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Fermi-Pasta-Ulam phenomena and persistent breathers in the harmonic trap
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We consider the long-term weakly nonlinear evolution governed by the two-dimensional nonlinear
Schrödinger (NLS) equation with an isotropic harmonic oscillator potential. The dynamics in this regime
is dominated by resonant interactions between quartets of linear normal modes, accurately captured by the
corresponding resonant approximation. Within this approximation, we identify Fermi-Pasta-Ulam–like recur-
rence phenomena, whereby the normal-mode spectrum passes in close proximity of the initial configuration,
and two-mode states with time-independent mode amplitude spectra that translate into long-lived breathers of
the original NLS equation. We comment on possible implications of these findings for nonlinear optics and
matter-wave dynamics in Bose-Einstein condensates.
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I. INTRODUCTION

Nonlinear Schrödinger (NLS) equations of the form

i∂t� = [− 1
2∇2 + V (x)

]
� + g|�|2�, (1)

with real potentials V (x) and cubic nonlinearity strength g
provide a universal framework for modeling a wealth of
physical phenomena in weakly nonlinear dispersive media,
including the dynamics of matter waves in Bose-Einstein con-
densates (BECs), propagation of optical signals in dielectric
media, Langmuir excitations in plasmas, surface waves on
deep water, etc. [1,2]. For appropriate choices of V (x) and
especially in lower spatial dimensions, these equations exhibit
highly organized dynamical phenomena, some of which we
address in this work.

The best-studied form of dynamics in NLS equations
occurs in the 1D setting with V (x) = 0, which exhibits in-
tegrability with its celebrated manifestations in the form of
exact multisoliton [3,4] and breather [5] solutions. The inte-
grability is, of course, a very fragile property. In particular, it
is destroyed by nonvanishing potentials V (x) in the 1D version
of Eq. (1). Precise consequences of the integrability breaking
significantly depend on the shape of the potential [6].

It has been emphasized in Ref. [7] that the harmonic-
oscillator (HO) potential is very special in this regard. While
no form of integrability is known to be valid for the 1D NLS
equation with the HO potential, the dynamics of this system
is very far from the ergodic form generic to nonintegrable
Hamiltonian systems. In particular, systematic simulations
reveal that the NLS equation with a self-repulsive nonlin-
earity, g > 0 in Eq. (1), displays a quasidiscrete dynamical
power spectrum, unlike the continuous spectra typical for
nonintegrable dynamics [7]. As an empiric effect, the absence

of “turbulence” in simulations of this model was observed in
earlier works [8,9]. This phenomenon, referred to as “quasi-
integrability” [7], does not occur with other forms of trapping
potentials, e.g., the potential box, which readily give rise to
the usual ergodic dynamics and continuous power spectra
[7,10,11].

The special role of the HO potential is retained in two
spatial dimensions (2D), in which case some regular, highly
organized motions are observed, in contrast to the egodicity,
which, as mentioned above, one may expect in a generic non-
integrable system. These motions include periodic splitting
and recombination of unstable vortices [12] as well as a range
of breather solutions [13]. In the Thomas-Fermi limit, the
breathers of Ref. [13] include strikingly simple circular and
triangular configurations with sharp boundaries. While the
emergence of these breathers has been given an analytic expla-
nation in Refs. [14–16], and similarly case-by-case analytic
understanding has been developed for some regular motions
in other cases, as shown below, we are not aware of any over-
arching mathematical structure (as in the case of integrable
equations) that would underlie such regular dynamics. Physi-
cally, the persistence of regular dynamics and the absence of
ergodicity are related to various obstructions to thermalization
of low-dimensional interacting multiboson systems, which
occur in a variety of physically relevant settings [9,17–19].

In the present work, we focus on Eq. (1) in 2D with the
isotropic HO potential in the weakly nonlinear regime. It is
well known as the mean-field Gross-Pitaevskii (GP) equation
for BECs in pancake-shaped ultracold atomic gases, strongly
confined by an external field in the third direction [20,21]. The
same equation with t replaced by the propagation distance
z governs the transmission of light beams through a bulk
waveguide with transverse coordinates (x, y), where the HO
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potential represents the guiding profile of the local refrac-
tive index [22]. Similar equations have been considered from
theoretical and mathematical perspectives in higher spatial
dimensions, where they exhibit noteworthy dynamical phe-
nomena [23,24].

Weakly nonlinear dynamics in HO potentials is quite pecu-
liar because the perfectly resonant frequency spectrum of the
corresponding linearized problem (the usual equidistant spec-
trum of the quantum HO) leads to a dramatic enhancement
of weak nonlinearities. Generically, weakly nonlinear evolu-
tion can be thought of as quasilinear evolution, in which the
amplitudes and phases of the normal modes are not constant,
but undergo slow modulations under the action of the weak
nonlinearity. For highly resonant spectra of the linearized-
normal-mode frequencies, such as the HO spectrum, the slow
modulations may accumulate to effects of order 1 for small
g in Eq. (1), on timescales ∼1/g. Such large effects of small
nonlinearities on long temporal scales are effectively captured
by simplified resonant systems, whose dynamics is the main
subject of this work. Resonant systems are widely used for
weakly nonlinear analysis of highly resonant PDEs, and are
known, in various branches of research, as the multiscale
analysis, time-averaging, or effective equations [25,26]. For
the NLS/GP equation with the HO potential in 2D, rigor-
ous mathematical proofs have been developed [27] for the
accuracy of the resonant system as an approximation to the
original PDE in the relevant weakly nonlinear regime; see also
Ref. [28] for a similar treatment in 1D. Note that restrictions
to resonant interactions between the modes are also essential
to the wave turbulence theory [29], though in that setting
the phases of normal modes are treated as random variables,
while the resonant approximation as considered here is fully
deterministic.

Within the resonant approximation, the dynamics of the
2D NLS/GP equation with the isotropic HO potential has
been previously analyzed in Refs. [30–32], where its evolution
was found to display a variety of regular dynamical patterns,
time-periodic and stationary. They take the form of precessing
vortices [30], oscillating rings [32], as well as revolving and
precessing vortex arrays [32]. General results on positions
of vortices for configurations that are stationary within the
resonant approximation have been presented in Ref. [31].
These analytic results rely on very special properties of mode
couplings for the NLS/GP equation with the 2D HO po-
tential, and some general mathematical structures underlying
these simple behaviors have been uncovered in Refs. [33–35].
The corresponding quantum many-body problems, considered
outside the GP-based mean-field approximation, likewise dis-
play pronounced regular features [36–38] (see also the review
in Ref. [6]).

Our purpose in this work is to present new dynamical
regimes for the 2D NLS/GP equation with the isotropic HO
potential, approximated by the corresponding resonant sys-
tem, beyond those reported in Refs. [30–32]. It is natural
to consider the weakly nonlinear evolution in terms of the
slow energy transfer between linearized normal modes. This
perspective suggests the question whether Fermi-Pasta-Ulam
(FPU) phenomena [39,40] may occur in our setting for some
initial data. The notion of FPU dynamics goes back to the
classic paper [39] where it was observed that the distribution

of energy among the normal modes of weakly nonlinear os-
cillator chains returns, in some situations, to close proximity
of the initial configuration. The energy thus fails to effectively
redistribute among all available degrees of freedom, as would
be suggested by ergodicity (thermalization). Here, we address
the question whether similar phenomena occur in the evolu-
tion of the mode spectrum of the NLS/GP resonant system.

