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Emergence of quasiequilibrium state and energy distribution for the beads-spring
molecule interacting with a solvent

Tatsuo Yanagita *

Department of Engineering Science, Osaka Electro-Communication University, Neyagawa 572-8530, Japan

Tetsuro Konishi†

General Education Division, College of Engineering, Chubu University, Kasugai 487-8501, Japan

(Received 1 February 2021; accepted 2 August 2021; published 10 September 2021)

We study the energy distribution during the emergence of a quasiequilibrium (QE) state in the course of
relaxation to equipartition in slow-fast Hamiltonian systems. A bead-spring model where beads (masses) are
connected by springs is considered. The QE lasts for a long time because the energy exchange between the high-
frequency vibrational and other motions is prevented when springs in the molecule become stiff. We numerically
calculated the time-averaged kinetic energy and found that the kinetic energy of the solvent particles was always
higher than that of the bead in a molecule. This is explained by adopting the equipartition theorem in QE, and
it agrees well with the numerical results. The energy difference can help determine how far the system is from
achieving equilibrium, and it can be used as an indicator of the number of frozen or inactive degrees existing in
the molecule.
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I. INTRODUCTION

Relaxation to equipartition in Hamiltonian dynamical sys-
tems is a long-standing problem that has been extensively
studied; for example, in the coupled oscillatory chain, i.e., the
Fermi-Pasta-Ulam systems [1]. Systems considered in these
studies are nearly integrable, and the relaxation to equipar-
tition is often prevented by the KAM tori. Thus, there is an
energy threshold to determine whether an equipartition state is
established [2]; further, the relaxation exhibits multiple stages
and nonmonotonic behavior [3]. The energy transfer between
fast and slow subsystems becomes very slow when the differ-
ence between timescales in the subsystems is very large. This
effect was first noticed by Boltzmann and Jeans [4]; subse-
quently, Landau and Teller presented the exponential law of
relaxation time [5–7]. This effect has been confirmed numer-
ically for a classical gas of diatomic molecules [8]; further,
such systems are known to prevent equipartition [9–11]. In
addition, a relaxation process is considered in the Hamiltonian
dynamics of self-gravitating systems [12–14]. These systems
demonstrate the existence of quasiequilibrium and slow relax-
ation to the equilibrium. Further, in the context of the function
of proteins, the energy transfer occurring out-of-equilibrium
plays a key role, and there exists a bottleneck for this energy
transfer [15].

We consider the dynamics of the bead-spring model—
masses connected by springs—that can be adopted for
modeling of protein and DNA. Such models have practical
importance and play significant roles in various fields [16]. In
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terms of the function of these materials, it is important to con-
sider the dynamic activity during relaxation to equilibrium.

In our previous studies, we focused on the relaxation pro-
cess in a serially connected bead-spring molecule. When the
molecule is surrounded by a solvent, the beads exchange en-
ergy through collisions with solvent particles, and the system
relaxes to equipartition, where all kinetic energies of the beads
in the molecule and solvent particles become equal. We regard
the kinetic energy of each component as an indicator of dy-
namical activeness. Further, we reported that the distribution
of the time-averaged energy of each bead is not uniform over
a long time, which we call the quasiequilibrium (QE) [17,18].
If the spring constant k of the spring between the beads in the
molecule is large, then the duration of QE obeys exp(c

√
k),

which is a typical feature of the Boltzmann-Jeans type relax-
ation [18].

In this study, we consider the kinetic energy per bead in the
molecule and the solvent particle in the QE. We consider two
types of molecules: chain and network. These are respectively
sparsely and densely connected. We numerically showed that
the time-averaged kinetic energy of the solvent particles was
larger than that of the beads in the bead-spring molecule in
QE. The difference between the time-averaged kinetic en-
ergy of the molecule and the solvent depends on the type of
molecule (the connection topology), the size of the molecule,
and the number of solvent particles. We theoretically clarify
the difference in the kinetic energies by adopting the equipar-
tition theorem. The key point of the emergence of the energy
difference in QE is the existence of “frozen” degrees, which
comes from high-frequency vibrations in the molecule. These
vibrational motions are frozen in the sense that the energy ex-
change to the other part is prevented. We estimate the number
of frozen degrees and adopt the equipartition theorem to the
QE state, and we analytically determine the extent to which
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FIG. 1. Schematic of the bead-spring chain molecule in solvent
particles. The beads are serially connected by linear springs. The
figure shows the chain molecule with Nb = N and the number of
solvent particles Ns = 3.

the kinetic energy of the solvent particle is higher than that of
the molecule. The theoretical analysis is in good agreement
with the numerical results.

