα − Eα−1, (13)

and create the quantity of our interest,

χα = Min(ξα, 1/ξα ). (14)

Even if the spectrum unfolding is not required, this test is
useful when an average over disorder is performed, focusing
on a particular part of the energy spectrum. According to
the theory, supported by various numerical studies, for the
Poisson distribution one gets, 〈χα〉 = 0.386.

In Fig. 4 we summarize our study of the above quantity
χα for different interaction strengths n/c, various values of
the total momentum P and for different parts of the energy
spectrum. Our results (light blue dots) are compared to the
theoretical value related to the Poisson distribution (red line).
As one can see, the variable χα undergoes huge fluctuations
which can hardly give a precise answer about the kind of

FIG. 4. Blue dots: 104 values of min(χα, 1/χα ) for N = 5 par-
ticles and P = 2 of the total momentum. Panels in different rows
stand for different parts of the energy spectrum (see x axis), while
different columns indicate different values of the interaction strength
(as indicated in the legend). Yellow dots are shown for the average
over 500 close values, while the continuous red line corresponds to
the value 0.386 obtained from a completely random set of energies.
In panel (f) a blow up of a single blue vertical line is shown.
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the LSD. To facilitate the comparison we average χα over
500 consecutive energy values (yellow circles). The averaged
data show that, in general, there is a good agreement with the
value corresponding to the Poisson distribution, obtained for
the intermediate interaction between bosons. Moreover, as one
can see from the middle-bottom right panels (high energy and
strong interaction), even if the yellow circles are well fitted
by the red line, an extreme clustering of the levels indicates a
complete absence of randomness as one should expect.

V. �3 STATISTICS

More carefully, the randomness of the energy spectrum
can be verified by analyzing not only short-range correlations,
e.g., nearest-neighbor statistics, but also long-range ones. Ac-
cording to this test, known as the 
3-statistics, one can reveal
the so-called rigidity (or stiffness) of the energy spectrum and
discriminate between regular and chaotic motion in the cor-
responding classical systems [43]. The strongest rigidity can
be associated with that given by the equidistant energy levels.
As was shown by Dyson and Mehta [15,44], the spectrum of
full random matrices reveals a kind of rigidity which is due
to correlations between distant energy levels. Such a rigidity
of energy spectrum can be compared with a slightly melted
crystal, an analogy which has been used by Dyson to derive
many statistical properties of random matrices.

To imply this test for physical systems, it is necessary to
proceed with the unfolding of the sequence of energy levels
due to the dependence of the mean level spacing on the energy.
The idea of the unfolding is to pass from a given sequence
of levels to that having a constant level spacings, however,
with the same correlations between the levels, both short and
long-range ones. In this approach we start with the function.

η(E ) =
K∑

α=1

�(E − Eα ), (15)

which counts the number of levels with the energy less than or
equal to E and is usually referred to as the staircase function.
Specifically, the unfolding consists in mapping the sequence
{E1, E2, ..., EK } onto the numbers {ξ1, ξ2, ..., ξK } in such a
way that the function ξ (E ) is the smooth part of η(E ) and
η̂ f l (E ) is the fluctuating part: η(E ) = ξ (E ) + η̂ f l (E ). Thus,
we define


3 = minA,B
1

L

∫ ξs+L

ξs

[η̂(ξ ) − Aξ − B]2dξ, (16)

where η̂(E ) counts the number of levels in the interval
[ξs, ξs + L]. Minimizing Eq. (16) we obtain the following
relations:{

d
3
dA = − 2

L

∫ ξs+L
ξs

ξ [η̂(ξ ) − Aξ − B]dξ = 0
d
3
dB = − 2

L

∫ ξs+L
ξs

[η̂(ξ ) − Aξ − B]dξ = 0
, (17)

from which one finds⎧⎪⎪⎨
⎪⎪⎩

A = px1 − 2q

x2
1 − 2x2

B = qx1 − px2

x2
1 − 2x2

, (18)

FIG. 5. The 
3 statistics obtained for different values of the total
momentum, P = 0, 1, 2 (respectively, upper, middle, and lower row),
averaged over 104 consecutive initial energies. Each column rep-
resents different interaction strengths: n/c = 0.2 (left), n/c = 0.02
(middle), n/c = 0.002 (right). Different colors used for different
energy regions: low energy region with ξα starting from α = 1 in
blue, middle energy region with ξα starting from α = 106 in red, and
ξα starting from α = 2×106 in yellow, Dashed black line stands for
the Poisson statistics. In computing spectra for the case P = 0 the
accidental degeneracy of few eigenvalues has been eliminated.