There are a few reasons why one may expect FPU phe-
nomena to occur in the present case. First, in Refs. [30,32],
perfect (rather than approximate) returns of the amplitude
spectrum to the initial state have been observed for some very
specific initial data in the framework of the resonant approxi-
mation that we consider here. Second, FPU-like approximate
returns have been reported [41,42] for relativistic analogs of
the NLS/GP equations with the HO potentials (those systems,
defined in the anti–de Sitter spacetime, reduce to the NLS
equation in the nonrelativistic limit [43–45], hence they have
essentially identical normal-mode spectra, and their resonant
approximation [46–49] is structured identically to that for the
NLS/GP problems, as originally pointed out in Ref. [23]).
Third, FPU returns have been observed in a related setup in
Ref. [50], albeit in the absence of the HO trap and with two
different nonlinear terms included in the equation.

We thus set the goal of identifying the FPU dynamics
within the resonant approximation for the 2D HO-trapped
NLS/GP equation, and reporting initial configurations that
result in this dynamics. While looking for FPU returns, we
additionally discover infinite families of two-mode initial data
that lead to no energy transfer at all within the resonant
approximation, due to the vanishing of specific four-mode
couplings. These configurations produce long-lived breathers
in terms of the underlying NLS equation, which are of interest
in their own right. Before proceeding with the presentation
of the technical results, we introduce in Sec. II the setup for
analyzing the weakly nonlinear resonant NLS/GP dynamics,
and then review, in Sec. III, how the dynamics can be consis-
tently restricted to smaller sets of modes in which the target
phenomena are observed (if only modes from one of these
sets are excited in the initial state, subsequent evolution does
not excite any modes outside the set). In Secs. IV and V,
we present our findings for the FPU returns and two-mode
breathers, respectively. The paper is concluded by Sec. VI,
which includes a brief discussion of possible applications.

II. THE WEAKLY NONLINEAR RESONANT EVOLUTION

We consider the 2D NLS/GP equation with the isotropic
HO potential, written in the scaled form

i∂t� = 1
2 (−∇2 + r2)� + g|�|2�, (2)

where r is the radial coordinate, cf. Eq. (1). We focus on
the weak-coupling regime with |g| � 1, and consider the
evolution on long timescales ∼1/|g|. The weakly nonlinear
evolution amounts to slow modulations of amplitudes and
phases of the linearized normal modes. Because of the reso-
nant nature of the spectrum of the ordinary linear Schrödinger
equation for the HO, arbitrarily small nonlinearities may gen-
erate effects of order 1 on such timescales. Leading effects of
this sort are captured by the resonant approximation that we
construct below. In this context, opposite signs of the coupling
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g lead to essentially identical modulation patterns (up to time
reversal). Of course, the sign of g leads to drastic differences at
finite values of |g|, such as the occurrence of critical collapse
under the action of the focusing term with g < 0 [1,2], but
in the weakly nonlinear regime that we address here, such
differences appear on timescales t � 1/|g|, which are outside
of the scope of our analysis.

The 2D NLS/GP Eq. (2) with the HO trap and cubic
nonlinearity is rather special as it features a symmetry en-
hancement in comparison to other dimensions, manifested, in
particular, by the presence of the Pitaevskii-Rosch breathing
mode [51,52]. In close relation to this breathing mode is the
lens transform [53,54], also known as the “pseudoconformal
compactification” [55], that allows one to map into each other
the evolution governed by the 2D Eq. (2), and the same
equation without the potential term (the mapping relates in-
finite and finite time intervals for the two equations involved).
In particular, this mapping has been recently employed in
Ref. [16].

Before proceeding with the weakly nonlinear analysis, we
write down the general solution of the linearized problem (g =
0), composed of the HO eigenstates [56]:

�norm.
nm =

√[
1
2 (n − |m|)]![
1
2 (n + |m|)]! r|m|

√
π

L|m|
n−|m|

2

(r2)e−r2/2eimφ. (3)

Here, (r, φ) are the polar coordinates, Lα
n (x) are the general-

ized Laguerre polynomials, n = 0, 1, 2, ... labels the energy
level

En = n + 1, (4)

and m ∈ {−n,−n + 2, ..., n − 2, n} labels the angular mo-
mentum. To optimize the subsequent analysis, we introduce
an extra sign factor in the definition of the eigenfunctions as
follows:

�nm = (−1)
1
2 (m−|m|)�norm.

nm . (5)

This factor brings our set of the linearized normal modes in
accord with Ref. [27]. Using the identity√

((n − |m|)/2)!

((n + |m|)/2)!
r|m|L|m|

n−|m|
2

(r2)e−r2/2

= (−1)
1
2 (m−|m|)

√
((n − m)/2)!

((n + m)/2)!
rmLm

n−m
2

(r2)e−r2/2,

one obtains the following expression:

�nm =
√[

1
2 (n − m)

]
![

1
2 (n + m)

]
!

rm

√
π

Lm
n−m

2
(r2)e−r2/2eimφ, (6)

which is the basis that will be employed below. The tower of
linearized normal modes is visualized in Fig. 1.

One could try to perturbatively improve, as a power series
in g, the linearized solutions of Eq. (2),

�linear(t, r, φ) =
∑
n,m

Anme−iEnt�nm(r, φ), (7)

where �nm are the normal modes given by Eq. (6) and Anm are
constant complex amplitudes. This approach is known to fail,
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FIG. 1. Energies Eq. (4) corresponding to normal modes Eq. (6)
labeled by quantum numbers n and m. A few possible restrictions to
smaller sets of modes, addressed within the resonant approximation
in Sec. III, are highlighted by colors. The rightmost highlighted
diagonal line is the lowest Landau-level truncation which was
used in Refs. [30,31]. The vertical highlighted line represents the
fixed-angular-momentum truncations employed in Ref. [32]. The
remaining highlighted line represents a generic restriction to a “one-
dimensional” subset of modes that play a central role here, in
Secs. IV and V.

however, due to the apprearance of secular terms that grow in
time and lead to breakdown of the perturbative expansion on
timescales t ∼ 1/|g|. An appropriate alternative that correctly
captures the dynamics on the relevant timescales is provided
by the resonant approximation. To develop it, we start by de-
composing exact solutions to Eq. (2) in terms of the linearized
modes,

�(t, r, φ) =
∑
n,m

αnm(t ) e−iEnt�nm(r, φ), (8)

where αnm are complex-valued functions of time. Plugging
this decomposition in Eq. (2) and projecting onto �nm, one
obtains an infinite system of ordinary differential equations,

i
dαnm

dt
= g

∑
nimi

Cmm1m2m3
nn1n2n3

ᾱn1m1αn2m2αn3m3 e−iEt , (9)

where the bar stands for complex conjugation,

E ≡ En + En1 − En2 − En3 , (10)

and the interaction coefficients, or resonant mode couplings,
are defined by

Cmm1m2m3
nn1n2n3

≡
∫ ∞

0
rdr

∫ 2π

0
dφ �̄nm�̄n1m1�n2m2�n3m3 . (11)