The remainder of this manuscript is organized as follows:
In Sec. II, we introduce a system of bead-spring molecules
in a solvent and present the Hamiltonian of the models. The
numerical method and parameter settings are discussed in
Sec. III. The numerical results are shown in Sec. IV. In
Sec. IV A, the slow relaxation to equipartition and the emer-
gence of QE are shown where the kinetic energy of the solvent
particles is higher than that of beads in a molecule. We show
the kinetic energy difference between beads in a molecule and
solvent particles in Sec. IV B. Numerical results for network
molecules, which are beads connected by springs to form a
network topology that models a densely connected molecule,
are presented in Sec. IV C. The theoretical explanation for
the numerical results is provided based on the equipartition
theorem in Sec. V. Finally, Sec. VI summarizes this work and
provides a brief outlook.

II. BEAD-SPRING MOLECULE IN SOLVENT

This study considers a model system known as the bead-
spring model [16], in which masses are connected by springs
and interactions occur with other surrounding particles. Here-
after, we refer to the bead-spring part as a molecule and the
other particles as solvent particles. The connective structure of
the bead-spring part can be a serial or complex network. These
bead-spring molecules are in the external potential, and they
interact with the solvent particles. For simplicity, we consider
that the beads are connected by linear springs. Even with
the linear springs used in this study, the system is nonlinear
and exhibits strong chaotic behavior. The schematics of the
models for the serial and network connections are shown in
Figs. 1 and 2, respectively.

FIG. 2. Schematic of the bead-spring network molecule. The
beads are densely connected with linear springs. The connection
topology considered here is a complete graph. The figure shows the
network molecule with Nb = 6 and the number of solvent particles
Ns = 3.

The Hamiltonian of the system is given by

H = Hmol + Hsol + Hint, (1)

Hmol =
Nb∑

i=1

p2
i

2m
+

Nb∑
i �= j

ki, j

2
(|−→r j − −→ri | − �i, j )

2 +
Nb∑

i=1

Uext (
−→ri ),

(2)

Hsol =
Ns∑

α=1

p2
α

2m
+

Ns∑
α=1

Uext (
−→rα ), (3)

Hint =
∑

i,α;pair

Uint (|−→ri − −→rα |) +
∑

α,β;pair

Uint (|−→rα − −→rβ |), (4)

where Nb and Ns denote the number of beads in the molecule
and solvent particles, respectively; subscripts i and j rep-
resent the indices of beads in the molecule, and α and β

represent the indices of solvent particles. Here −→ri and−→rα represent the positions of beads i and solvent particles α,
respectively, where bead i belongs to the molecule and particle
α belongs to the solvent, while −→pi and −→pα are the momenta
conjugate to −→ri and −→rα , respectively. The natural length of the
spring between i and j beads is �i, j . Solvent particles interact
with beads in the molecule via the potential Uint

Uint (r) =
{kα

2
(r − lα )2 · · · r < lα,

0 · · · r � lα.
(5)

The external potential Uext, as shown in Fig. 1, confines the
molecule and solvent in a finite region via

Uext (
−→r ) = a

Nwall∑
n=1

||−→r − −→
R n| − Lwall|−6. (6)
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It breaks the rotational symmetry and thus prevents the
conservation of the angular momentum. Here we use the
following parameters: a = 100/Nwall, Nwall = 4, �Rj ≡ (R, 0),

(0, R), (−R, 0), (0,−R), and R ≡ Lwall +
√

R2
wall − L2

wall .
Rwall and Lwall define the curvature of the wall and the size
of the finite region, respectively. This potential resembles
that used in dispersing billiards [19], where systems do not
have any conserved quantities other than the total energy, and
the orbit obtained from a long time simulation can be well
approximated by the microcanonical distribution.

We consider two types of bead-spring molecules in
two-dimensional space: bead-spring chain and bead-spring
network molecules. These models respectively correspond to
the two cases in which beads in the molecule are sparsely and
densely connected by springs.