where

x1 = 2

L

∫ ξs+L

ξs

ξdξ = 2ξs + L, (19)

x2 = 2

L

∫ ξs+L

ξs

ξ 2dξ = 2

3

(
L23ξ 2

s + 3ξsL
)
, (20)

p = 2

L

∫ ξs+L

ξs

η̂(ξ )dξ q = 2

L

∫ ξs+L

ξs

ξ η̂(ξ )dξ, (21)

and

t = 2

L

∫ ξs+L

ξs

η̂2(ξ )dξ . (22)

With these parameters the expression for 
3 takes the
form,


3 = 1
2 t + 1

2 A2x2 + B2 − Aq − Bp + ABx1. (23)

In case of a Poisson statistics the relation 
3(L) = L/15
holds. In Fig. 5 we show the 
3 statistics for N = 5 and all
possible values of total momentum P = 0, 1, 2 giving rise
to independent spectra (one line for each fixed momentum).
Moreover, we considered three different values of the inter-
particle interaction, n/c = 0.2; 0.02; 0.002 (from the left to
the right column). In each panel we show the dependence
of 
3 on L for not too large values L < 5, obtained in three
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FIG. 6. The 
3 statistics obtained for total momentum P = 1 and N = 7 particles, averaged over 104 consecutive initial energies. Panels:
(a) n/c = 2.8 (left), (b) n/c = 0.28 (middle), (c) n/c = 0.014 (right). Different colors refer to different energy regions: low energy region with
ξα starting from α = 1 in blue, middle energy region with ξα starting from α = 106 in red, and ξα starting from α = 2×106 in yellow, dashed
black curve stands for the Poisson statistics.

different energy regions of the spectrum: a low energy region
close to the ground state (in blue), a middle (red), and a high
one (orange). Below we extend our analysis to the larger L
values. As one can see from the comparison with the analyti-
cal prediction (indicated by a dashed line), the 
3 test shows
some similarity with the Poisson statistics apparently only for
intermediate values of the interaction (middle column) and
sufficiently high energy values (not too close to the ground
state).

To check whether the global properties of the 
3 statistics
obtained for N = 5 are generic and not sensitive to the model
parameters, we have slightly increased the number of particles
(with approximately the same values of the inter-particle in-
teraction). Note that we cannot increase N strongly due to a
dramatic increase of the computation time. However, we be-
lieve that the studied values N = 5, 7 can be treated as typical
ones for the situation with a finite number of particles, not too
small and not very large. The data for N = 7 are presented
in Fig. 6 which should be compared with the vertical central
panel of Fig. 5. As one can see, the conclusion we draw is the
same: the closest relation to the theoretical result for the linear
dependence, 
3 ∝ L, emerges for the intermediate values of
the perturbation strength and for large enough energies Eα of
the eigenstates.

To check quantitatively the deviations from the prediction
for random spectrum (straight line with the slope 1/15) we fit

3(L) to the dependence,


3(L) = γ0L + γ1, (24)

in the range 0 � L � 5. Then we plot in Fig. 7 the slope
γ0 as a function of the interaction strength n/c for different
energy regions in the spectrum (see different colors). From
this picture it is clear that from one side one can say that for
any energy range a suitable range of values of the interac-
tion can be found where the 
3 test indicates a rather good
agreement with the value γ0 = 1/15 in the region 0 < L < 5).
However, for any interaction strength one can find an energy
range where the 
3 statistics indicates strong deviations from
the Poisson predictions.

Now, we extend our study of the 
3 statistics on a scale
much larger than L = 5. As was found in Ref. [24] for the
(integrable) rectangular billiard, with an increase of L the
deviation from the prediction γ0 = 1/15 is increasing, even if

both the LSD and 
3 tests have shown quite good correspon-
dence to the theoretical predictions. Specifically, it was found
that a kind of stiffness of the energy levels occurs when very
large values of L are taking into account. Thus, here we ask the
question whether the correlations between the energy levels
not seen in our study for the intermediate values of interaction,
will emerge on a larger L scale. To this end we study the 
3

statistics for very large L values for those interaction strength
values for which the data seem to confirm the theoretical
predictions (see, for instance, the middle column of Fig. 5).
Results for this study are shown in Fig. 8. As one can see, the
linear increase of 
3 lasts approximately up to L � 200 (we
considered 104 different energy levels). Beyond this scale, we
have discovered a dramatic increase for the slope of the 
3

FIG. 7. Slope of 
3(L) for different values of the interaction and
different regions of the spectrum as in previous figures, compared
with the slope obtained with a completely random sequence (see the
black line). The data are presented for P = 2 total momentum, and
the average is done over a set of 104 energies around the energy in-
dicated in the legend. The log-scale in x axis shows a nice symmetry
with respect to a particular interaction strengths n/c in dependence
on the chosen energy range.
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FIG. 8. Average 
3 statistics for large L values. The parameters are the same as in Fig. 5, central column.