As the φ-dependence of �nm is given by eimφ , the φ integration
nullifies C, unless

m + m1 = m2 + m3, (12)

which represents the angular momentum conservation.
Note that we did not make use of the weakly nonlinear

limit yet, and the expressions up to this point are correct for
finite values of g. However, when g is small the dynamics
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described by Eq. (9) acquires a conspicuous two-scale struc-
ture. Namely, most terms on the right-hand side come with
oscillatory factors e−iEt that vary on timescales t ∼ 1, while
αnm have time derivatives ∼g, thus varying slowly, on scales
t ∼ 1/g. It is natural to expect that the effect of the oscillatory
terms averages out and may be neglected (a more precise
statement is given below), while significant contributions to
the evolution of αnm are produced only by those terms on the
right-hand side of Eq. (9) that do not oscillate on timescales
∼1, which is precisely the terms with E = 0, or

n + n1 = n2 + n3. (13)

The resonant approximation, so named after resonance condi-
tion Eq. (13), is defined by keeping only such nonoscillatory
terms. Under this approximation, which is the main focus of
our study, and introducing the slow time τ = gt (with overdots
denoting τ derivatives from now on), one obtains the follow-
ing resonant system of the 2D NLS/GP equation with the HO
potential:

iα̇nm =
∑

n+n1=n2+n3

m+m1=m2+m2

Cmm1m2m3
nn1n2n3

ᾱn1m1αn2m2αn3m3 . (14)

The general expectation is that Eq. (14) provides an accu-
rate approximation to the exact evolution Eqs. (9), which are
tantamount to Eq. (2), over times t ∼ 1/g. Such statements
for systems of evolution equations with a finite number of
degrees of freedom can be rigorously proved by elementary
methods [25]. At the same time, a mathematically rigorous
treatment of approximating the specific Eq. (2) by Eq. (14) is
given in Ref. [27]. Resonant equations of this type have also
been recently employed to study two-component BECs [57],
as well as the scattering dynamics governed by NLS equations
when the HO trapping only acts in a single spatial direc-
tion [58].

As mentioned above, 2D Eq. (2) has a specific symmetry
structure, which becomes even more manifest in the resonant
approximation. Thus, the evolution defined by Eq. (14) con-
serves the following six quantities [27]:

N =
∑
nm

|αnm|2, (15)

M =
∑
nm

m |αnm|2, (16)

E =
∑
nm

n |αnm|2, (17)

Z+ =
∑
nm

√
n + m + 2

2
ᾱn+1,m+1αnm, (18)

Z− =
∑
nm

√
n − m + 2

2
ᾱn+1,m−1αnm, (19)

W =
∑
nm

√
n2 − m2

2
ᾱnmαn−2,m. (20)

The first two of them are directly inherited from the conser-
vation laws of Eq. (2) and correspond to the conservation of
the wave-function norm (number of particles) and angular
momentum. The third one is related to the energy of the

linearized version of Eq. (2), which is conserved by the reso-
nant interactions retained in Eq. (14). Finally, the origin of the
three remaining conserved quantities can be traced back [35]
to the “breathing modes” of Eq. (2)—namely, those quanti-
ties that evolve periodically for all solutions of the equations
of motion. Thus, Z+ and Z− correspond to the two spatial
coordinates of the center-of-mass of the field configuration
described by �(x, t ), which always performs a simple har-
monic oscillatory motion [59], while W corresponds to the
Pitaevskii-Rosch breathing mode [51,52].

We finally quote an explicit expression for the interaction
coefficients Eq. (11) through the Laguerre polynomials:

Cm1m2m3m4
n1n2n3n4

= 1

π

{
4∏

i=1

√[
1
2 (ni − mi )

]
![

1
2 (ni + mi )

]
!

} ∫ ∞

0
dρ e−2ρ

× ρ (m1+m2+m3+m4 )/2

[
4∏

i=1

Lmi
ni−mi

2

(ρ)

]
. (21)

As the Laguerre polynomials are generated by a simple
iterative procedure that raises their degree (related to the
raising operators for the HO), these interaction coefficients
inherit a peculiar discrete structure from the underlying set of
eigenmodes. In particular, they satisfy a set of simple finite-
difference equations [33,36] linked to the conservation laws
Eqs. (18)–(20). Integrals in Eq. (21) are known as Krein func-
tionals in mathematical literature [60], some of them featuring
prominently in combinatorics [61,62]. The discrete nature of
the integrals of products of Laguerre polynomials spawns a
profusion of identities for the interaction coefficients that, in
turn, translate into peculiar dynamical patterns in the resonant
evolution described by Eq. (14), some of which are considered
below.

III. RESTRICTION OF THE RESONANT EVOLUTION
TO SUBSETS OF MODES

The resonant evolution governed by Eq. (14) can be con-
sistently restricted to various subsets of modes in the sense
that, if the initial data excite only modes in a particular subset
of this sort, no modes outside the subset will be excited at
later times if the system evolves according to Eq. (14). Since
the novel dynamical phenomena that we report in this article
unfold within such restrictions, it is relevant to review this
aspect of the model first.

The key aspect of Eq. (14) that supplies a large variety of
consistent dynamical restrictions is the presence of both the
resonance condition n + n1 = n2 + n3 and the conservation
condition for the angular momentum, m + m1 = m2 + m3 in
the summation on the right-hand side. As a result, if (n1, m1),
(n2, m2) and (n3, m3) satisfy an j + bmj = c, for j = 1, 2, 3,
with arbitrary a, b, c, then (n, m) satisfies the same equation.
Thus, if the initial state excites exclusively modes αnm with
an + bm = c, then the time derivatives of αnm in Eq. (14) van-
ish for all modes αnm with an + bm 
= c; hence, those modes
will permanently keep zero values. One can thus consistently
restrict the resonant evolution to any straight line traversing
the mode tower in Fig. 1, a few such restrictions having been
highlighted in that figure.
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The restrictions reduce the number of indices of modes
αnm from two to one, as n = n(l ) and m = m(l ) are now
linear functions of the new mode index l , hence one can
introduce αl ≡ αn(l )m(l ). The two conditions n + n1 = n2 + n3

and m + m1 = m2 + m3 in Eq. (14) now coalesce into a single
resonance condition, l + l1 = l2 + l3, and, under the adopted
mode restriction, one can rewrite Eq. (14) as

iα̇l =
∑

l+k=i+ j

Clki j ᾱkαiα j . (22)

There is a further dynamical restriction that one can impose,
namely, if the initial state only excites αl with l = p mod q,
then no αl with l 
= p mod q will get excited. Thus, not only
can one restrict to straight lines within the mode tower, as in
Fig. 1, but it is also possible to further restrict the evolution
to any regular 1D lattice of modes positioned along any given
straight line.

The full variety of such restrictions is conveniently char-
acterized by the two lowest modes (n0, m0) and (n1, m1).
Once these modes have been selected, the full set of modes
αl ≡ αn(l )m(l ) that participate in the evolution is defined by
n(l ) = n0 + (n1 − n0)l and m(l ) = m0 + (m1 − m0)l , and the
evolution equation can be written as

iα̇l =
∞∑

k=0

l+k∑
i=0

Clki,l+k−iᾱkαiαl+k−i, (23)

where we have converted the resonance condition l + k = i +
j into an explicit specification of the summation ranges. The
interaction coefficients in this restricted resonant system are
inherited from Eq. (21) as Clki j ≡ Cm(l )m(k)m(i)m( j)

n(l )n(k)n(i)n( j) . Note that
the interaction coefficients satisfy Clki j = Clk ji = C̄i jlk .