A. Bead-spring chain molecule

The primary characteristic of a chain-type molecule is that
beads are connected serially with springs (Fig. 1). The follow-
ing homogeneous parameters are used here:

ki, j =
{

k (i = 1, . . . , Nb − 1, j = i + 1),

0 otherwise
(7)

and �i, j = 1 (i = 1, . . . , Nb − 1, j = i + 1).
For the initial condition of the chain molecule, all springs

between beads were set to be the natural length, and the initial
positions of beads −→ri (0) = (xi(0), yi(0)) are

xi(0) = i − (N + 1)/2, yi(0) = 0 (i = 1, . . . , Nb), (8)

respectively, which is the center of the mass that is set to be
the origin �rc.m.(0) = ∑

i mi �ri(0)/
∑

i mi = (0, 0). In addition,
the initial velocity of the chain molecule sets

ẋi(0) = v0 cos(θ0),

ẏi(0) = v0 sin(θ0) (i = 1, . . . , Nb), (9)

where the initial direction of the motion θ0 is a random
number selected from a uniform distribution in the inter-
val [0, 2π ]. Thus, the total energy of the chain molecule is
Kchain = M

2 v2
0 ≡ E0, where M = mNb is the total mass. For

external potential, we use Lwall = Nb and Rwall = 4Lwall.

B. Bead-spring network molecule

As shown below, the number of springs is a crucial pa-
rameter that determines the energy distribution during QE.
Thus, it is interesting to consider the bead-spring network
molecule where the connections of beads in the molecule are
represented by the adjacency matrix ki, j . To contrast the chain
molecule, we consider the complete graph as the connection
topology of the beads in the molecule where all pairs of beads
in the molecule are connected by springs. The Hamiltonian of
the network molecule is

H = Hnet + Hsol + Hint, (10)

Hnet =
Nb∑

i=1

p2
i

2m
+

Nb−1∑
i=1

Nb∑
j=i+1

ki, j

2
(|−→r j − −→ri | − �i, j )

2
. (11)

The Hamiltonians of solvent Hsol and the interaction parts Hint

are the same as in Eqs. (3) and (4). The external potential
Uext is the same as in Eq. (6). A schematic of the network
molecules is shown in Fig. 2.

For the initial condition, we consider that each bead in the
molecule is located at the vertex of the Nb equilateral polygon
placed on the unit circle. In particular, the initial positions of
the beads −→ri (0) = (xi(0), yi(0)) are

xi(0) = cos(2π i/Nb),

yi(0) = sin(2π i/Nb) (i = 1, . . . , Nb), (12)

respectively. We set the natural lengths of springs to �2
i, j =

[xi(0) − x j (0)]2 + [yi(0) − y j (0)]2. The natural lengths of
springs in the network molecule have different values and are
set according to the initial distances between beads; thus, the
potential part of the Hamiltonian Eq. (2) is zero. For external
potential, we use Lwall = 4.5 and Rwall = 4Lwall.

III. NUMERICAL METHOD AND PARAMETER SETTINGS

For time integration, we use the fourth-order implicit
Runge-Kutta method with a time interval δt = 0.001/

√
k. The

method is known to be symplectic [20], and the total energy
is well conserved in our numerical simulations.

Throughout the paper, all masses are the same, i.e.,

mα = mi = m = 1 for all i and α. (13)

Further, we set that all spring coefficients between beads in
the molecule to the same value:

ki, j = k for i, j = 1, . . . , Nb. (14)

The initial distances between the positions of the solvent
particles, which were randomly set according to the distances
between the pairs of particles, were larger than lα = 1; |−→rα −−→rβ | > �α and |−→ri − −→rα | > �α for all α and β, and i and α,
respectively. Therefore, the interaction energy between the
beads and solvent particles is initially zero, i.e., Hint = 0. For
solvent particles, the kinetic energy was set to be zero pα = 0
for all α. All momenta of the beads in the molecule are set
to the same value, which means that the molecule has only
the kinetic energy of the center of gravity. We can say that the
above initial condition is a scenario in which a “hot” molecule
is set in a “cold” solvent. In other words, the system is highly
inhomogeneous in the sense that all energy is placed into the
kinetic part of the beads in the molecule, and the other parts
of the energy are set to zero.