statistics. This effect is similar to that found numerically in
Ref. [24]. However, to our surprise the deviations for the slope
occur in the opposite direction. Namely, at variance with the
results of Ref. [24] demonstrating a kind of a decrease of the
rigidity, our data clearly indicate an increase of the rigidity of
the energy spectrum with an increase of L. Specifically, the
slope of 
3 statistics increases with L [we remind that for the
Wigner-Dyson statistics, 
3(L) ≈ ln(L)] and not decreases
as found in Ref. [24]. This fact that 
3 ∝ Lα with α > 1
for L � 1 which we have observed numerically, may have a
strong impact for the dynamical properties of the Lieb-Liniger
model, and still awaits for additional clarifications.

VI. SUMMARY

Our analysis shows that the properties of energy spectra of
the LL-model dramatically depends on whether we consider
the total energy spectrum or only a subset of energy levels
associated with a fixed value of the total momentum (which
is a physical constant of motion besides the energy). By
considering the total energy spectrum, we found very strong
clustering of energy levels for any strength of the interparticle
interaction. This means that it is meaningless to speak of the
Poisson form of the level spacing distribution unless the total
momentum is fixed. The conservation of total momentum is a
distinctive property of the LL model, that has to be taken into
account when quantifying the statistical properties of energy
spectrum.

Due to the above peculiarity of the LL model, our main
attention was paid to the properties of energy spectra for fixed
total momentum, in dependence on other model parameters,
such as the strength of interparticle interaction and the energy
of many-body eigenstates. The rigorous analysis has revealed
a quite unexpected property of energy spectra. It was found
that some of the subsets of energy levels associated with spe-
cific values of the total momentum, can be obtained from other
values of total momentum, with an appropriate shift along the
energy spectrum. Therefore, such energy subsets are strongly
correlated and this fact does not depend on the interparticle
interaction. This property of energy spectra may have strong
impact for the dynamical properties of the LL-model.

By studying the level spacing distribution (LSD) for fixed
values of the total momentum, it can be shown that for zero
and infinite inter-particle interaction there is a strong degen-
eracy of the energy levels, that gradually disappears moving
away from the limits of either zero or infinite interaction. We

have found that depending on the model parameters one may
speak of the Poisson form of LSD, however, the residual effect
of the clustering of levels for s = 0 may remain. Still, the
question about what happens with the LSD with an increase
of the number of particles or with an increase of the energy,
awaits for further clarification.

We have also used another test to explore the absence of
correlations between nearest energy levels based on the ratio
of consecutive level spacings. In contrast with the LSD test, it
does not need the unfolding of the energy spectrum. However,
the considered ratios of spacings reveal very strong fluctua-
tions that can be only washed out by a further averaging over a
large numbers of spacings. Nevertheless, we have numerically
overcame this problem and found a quite good confirmation of
the results obtained by studying the LSD when the interaction
between particles is neither very weak nor very strong.

Our further analysis is due to the so-called 
3 statistics, a
test which measures the correlations between distant energy
levels and gives information about the rigidity of the spec-
trum. This test is much more sensitive if compared to the
LSD test which detects the correlations between the nearest
energy levels only. To this end, we have carefully studied the

3 statistics in the LL-model and found that the agreement
with Poisson lasts for small values of L only. However, with an
increase of L we typically observe strong deviations from the
theoretical predictions obtained for truly random sequences.
It is interesting that these deviations are in contrast to those
found in Ref. [24], and seem to be influenced by the rigidity
of energy spectrum. This rigidity strongly depends on the
model parameters, as we found when changing the number
of interacting particles.

We would like to stress that our numerical study is free
from the effects of the cutoff of the energy spectrum. The con-
trol of the accuracy of numerically obtained energy levels is a
typical problem in any numerical approach (see, for instance,
Refs. [30,32,45–47]). The peculiarity of our approach is that
the accuracy of the computation of energy levels is determined
by the numerical solver of the equations Eq. (3) determining
the rapidities λ only. Since the accuracy in solving these
equations is extremely high, one can treat our computation
as exact.

In conclusion, our study manifests that the common belief
of the pseudorandom character of energy spectra of integrable
many-body systems cannot be taken as general, at least when
the number of particles is finite. Second, we have revealed
the details of how pseudorandom properties of energy spectra
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of the LL-model depend on the energy and the interaction
strength, for fixed values of the total momentum. We hope
that our results may be important for the study of quench
dynamics, and can stimulate the mathematical community in
proving rigorous results in this direction.
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