Within the restriction given by Eq. (23), the conserved
quantities Eqs. (15)–(20) reduce to a smaller set. The first
quantity is directly carried over to Eq. (23), while the second
and third ones merge into a single conserved quantity, due to
the linear relation between n and m imposed by the mode re-
striction. As a result, one is left with two quantities conserved
by Eq. (23):

N =
∞∑

l=0

|αl |2, E =
∞∑

l=1

l |αl |2. (24)

The symmetry transformations corresponding to these conser-
vation laws are

αl → eiηαl and αl → eiθ lαl , (25)

where η and θ are l-independent parameters. As to the remain-
ing three conservation laws Eqs. (18)–(20), they degenerate to
identical zeros for generic straight-line restrictions in Fig. 1.
Exceptions to this rule are given by restrictions along di-
agonal lines directed at 45◦ in Fig. 1 (the Landau levels),
that retain either Z+ or Z− [30,32], or vertical lines (angular
momentum levels) that retain nonzero W [32] . The surviving
conservation laws have strong consequences for these specific
restrictions [30,32], but they are not present in the case of
generic restrictions that will be our focus below.

In our treatment, we are mainly concerned with restrictions
corresponding to straight lines in Fig. 1 forming angles >45◦

with the horizontal axis. Restrictions to straight lines at an-
gles <45◦ are certainly possible, but they are less relevant in
relation to topics of energy transfer, since these restrictions
necessarily involve only a finite set of modes.

Under each specific mode restriction described by Eq. (23),
we will mostly work with the two-mode initial data,

|α0(0)| 
= 0, |α1(0)| 
= 0, |αl�2(0)| = 0. (26)

In terms of the original mode tower of Fig. 1, this corresponds
to exciting two modes (n0, m0) and (n1, m1) and tracking
the subsequent evolution. Such two-mode initial data are the
simplest setup leading to nontrivial evolution, as single-mode
initial data never induce any energy exchange between the
modes in the course of the resonant evolution defined by
Eq. (14). The dynamical trajectories starting with two-mode
initial data can, on the other hand, display very sophisticated
behaviors. They have been often studied in the context of
resonant systems of the type of Eq. (23), not necessarily
related to the present setup, and have been seen to result,
in different situations, in perfectly periodic evolution of the
mode amplitude spectrum [30,32,33,43,44,49,63], turbulent
phenomena [48,63,64], and FPU-like approximate energy re-
turns [41,42]. Our purpose in the following two sections is
to examine the energy transfer patterns resulting from two-
mode initial data specifically in the context of the resonant
system Eq. (14), derived from the NLS/GP equation with the
isotropic HO potential Eq. (2), and identify FPU-like recur-
rencies in this setting, as well as special two-mode initial data
for which the energy transfer is completely blocked by the
structure of the interaction coefficients Eq. (21).

IV. DYNAMICAL REVIVALS

To put things in perspective, we pause for a moment and
discuss what kind of behavior one may expect from systems
of the form of Eq. (23), starting with the two-mode initial
conditions Eq. (26), before specializing to the actual values
of the interaction coefficients C arising from the NLS Eq. (2).
Initially, the energy leaves the two lowest modes and spreads
to the higher ones, which is often described as a “turbulent
cascade,” as the energy flows toward shorter wavelengths.
The strength of the turbulent cascade varies widely depend-
ing on the precise set of interaction coefficients C [65]. In
extreme cases, the cascade leads to formation of a power-law
spectrum in a finite time, known as the “finite-time turbulent
blowup” [48,64]. More conventionally, as is the case for the
low-dimensional NLS equations that we address here, the
direct cascade only lasts over a finite time period, whereupon
it halts and turns into a reverse cascade driving the energy
back to the low-lying modes. Note that, due to the presence
of the doublet of conservation laws [Eqs. (24)], the direct
cascade is itself of a dual nature [66], meaning that there
is a simultaneous flow of energy both to higher and lower
modes, since it is the only way to ensure that both quantities
[Eqs. (24)] are conserved.

The efficiency of the reverse cascade also varies from one
system to another and among different initial conditions. For
some specific mode restrictions given by Eq. (14), such as
the Landau-level [30,32] and fixed-angular-momentum [32]
restrictions highlighted in Fig. 1, if the evolution starts with
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the two-mode initial data Eq. (26), then the direct cascade is
followed by a reverse one that brings the mode energies back
exactly to the initial configuration. The process then simply
repeats itself periodically. Such perfect dynamical recurren-
cies are of course highly nongeneric, and they are mandated
by the enhanced symmetry structures [33,35,37] that operate
within these specific mode restrictions.

For more generic mode restrictions in Fig. 1, which do
not go vertically or diagonally at 45◦, there are no reasons to
expect that the reverse cascade will perfectly restore the initial
mode energy distribution, and, indeed, numerical simulations
of Eq. (23) show that such perfect restoration does not occur.
At the same time, one observes that, for many specific restric-
tions, the mode energy distribution at the bottom of the reverse
cascade comes very close to the initial configuration Eq. (26),
very much in the spirit of the FPU phenomena [39,40] in
nonlinear oscillator chains. Reporting such dynamical behav-
iors is one of the main strands of our presentation. Below
we give a heuristic argument to explain why such FPU-like
behaviors may be generically expected in systems of the form
of Eqs. (23), although the actual precision of the revival by the
reverse cascade of the original amplitude spectrum cannot be
accurately determined from such arguments, requiring case-
by-case numerical simulations. Note that the direct-reverse
cascade sequences continue past the first turbulent oscillation
that we have outlined above, and later reverse cascades may
restore the initial amplitude spectrum with an even better
precision than the first one, which is also what had happens
in the original FPU setup.

In what follows, we choose two modes (n0, m0) and
(n1, m1), as in the previous section, and launch simulations
of Eq. (14) with only these two modes excited in the initial
state. As per discussion in the previous section, the subsequent
evolution excites only modes positioned along the straight line
passing through the points (n0, m0) and (n1, m1) in Fig. 1, for
which the restricted resonant Eq. (23) may be applied, where
the two initially excited modes are simply relabelled as mode
0 and mode 1. To quantify the FPU-like phenomena, we mea-
sure the contribution to the “particle number” N in Eq. (24)
from modes higher than those corresponding to l = 1:

�(τ ) ≡
∞∑

l=2

|αl (τ )|2. (27)

Initially, this is zero by construction, then it starts growing
in the course of the first direct cascade, and we subsequently
track the minima of this function at later times, brought about
by the reverse cascades. The ratio �min/�max of the minimum
and maximum of � provides a characterization of the promi-
nence of the FPU phenomena.