Although beads are connected with linear springs, the
system is nonlinear and behaves chaotically both with and
without external potential. A periodogram of the time series
of the positions of a terminal bead is shown in Fig. 3.

The characteristic timescale tcoll of collisions between a
bead in the molecule and the external boundary is tcoll ∼ 7.4
when E0 = 0.1 and k = 10. A collision between the bead in
the molecule and the boundary is detected when the Uext (�ri )
exceeds a threshold value Ũext = 10−4. The characteristic
timescale is estimated by averaging the time interval between
collision events in t ∈ [0, 104].

As we are interested in the energy distribution during the
QE state, we focus on the scenario wherein a fast timescale
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FIG. 3. The periodogram of the time series of x coordinate of the terminal bead x1(t ) for t ∈ [0, 2000] is shown. The parameters are
k = 10, Nb = 4, Ns = 2, �i, j = �α = 1, m = 1, kα = 1, and E0 = 0.2. The inset is the periodogram of the time series of the x1(t ) − xc.m.(t )
for the bead-spring without solvent and the external potential, where xc.m.(t ) is the x coordinate of the center of the mass for the bead-spring
molecule.

results from the high-vibrational motion of the molecule,
which comes from a large spring constant; thus, we set k =
1000. For the interaction between the molecule and solvent,
we set kα = 1 in Eq. (5).

IV. NUMERICAL RESULTS

To observe the relaxation process, we measured the time-
averaged kinetic energy Ki(t ) of the beads and solvent
particles, and the spring energies Vi, j (t ) in the molecule,
which are defined as

Ki(t ) ≡ 1

t

∫ t

0

p2
i (t ′)
2m

dt ′, (15)

Vi, j (t ) ≡ 1

t

∫ t

0

ki, j

2
(|−→r j (t ′) − −→ri (t ′)| − �i, j )

2
dt ′. (16)

We averaged the time-averaged kinetic energy over all beads
and the particles as

Kmol(t ) = 1

Nb

Nb∑
i=1

Ki(t ), (17)

Ksol(t ) = 1

Ns

Ns∑
α=1

Kα (t ), (18)

Vmol(t ) = 1

Nk

Nb∑
i �= j

Vi, j (t ), (19)

where Nk = ∑
i �= j �(ki, j ) is the number of springs in the

molecule, and �(x) is the Heaviside function. Because the
time evolution of the above kinetic energies depends on
the initial condition, the initial moment of the molecule, and
the initial position of the solvent particles, we further averaged

it over M samples starting from different initial conditions.
The initial positions of the beads in the molecule are given by
Eqs. (8) and (12) for chain and net molecules respectively; we
randomly change the initial direction of momenta randomly
by selecting from a uniform distribution in interval [0, 2π ].

A. Slow relaxation to equipartition and the
emergence of quasiequilibrium

We demonstrate the relaxation to equipartition through
the short-chain molecule with the number of beads Nb = 3
surrounded by two solvent particles Ns = 2. The evolution of
the time-averaged kinetic energies of the chain molecule and
solvent and the potential energy of the spring are shown in
Fig. 4. When the two spring constants are equal, k = kα = 1,
there are no fast or slow-timescales in the system. The kinetic
energy initially assigned to the chain molecule is distributed
gradually into other parts such as the vibrational and inter-
action parts. As shown in Fig. 4(a), the system relaxes to
the equipartition wherein all kinetic energies for the beads
and solvent particles are equal. The solid curve shows the
kinetic energy of the chain molecule Kmol(t ), and it almost
monotonically decreases and converges to a stationary value.
As shown in the dashed curve, the kinetic energy of solvent
Ksol(t ) monotonically increases from zero and converges to
the same stationary value as that of the chain molecule. The
spring energy Vmol(t ) shown by the dotted line gradually in-
creases from zero and converges to a stationary value, that is,
half of the stationary value of the time-averaged kinetic energy
because we consider two-dimensional space,

lim
t→∞Vmol(t ) = lim

t→∞
Kmol(t )

2
.
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(a)

(b)

(c)

FIG. 4. Relaxation process to equipartition. Kinetic energy of
chain molecules and solvent particles as a function of the averaging
time. The solid, dashed, and dotted curves represent the kinetic
energies of the chain molecule and solvent particles, and the potential
energy of the springs, respectively. The horizontal solid lines repre-
sent the estimated energy level when the equipartition is established.
The spring constants between chain beads are (a) k = 1, (b) k = 10,
and (c) k = 1000. The sample average is taken over 20 different
initial conditions. Nb = 3, Ns = 2, �i, j = �α = 1, m = 1, kα = 1, and
E0 = 0.1.