We note that the dynamics of two-mode initial data Eq. (26)
is determined by the initial amplitudes |α0| and |α1|, as the
phases of these two modes can be rotated arbitrarily by the
symmetry transformations Eq. (25). In the position space
picture, such phase changes are seen as a rotation of the
wave-function density around the origin. Thus, if a perfect
return to the initial configuration of |α0| and |α1| occurs,
then one sees a rotated version of the initial configuration.
The subsequent evolution will, of course, repeat the first-pass
revival as transformations Eq. (25) are symmetries of the

resonant evolution Eq. (23), while the spatial rotations are a
symmetry of the original PDE Eq. (2). If approximate (rather
than perfect) revivals of the initial two-mode configuration
occur, then this scenario will still be in operation, up to small
distortions.

Figure 2 shows a representative example produced by the
simulations, while a few extra plots are given in Appendix A.
We observe that the evolution of |αl (τ )| displays oscillations
in the form of direct-reverse cascade sequences, and the en-
ergy, initially located in modes 0 and 1, is transferred to higher
modes, followed by accurate returns. In the case shown in
Fig. 2 this process is so accurate that it is difficult to distin-
guish it from exact periodicity in a straightforward graphic
presentation. The initial direct cascade spreads the energy
appreciably, so that one gets � > 0.1, but at later times the
initial configuration is reassembled with precision as good as
� ∼ 10−4. In the corresponding picture of the wave-function
density distribution in the position-space representation, de-
fined in terms of

ψ (τ, r, φ) ≡
∑
n,m

αnm(τ ) �nm(r, φ), (28)

one sees that the initial distribution is appreciably deformed
and then recovered with a nearly perfect precision [the picture
gets rotated after this recovery since, while the amplitudes
|αnm| return almost exactly to their initial values, the phases
arg(αnm) undergo a drift]. Note that Eq. (28) is defined in
terms of the slow-time evolution on timescales t ∼ 1/g. To
convert it to the wave-function Eq. (8) of the original Eq. (2),
one must apply the evolution operator of the linear quantum
HO to ψ (τ = gt ).

It is possible to gain further insight into the FPU phe-
nomena in resonant system Eq. (23) by considering initial
conditions where one of the two modes in the initial state
Eq. (26) dominates. This analysis is similar to that developed
in Ref. [42] for related relativistic systems, where more de-
tailed and in-depth considerations were reported. We choose
for the presentation here the simpler case when the dominant
mode is the one labeled as mode 0. The direct cascade is
expected to be weak in this case, as follows a posteriori from
the consistency of our analysis presented below, and is easy to
verify numerically. In this situation, it is natural to assume a
strong exponential suppression of the spectrum in the form of

αn = δn qn(τ ), (29)

with a small free parameter δ. One can then treat the evolution
of this form at leading order in δ, which results in a simplified
system,

iq̇n = q̄0(t )
n∑

k=0

Cn0k,n−kqkqn−k . (30)

Unlike the original resonant system Eq. (23), equations with
lower n now decouple from the higher ones, and Eq. (30) can
be solved recursively mode-by-mode. We can set q0(0) = 1,
using the scaling symmetry of Eq. (23) of the form α(τ ) →
λα(λ2τ ), and q1(0) = 1, adjusting the definition of δ. Then,
in the framework of Eq. (30), the first two modes simply
oscillate as

q0(t ) = e−iC0000τ , q1(t ) = e−iC0101τ , (31)
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FIG. 2. The upper plot: the evolution of |αl |. The second plot: the
contribution to N from modes with l > 1, defined as per Eq. (27).
The third plot: the position-space representation of |ψ |2 at times
highlighted by red dashed lines in the middle plot. The initial con-
figuration consists of the two-mode initial data (26). The two modes
in the initial state in these plots are chosen as (n0, m0) = (4, −2)
and (n1, m1) = (9,−3) with initial values α0 = 0.6 and α1 = 0.8,
such that Eq. (24) gives N = 1. The lower plot: the maximum and
minimum values of �(τ ) over a succession of 50 direct-reverse
cascades (with the first direct cascade excluded) for the restriction
given in the upper plots but different distributions of the initial energy
between modes 0 and 1 (with N = 1).

while higher qn satisfy

iq̇n − 2C0n0nqn = q̄0

n−1∑
k=1

Cn0k,n−kqkqn−k, (32)

where the right-hand side only depends on qk with k < n,
which have already been evaluated at the previous iterative
steps, hence they simply provide a source term for the oscilla-
tions of qn. As a result, each qn is a sum of oscillatory terms
proportional to ei�τ , where, for every such term, � is a linear
combination of C0k0k with integer coefficients, and only for
k � n. For completeness, we mention that it is in principle
possible for qn to contain secular terms growing like τei�τ

when the right-hand side of Eq. (32) happens to contain a term
that oscillates with frequency 2C0n0n. Such behavior occurs in
specific situations where instabilities are present, and has no
bearing on the bulk of our considerations.

From the perspective of Eq. (32), FPU phenomena enter
the stage naturally in the following manner. Solving Eq. (32)
for q2, with initial condition q2(0) = 0, yields

|q2| ∼ sin
[

1
2 (C0000 − 4C1010 + 2C2020)τ

]
, (33)

which shows that q2 periodically vanishes. When this hap-
pens, the energy is entirely concentrated in modes 0 and 1,
except for the contributions in modes 3 and higher, suppressed
by δ6. This is simply a reflection of a single direct-reverse
cascade return in the limit of small δ. More accurate returns
may occur at later times. The point is that, due to the spe-
cial nature of the interaction coefficients Eq. (21) expressed
through a highly structured family of orthogonal polynomials,
many of these coefficients are rational numbers. We exhibit
below specific mode restrictions leading from Eq. (14) to
Eq. (23) such that all coefficients C0n0n are rational numbers
in units of C0000. If all C0n0n are rational in units of C0000,
then the solutions for all qn are superpositions of oscillations
with rational frequencies, which means that any finite subset
of qn has a common period. For example, it is guaranteed that
a moment of time exists when q2 and q3 will return to the
initial configuration, where they both vanish. At that moment,
the energy returns to modes 0 and 1 with precision δ8. Even
more broadly, for those mode restrictions where C0n0n are not
all rational, approximate common periods may exist, securing
dynamical returns with enhanced precision, as discussed in
Ref. [42].

We now present a specific simple family of mode restric-
tions where the picture outlined above plays a role. In this
family, mode 0 is chosen to be (n0, m0) = (0, 0) and mode 1
is any other mode (n, m). Then, mode number l is (nl, ml ). We
claim that, under this restriction, the following relation holds:

C0l0l

C0000
= (nl )!

2nl
(

1
2 (n + m)l

)
!
(

1
2 (n − m)l

)
!
, (34)

hence all C0l0l have rational values in units of C0000. Thus, syn-
chronization takes place between periods of different modes
in Eq. (32), providing for returns with improved precision. A
derivation of Eq. (34) is given in Appendix B.

Of course, our analysis of the dynamics close to mode 0 is
only valid at its face value when mode 1 is strongly suppressed
in the initial configuration. However, it does provide correct
intuition in relation to the direct-reverse cascade sequences
produced by Eq. (23), and allows one to predict which num-
bers of direct-reverse cascades result in particularly accurate
returns. These predictions, furthermore, continue to hold even
for initial conditions where modes 0 and 1 carry comparable
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energies, as has been demonstrated by detailed analysis of a
related resonant system in Ref. [42].

Similar considerations are possible for dynamical trajecto-
ries dominated by mode 1 [42]. In that case, instead of relation
Eq. (29), one assumes a δ-dependence in the form of α0 =
δq0, αl�1 = δl−1ql . This specification of δ-dependencies is
consistent in the sense that, upon the substitution into resonant
system Eq. (23) and taking the limit δ → 0, one obtains a sim-
plified and yet nontrivial dynamical system for ql , which can
be analyzed by methods similar to the ones employed above
for solutions dominated by mode 0. This results in a picture of
direct-reverse cascade sequences, as well as dynamical returns
of enhanced precision. Further details can be recovered from
Ref. [42].

The fact that the FPU behaviors (which can be naturally
explained in a quantitative manner for initial conditions dom-
inated by one of the two modes) persist for initial conditions
with comparable mode energies remains an empirical obser-
vation. We have observed such returns for a number of choices
of the initial configurations with comparable energies of the
initially excited modes, as documented by Fig. 2 and further
simulations presented in Appendix A. It can be seen as a
manifestation of the special character of the 2D NLS/GP
equation (2) that the FPU behaviors, while being rather
generic for initial data dominated by a single mode, extend,
in the case of this equation, to a broader range of initial condi-
tions. Pronounced FPU phenomena with �min/�max ∼ 10−4

have been observed in our simulations for initial data with
the following pairs of modes (n0, m0)-(n1, m1): (0,0)-(3,1);
(0,0)-(4,2); (0,0)-(5,3); (1,−1)-(4,−2); (1,−1)-(4,2); (1,−1)-
(6,0); (2,0)-(6,0); (2,0)-(5,1); (2,−2)-(5,−1); (2,−2)-(6,−4);
(4,−2)-(9,−3); (4,−2)-(7,−1). These observations suggest
that dynamical recurrencies are not uncommon in the evolu-
tion governed by Eq. (14).

V. TWO-MODE PERSISTENT BREATHERS

In our searches for FPU behaviors within various mode
restrictions imposed on Eq. (14), we have discovered some
initial conditions that lead to an even more dramatic failure
of the energy redistribution among the normal modes. Rather
than repeatedly returning to the vicinity of the original con-
figuration, the energy for such initial conditions does not get
transferred at all, at any time. We have already mentioned that
this property holds in solutions of Eq. (14) for all single-mode
initial conditions, but it does not generically hold for two-
mode initial conditions. We have, however, discovered some
special choices of two-mode initial conditions for which no
energy transfer occurs in the course of the resonant evolution
of Eq. (14).

The evolution with two-mode initial conditions always
unfolds within one of the mode restrictions defined as per
Eq. (23), namely, the restriction to the modes that fall onto the
straight line passing through the two initially excited modes
in Fig. 1. The energy transfer in Eq. (23) is blocked whenever
the initial conditions are of the form of Eq. (26) and the inter-
action coefficient C2011 = 0. Indeed, for the initial conditions
of this form, α̇l (0) with l � 3 are identically zero since each
term on the right-hand side of Eq. (23) involves at least one of

FIG. 3. The spatial configuration of |ψ |2 in the stationary solu-
tions given by Eq. (36) [rows from 1 to 3, (a)] and Eq. (37) [the
lower row, (b)]. Each plot specifies two excited modes (n0, m0 ) and
(n1, m1), as indicated by white numbers.

the initially vanishing modes αl with l � 2. However,

iα̇2(0) = C2011 ᾱ0(0) α2
1 (0). (35)

Thus, the inception of energy transfer entirely hinges on C2011.
If this coefficient vanishes, then neither mode 2 nor any higher
ones get excited at the start of the evolution, hence they
cannot be excited at any later stage either, with the evolution
perpetually locked within the ansatz Eq. (26).

We have identified the following large family of two-mode
initial data for which the corresponding coefficient C2011 van-
ishes:

(n0, m0) = (2i+ 1,−(2 j+ 1)), (n1, m1) = (2k, 0), (36)

with j � i < k (to ensure that (n0, m0) is indeed the lowest
mode of the given restriction, one must supplement this condi-
tion with an extra requirement that 2(i − j) < k). We provide
a (relatively involved) proof for the vanishing of C2011 corre-
sponding to this family in Appendix C. We have additionally
observed the following more sparse families involving high-
frequency modes that share the same property:

(n0, m0) = (2, 0), (n1, m1) = (k2, k), (37)

and

(n0, m0) = (k2 − k,−k2 + k + 2), (n1, m1) = (k2, k),
(38)

with k = 2, 3, 4, .... Evidently, the sign of the angular mo-
mentum can be flipped in all of these families due to the
reflection symmetry. A collection of position space distribu-
tions of the wave-function density obtained from Eq. (28) for
these two-mode configurations is plotted in Fig. 3. Note that
the complex amplitudes of the two modes activated in the
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initial state may be prescribed arbitrarily for each specification
of the integer parameters that define the above two-mode
families. While within the resonant approximation Eq. (14)
these configurations are exactly stationary in the sense that
|αn0m0 |2 and |αn1m1 |2 are frozen in time, while all other modes
remain zero, the corresponding initial data in the original PDE
Eq. (2) will lead to some evolution, but only in an extremely
slow form at small g. On timescales t � 1/g, the resonant
approximation ceases to be accurate and solutions of Eq. (2)
may drift away from these predictions. Yet on timescales
t ∼ 1/g, the initial data in the form of Eqs. (36) and (37)
continue tracking the linearized evolution very closely, form-
ing a long-lived breather-like stationary pattern. This behavior
is strongly nongeneric for weakly nonlinear NLS/GP Eq. (2)
with abundant normal-mode resonances.

To put our finding of two-mode stationary solutions in
perspective, we further remark that resonant systems of the
form of Eq. (23) generically possess stationary solutions with-
out energy transfer. These solutions have spectra given by
αn = ei(ω+nλ)τ An, where An are τ -independent and depend
on Cnmkl (upon substituting this ansatz into Eq. (23), all the
τ -dependent factors drop out, leaving a system of algebraic
equations for ω, λ and An.) Such solutions, however, gener-
ically have infinitely many modes turned on, with a very
specific arrangement of amplitudes and phases, and would
be difficult to recreate. The two-mode stationary solutions we
report here are, by contrast, specific to the model we consider,
and their existence relies on the vanishing of particular four-
mode couplings, which is a special feature of the NLS/GP
Eq. (2).

VI. CONCLUSION

We have considered the long-term weakly nonlinear evo-
lution of the 2D NLS/GP equation with the isotropic HO
(harmonic oscillator) potential. The analysis has revealed
an array of FPU phenomena and stationary configurations
in this regime. Our findings further highlight the special
nature of the low-dimensional NLS/GP equations with the
HO potentials, which previously exhibited other unusual dy-
namical behaviors [7,12,13,15,16,30,32]. There are further
physical connections between such behaviors and obstruc-
tions to ergodicity in low-dimensional many-boson systems
in HO potentials [17–19], as all such phenomena originate
from failures of effective redistribution of energy among the
dynamical degrees of freedom.