However, the relaxation time to equipartition depends on
the gap between the timescales involved in the system. In our
system, two timescales are involved, i.e., the timescale of the
vibration of the molecule and that of the interaction between
beads in the molecule and solvent particles. These timescales
are determined by the spring constants k and kα . When the
difference between these timescales is larger, the relaxation
to the equipartition takes a long time [18]. The relaxation

time obeys the Boltzmann-Jeans law and the details are shown
in Refs. [17,18]. Furthermore, the relaxation process is not
monotonic; rather, the time-averaged kinetic energy of the
solvent particle shows an overshoot. In fact, as the spring
constant k increases, we observe that the kinetic energy of the
solvent starting from zero increases gradually, and it exceeds
that of the chain molecule, as shown in Fig. 4(b). After some
period, it gradually relaxes to the equipartitioned value. For
the potential energy of the spring in the molecule, we see
that Vmol(t ) increases gradually, and it converges to half of the
equipartitioned value.

As the spring constant k becomes considerably larger in
addition to the longer relaxation time, a plateau appears as
shown in Fig. 4(c) after Ksol(t ) exceeds Kmol(t ). Because the
plateau becomes wider as k increases, the system is almost
stationary. We call this stationary state in which the system
settles in the plateau a QE. After a long QE, the system relaxes
to the equipartition. The duration of QE becomes longer with
k. Moreover, the duration increases as exp(

√
k), which is

consistent with the Boltzmann-Jeans conjecture, as reported in
Refs. [17,18]. Hereafter, we clarify how the kinetic energies of
the bead molecule and solvent particles are distributed during
the QE.

During the QE, we observed that the average kinetic energy
of solvent particles was larger than that of the beads in the
molecule (see Fig. 4). This phenomena is a universal feature
in a sense that it appears for both systems of the chain and
network molecules and is irrelevant to the connection struc-
ture of the molecule. To characterize this difference in QE,
we observe the kinetic energy of each particle at which the

QE state persists, i.e., KQE
mol = Kmol(tQE) and KQE

sol = Ksol(tQE),
where tQE is a typical time during the QE state; we use tQE =
104. For QE, we find that the following inequality holds:

Kmol(tQE) < Ksol(tQE).

In the following subsections, we consider the time-
averaged kinetic energy distribution for beads in the molecule
and solvent particles in QE by changing the molecular size
and structure and the number of solvent particles.

B. Quasiequilibrium for the chain molecule

The kinetic energies KQE
chain and KQE

sol that depend on the
number of beads in a chain molecule are shown in Fig. 5. Both
energies decrease gradually, and the difference between them
converges to a constant value as Nb, i.e., the length of the chain
molecule, increases. It is stressed that Kmol(tQE) < Ksol(tQE)
holds for any chain length. Indeed, as shown in Fig. 5(b), the
ratio of the kinetic energy of the chain molecule to that of
the solvent converges to a value as Nb increases. The ratio
is always larger than one, and it increases gradually as Nb

increases. This clearly shows that the kinetic energy of the
solvent is always larger than that of the chain molecules dur-
ing QE.

Figure 6(a) shows the KQE
chain and KQE

sol dependency on the
number of solvent particles Ns. Both energies gradually de-

crease as Ns increases. However, the ratio KQE
sol /KQE

chain does
not depend on the number of solvent particles, as shown in
Fig. 6(b). These results support that in QE, the kinetic energy
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(a)

(b)

FIG. 5. (a) Time-averaged kinetic-energies of the chain molecule

KQE
chain and the solvent KQE

sol as a function of chain length Nb. The

circles and squares on the error bars are KQE
chain and KQE

sol , respectively.

(b) The ratio KQE
mol/KQE

sol is shown as a function of Nb. The error bars
show the 95% confidence interval, which is estimated using sam-
ples starting from different M initial conditions. k = 1000, Ns = 2,
k = 1000, M = 10, TQE = 104, and E0 = 0.3.

of the solvent particles is always larger than that of the chain
molecule. It is stressed that the ratio is independent of the
number of solvent particles, which is usually large in reality.

C. Quasiequilibrium for the network molecule

We consider the energy distribution during QE for the
network molecule wherein the beads are densely connected
by linear springs as shown in Fig. 2. To contrast the effect
of the number of springs which plays a crucial role in energy
distribution, we consider the complete graph as the connec-
tion topology for the network molecule. The Hamiltonian is
defined by Eqs. (10) and (11). In Fig. 7(a), the time-averaged
kinetic energy for the network molecule and that for solvent

particles KQE
net and KQE

sol are shown as a function of Nb, i.e.,

the number of beads in the network molecule. While KQE
net

gradually decreases with Nb, KQE
sol does not depend on Nb. In

Fig. 7(b), the ratio KQE
sol /KQE

net is shown as a function of Nb.
In contrast to the chain molecule, the ratio increases linearly
with Nb and is always larger than one. In Fig. 8(a), the time-

averaged kinetic energy KQE
net and KQE

sol are shown as a function

(a)

(b)

FIG. 6. (a) Time-averaged kinetic energies of the chain

molecules KQE
chain (circles) and the solvent particles KQE

sol (squares) in
QE as a function of the number of solvent particles Ns. (b) The ratio

KQE
sol /KQE

chain dependency on Ns. The other parameters and the error
bars are the same as those in Fig. 5.

of Ns. The both time-averaged kinetic energies decrease with

Ns. The ratio KQE
sol /KQE

net does not depends on Ns as shown in
Fig. 8(b).

In this section, we numerically show that the kinetic energy
of the solvent particle is always larger than that of the bead in
the molecule during QE, i.e., Kmol(tQE) < Ksol(tQE). This fact
is independent of the molecular structure, the number of beads
in the molecule, and the number of solvent particles. In other
words, the solvent particles are more energetic than the beads
in the molecule during the QE. The number of springs in the
molecule plays a crucial role in determining the distribution
of energy.

V. THEORETICAL EXPLANATION

A. Equipartition theorem

Let us recall the equipartition theorem. Usually, the theo-
rem states that the thermal average of the kinetic energy in the
equilibrium is given by

〈ε〉β ≡
〈(

px
i

)2

2m

〉
β

=
〈(

py
i

)2

2m

〉
β

= 1

2β
, (20)
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(a)

(b)

FIG. 7. (a) The time-averaged kinetic energies of the beads in
the network molecules and those of the solvent particles are shown
as a function of the number of beads by the circles and squares on
the error bars, respectively. (b) The ratio of the kinetic energy of the
solvent particle to that of the network molecule is shown as a function
of the number of beads. Nb = 6 and E0 = 0.1. The other parameters
are the same as those in Fig. 5.

where px
i and py

i are the momenta of the x and y directions
of particle i in the system, respectively. The symbol 〈· · · 〉β
represents the thermal average at the inverse temperature
β ≡ 1/kBT and is defined as

〈 f (q, p)〉β ≡ 1

Z

∫
f (q, p)e−βH (p,q)d
 (21)

for any function of general coordinates and their conjugate
momenta f (q, p). Here d
 denotes a volume element of the
phase space and Z represents a partition function. The key
point of the theorem is that the kinetic energy is quadratic
in the momentum. Further, if any energy is described by the
harmonic form of the coordinate q, then we can show that the
thermal average of such potential energy also takes the same
value [21]. For example, the thermal average of the potential
energy with the form U (q) = 1

2 q2 is

〈U (q)〉β = 1

2β
= 〈ε〉β. (22)

(a)

(b)

FIG. 8. (a) Time-averaged kinetic energies of the beads in the
network molecules and solvent particles are shown by the circles and
the squares on the error bars, respectively. (b) The ratio of the kinetic
energy of the solvent to that of the network molecule is shown as
a function of the number of solvent particles Ns. The ratio does not
depend on Ns. The other parameters are the same as those in Fig. 7.