It would be interesting to observe the dynamical patterns
that we have displayed here in the evolution of trapped ul-
tracold atomic gases, where HO potentials are routinely used,
while the strength of the interactions can be adjusted by means
of the Feshbach resonances. Detailed control over the prepara-
tion of the initial configurations remains a challenge, but it has
been a focal point in recent research and substantial progress
can be seen in experimental work [13].

In the context of nonlinear optics, both our 2D setup (corre-
sponding to the transverse geometry of the waveguide) and the
weakly nonlinear regime are very natural. In particular, con-
siderations of the coexistence of a large number of transverse
modes when nonlinearities are weak are highly relevant for
the implementation of spatial-division-multiplexing schemes

in optical data-transmission links [67]. HO potentials are less
common in this setting, but they may be relevant too [22].
Note that the stationary solutions found in Sec. V are dis-
tinguished by their quasilinear evolution on long timescales,
despite the fact that even weak nonlinearities could in princi-
ple generate large effects through the resonant interactions.

In a more speculative mode, one can try to employ the
FPU phenomena in a sort of cryptographic scenario, with
the communication line passing through an area where the
transmission may be tapped. In this case, one could adjust the
operation mode in such a way that the nonlinearities scramble
the signal in the intermediate region (where the energy distri-
bution of the initial signal is driven to the excited transverse
modes by nonlinear interactions), and then the original trans-
mission gets reconstructed by an FPU return at the read-out
point. Even within our simple two-mode specification for the
initial states used in Sec. IV, the relative energy of the two
modes can be used to transmit data, while the overall power
of the signal can be used to ensure that the FPU recurrence
takes place precisely at the specified read-out point.
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APPENDIX A: ADDITIONAL NUMERICAL SIMULATIONS

We complement the presentation in Sec. IV with Fig. 4
containing a compilation of extra plots produced by our sim-
ulations. These plots contain a number of cases where the
general scenario outlined in Sec. IV is reproduced in de-
tail, as well as some examples where the FPU returns are
less pronounced. There is also a particular truncation where
the single-mode solution supported by mode 1 is unstable,
leading to a breakdown of the picture of strong exponen-
tial suppression in the spectra originating from initial data
dominated by one mode. With all of these exceptions, FPU
returns remain rather generic in the setup of this paper, and
we have observed accurate returns in truncations defined by
(n0, m0)-(n1, m1): (0,0)-(3,1); (0,0)-(4,2); (0,0)-(5,3); (1,−1)-
(4,−2); (1,−1)-(4,2); (1,−1)-(6,0); (2,0)-(6,0); (2,0)-(5,1);
(2,−2)-(5,−1); (2,−2)-(6,−4); (4,−2)-(9,−3); (4,−2)-(7,−1),
as already mentioned in the main text.

APPENDIX B: PROOF OF EQ. (34)

To prove our claim in Eq. (34) that C0l0l are rational in units
of C0000, specifically

C0l0l

C0000
= (nl )!

2nl
(

1
2 (n + m)l

)
!
(

1
2 (n − m)l

)
!
, (B1)
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FIG. 4. Upper row: The evolution within different mode restrictions (specified in each plot) that exhibit accurate energy returns for some
two-mode initial data; from left to right (α0, α1) = (0.6, 0.8), (α0, α1) = (0.7, 0.7), and (α0, α1) = (0.8, 0.6). Middle row: The evolution
under a specific mode restriction for different initial distributions of energy, from left to right (α0, α1) = (0.4, 0.92), (α0, α1) = (0.7, 0.7), and
(α0, α1) = (0.8, 0.6). Even when some initial configurations of the two lowest modes display accurate energy returns, for others such behavior
may be much less pronounced. Lower row: This mode restriction demonstrates a wider range of behaviors than what we have discussed in
the main presentation. In the first plot the two-mode initial data (α0, α1) = (0.8, 0.6) results in accurate FPU returns. The second plot shows
that the single mode 1 is unstable because small perturbations like (α0, α1) = (δ, 1) with δ � 1 drive the system away from this configuration;
however, even if the energy does not accurately return close to the initial distribution we observe that there are accurate returns around a
new reference configuration. Finally, the third plot shows that three-mode initial data, specifically (α0, α1, α2) = (0.15, 0.7, 0.15), can exhibit
accurate FPU returns. Mode labeling in the plots is identical to that for the first plot shown.

one writes, from Eq, (21),

C0l0l = 1

π

[
1
2 (n − m)l

]
![

1
2 (n + m)l

]
!

∫ ∞

0
dρ e−2ρρml

[
Lml

(n−m)l
2

(ρ)
]2

.

(B2)

The integrand is decomposed in a sum of Laguerre polynomi-
als using [68]

[
Lm

n (ρ)
]2 = (n + m)!

22nn!

n∑
j=0

(
2n − 2 j

n − j

)
(2 j)!

j!( j + m)!
L2m

2 j (2ρ),

(B3)
and after that, individual integrals are evaluated using [68]

∫ ∞

0
xγ−1Lm

n (x)e−xdx = (γ − 1)!(n + m − γ )!

n!(m − γ )!
. (B4)

Then, Eq. (34) follows from the identity

A∑
j=0

r

r + 2 j

(
r + 2 j

j

)(
2(A − j)

A − j

)
=

(
2A + r

A

)
, (B5)

with A = (n − m)l/2 and r = ml . One way to verify Eq. (B5)
is by looking at the generating functions of the two sides. The
left-hand side is in the form of convolution

∑A
j=0 a jbA− j with

a j being the Fuss-Catalan (or Raney) sequence, r
r+2 j

(r+2 j
j

)
,

and b j the central binomial coefficients
(2 j

j

)
. The generating

function of the Fuss-Catalan numbers can be read off as∑
a jz j = ( 1−√

1−4z
2z )r from Sec. (2.5.16) of Ref. [69], while

some more detailed analysis can be found in Sec. 7.5 of
Ref. [70]. (The appearance of Fuss-Catalan numbers may
seem surprising in the context of nonlinear dynamics of PDEs,
but they are ubiquitous in random matrix and random ten-
sor theory [71–75].) The generating function of the central
binomial coefficients can be read off from Sec. (2.5.15) of
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Ref. [69] as
∑

b jz j = 1√
1−4z

. The generating function of the

convolution
∑A

j=0 a jbA− j is a product of the generating func-
tions of a j and b j and thus agrees with the generating function
of the right-hand side of Eq. (B5) that can be again read off
from (2.5.15) of Ref. [69]. Thus, Eqs. (B5) and (34) are valid.

APPENDIX C: VANISHING OF THE COEFFICIENTS C2011

CORRESPONDING TO EQ. (36)

We aim to prove that, starting with only two modes
(n0, m0) = (2i + 1,−2 j − 1) and (n1, m1) = (2k, 0) with
j � i < k and 2(i − j) < k, the energy does not flow in the
resonant system Eq. (14). As explained in Sec. III, in the
subsequent evolution only those modes get excited that lie on
the straight line connecting (n0, m0) and (n1, m1) in Fig. 1,
yielding a simpler effective resonant system Eq. (23), where
the two initial modes are labeled as modes 0 and 1. Prov-
ing that there is no energy transfer out of these two modes,
as per discussion of Sec. V, amounts to proving that the

interaction coefficient C2011 in Eq. (23) vanishes. In terms of
the original mode tower of Fig. 1, this coefficient describes a
quartic interaction of mode (2i + 1,−2 j − 1), two copies of
mode (2k, 0) and one mode (4k − 2i − 1, 2 j + 1), and hence
Eq. (21) makes it proportional to∫ ∞

0
dρ e−2ρ L−2 j−1

i+ j+1 (ρ) L2 j+1
2k−i− j−1(ρ)

(
L0

k (ρ)
)2

. (C1)

We will now prove that this expression vanishes, confirming
the no-energy-transfer result of Sec. V. (We ignore overall
numerical prefactors below, as they cannot affect a proof of
the fact that the quantity in question vanishes.)

Substituting the expression for the Laguerre polynomials
in terms of their generating function

Lα
n (x) = 1

n!
∂n

t

e− t
1−t x

(1 − t )α+1

∣∣∣∣∣
t=0

(C2)

and performing the integral over ρ leaves an expression pro-
portional to

∂
i+ j+1
t ∂2k−i− j−1

s ∂k
u∂k

v

(
1 − t

1 − s

)2 j+1

(2 − t − s − u − v + tsu + tsv + tuv + suv − 2tsuv)−1

∣∣∣∣∣
t,s,u,v=0

. (C3)

While we anticipate that an economical proof that this expres-
sion vanishes may exist, for example based on complex-plane
arguments, constructing this proof appears challenging and
we present below a brute force proof based on an analytic
evaluation of Eq. (C3) and book-keeping cancellations among
various terms that arise. (For any particular values of i, j
and k, it is of course straightforward to evaluate the above
expression and check that it vanishes.)

The u and v derivatives in Eq. (C3) only act on the last
factor and can be evaluated explicitly. For the v-derivative,
ignoring the overall prefactor, we get

∂k
v (2− t − s− u− v+ tsu+ tsv+ tuv+ suv− 2tsuv)−1|v=0

= (1 − ts − tu − su + 2tsu)k

(2 − t − s − u + tsu)k+1
. (C4)

Then, acting on this expression with k u-derivatives and
binomially distributing them between the numerator and de-
nominator (setting u = 0 thereafter) produces a collection of
terms proportional to

(1 − ts)2p (2ts − t − s)k−p

(2 − t − s)k+p+1
, (C5)

where p ranges from 0 to k. It turns out that these terms
individually give vanishing contributions to Eq. (C3), which
we now proceed to prove by showing that

∂
i+ j+1
t ∂2k−i− j−1

s

(
1− t

1− s

)2 j+1 (1− ts)2p (2ts− t − s)k−p

(2 − t − s)k+p+1

∣∣∣∣∣
t=s=0

(C6)

vanishes, which implies that Eq. (C3) vanishes.

We start out by expanding (1 − ts)2p as

(1 − ts)2p = 2−2p(2 − t − s − (2ts − t − s))2p

= 2−2p
p∑

q=−p

(
2p

p + q

)
(−1)p+q

× (2 − t − s)p−q(2ts − t − s)p+q. (C7)

It turns out that each pair of terms with q = r and q = −r in
this sum gives contributions that cancel each other in Eq. (C6);
in other words, we must prove that

∂
i+ j+1
t ∂2k−i− j−1

s

(
1 − t

1 − s

)2 j+1

×
(

(2ts − t − s)r

(2 − t − s)r+1
+ (2ts − t − s)2k−r

(2 − t − s)2k−r+1

)∣∣∣∣∣
t=s=0

= 0

(C8)

for any r between 0 and k, and this will yield Eqs. (C6), (C3),
and hence (C1).

Consider the generating function for the entries featured in
Eq. (C8), defined by

Fi jk (z) ≡
∞∑

r=0

zr ∂
i+ j+1
t ∂2k−i− j−1

s

(
1 − t

1 − s

)2 j+1

× (2ts − t − s)r

(2 − t − s)r+1

∣∣∣∣∣
t=s=0

. (C9)

We will prove that Fi jk is a polynomial in z of degree 2k
satisfying

z2kFi jk (1/z) = −Fi jk (z). (C10)
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As a result, the coefficients of zr and z2k−r in this polynomial
have the same magnitude and opposite signs, which hence
secures the validity of Eq. (C8). To prove this statement, we
evaluate the sum over r as a geometric series to obtain

Fi jk (z) = ∂
i+ j+1
t ∂2k−i− j−1

s

(
1 − t

1 − s

)2 j+1

× (2 − t − s + tz + sz − 2tsz)−1

∣∣∣∣∣
t=s=0

= −(i + j + 1)! (z + 1)2 j+1 ∂2k−i− j−1
s

× (1 − z + 2sz)i− j

(2 − s + sz)i+ j+2

∣∣∣∣∣
s=0

,

where, to arrive at the last representation, one distributes
∂

i+ j+1
t binomially between (1 − t )2 j+1 and (2 − t − s + tz +

sz − 2tsz)−1, performs the elementary differentiation, sets t =
0, and thereafter resums the resulting binomial expression.
Finally, distributing ∂

2k−i− j−1
s binomially between (1 − z +

2sz)i− j and (2 − s + sz)−(i+ j+2) in the last line, differentiating
and setting s = 0 results in a collection of terms of the form of
zq(z + 1)2 j+1(z − 1)2k−2 j−2q−1 with q ranging from 0 to i − j.
However, each such term is a polynomial of degree at most 2k,
manifestly satisfying Eq. (C10). Being made entirely out of
such terms, Fi jk satisfies Eq. (C10), which ensures the validity
of Eq. (C8), hence Eqs. (C6) and (C3) vanish, as well as the
interaction coefficient Eq. (C1).
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[32] A. Biasi, P. Bizoń, B. Craps, and O. Evnin, Two infinite families
of resonant solutions for the Gross-Pitaevskii equation, Phys.
Rev. E 98, 032222 (2018).

[33] A. Biasi, P. Bizoń, and O. Evnin, Solvable cubic resonant sys-
tems, Commun. Math. Phys. 369, 433 (2019).
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B. A. Malomed, T. Sowiński, and J. Zakrzewski, Non-standard
Hubbard models in optical lattices: A review, Rep. Prog. Phys.
78, 066001 (2015).

[39] E. Fermi, J. Pasta, and S. Ulam, Studies of the nonlinear prob-
lems I, Los Alamos technical report LA-1940 (1955), reprinted
in Collected Papers of Enrico Fermi, Vol. II (University of
Chicago Press, Chicago, IL, 1965).

[40] G. P. Berman and F. M. Izrailev, The Fermi-Pasta-Ulam prob-
lem: 50 years of progress, Chaos 15, 015104 (2005).

[41] V. Balasubramanian, A. Buchel, S. R. Green, L. Lehner, and
S. L. Liebling, Holographic Thermalization, Stability of Anti-
De Sitter Space, and the Fermi-Pasta-Ulam Paradox, Phys. Rev.
Lett. 113, 071601 (2014).

[42] A. Biasi, B. Craps, and O. Evnin, Energy returns in global AdS4,
Phys. Rev. D 100, 024008 (2019).

[43] B. Craps, O. Evnin, and V. Luyten, Maximally rotating waves
in AdS and on spheres, J. High Energy Phys. 09 (2017)
059.
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