Consider the following Hamiltonian, which is represented by
the sum of the harmonic form:

H =
f∑

i=1

(
px

i

)2 + (
py

i

)2

2mi
+

f∑
i=1

1

2
kiq

2
i ,

where 2 f is the number of degrees of freedom. Then the
thermal average of the total energy of such a system becomes

〈H 〉β = Fsys

2β
= Fsys〈ε〉β, (23)

where we define Fsys as the number of independent harmonic
terms that enter into the Hamiltonian. For the above Hamilto-
nian, the total number of harmonic degrees is Fsys = 3 f .

B. Theoretical estimation of averaged kinetic
energies for quasiequilibrium

We now estimate the kinetic energy of beads in the
molecule and solvent particles by adopting the equipartition
theorem for QE. To this end, we assume the following. First,
we assume that the thermal average of the total energy 〈H 〉β
is equal to E0. Second, anharmonic potential terms are ap-
proximated by harmonic ones. The second assumption is valid
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for a scenario wherein the amplitude of the vibrational os-
cillation is sufficiently small because the spring coefficient is
sufficiently large.

Based on these assumptions, the number of independent
harmonic terms entering the Hamiltonian is denoted by Fsys;
we refer to them as the harmonic degrees (HDs). Thus, we
consider that the total energy E0 is equally distributed into
Fsys HDs. Therefore, in equilibrium, the energy per HD can
be estimated by

〈〈ε〉〉 ≡ E0

Fsys
. (24)

Hereafter, we represent 〈〈· · · 〉〉 as the kinetic energy per HD
by adopting the equipartition theorem to the Hamiltonian dy-
namical system.

To estimate the energy per HD, we divide the system into
two subsystems, A and B, where subsystem A has frozen HDs
and B does not have such frozen degrees. Furthermore, we
denote the number of HDs in equilibrium for A and B by FA

and FB, respectively. Thus, the total number of HDs of the
system is Fsys = FA + FB. When we adopt the equipartition
in the equilibrium, the equally distributed energy per HD can
be estimated by

〈〈ε〉〉 = 〈〈εA〉〉 = 〈〈εB〉〉 = E0

Fsys
= E0

FA + FB
. (25)

A schematic of the energy distribution in the equilibrium
is shown in the top panel of Fig. 9. In the case of QE, the
time-averaged spring energy is almost zero if the spring coef-
ficient is sufficiently large, as shown in Fig. 4(c). This means
that the vibrational motion of the molecule is frozen in the
sense that there are no energy exchanges between them and
the other degrees. To estimate the energy per HD in QE, we
describe the number of HDs of subsystem A as the sum of
the number of kinetic HDs and that of the potential HDs, i.e.,
FA = FKA + FVA , where FKA denotes the number of HDs
for the kinetic part, and FVA denotes the number of HDs for
the potential part entered in the Hamiltonian of subsystem A.
When the number of stiff springs in A is FZ , the number
of active HDs in QE is F QE

A = FA − 2FZ . Here the factor
2 originates from the fact that these stiff springs behave as
rigid links, and they act as constraints for molecular motion.
Thus, the number of HDs for the kinetic part is reduced
to FKA − FZ , and that of the HDs for the potential part is
reduced to FVA − FZ . The bead-spring system in QE behaves
as a system with constraints in equilibrium [17,18], and the
generalized equipartition theorem holds for such constrained
systems [21]. Therefore, we adopt the equipartition theorem
by simply replacing the active HDs. We derive the energy per
HD in QE as

〈〈ε〉〉QE = E0

F QE
sys

= E0

FA − 2FZ + FB
. (26)

Then the total energies attributed to subsystems A and B
are

〈〈EA〉〉QE = F QE
A 〈〈ε〉〉QE, (27)

〈〈EB〉〉QE = F QE
B 〈〈ε〉〉QE, (28)

FIG. 9. Schematic for the energy distribution per HD based on
the equipartition theorem. The top panel shows the equipartition state
in equilibrium, where the total energy E0 is equally distributed to the
total number of HDs, Fsys = FA + FB. The middle panel shows the
QE state at which the total energy is equally distributed to “active”
HDs, i.e., F QE

sys = FA − 2FZ + FB. The bottom panel shows that
the kinetic energy of subsystem A is redistributed according to the
number of kinetic HDs, that is, FKA .

respectively, where F QE
A = FA − 2FZ and F QE

B = FB. A
schematic of the energy distribution in QE is shown in the
middle panel of Fig. 9. The total kinetic energy of subsys-
tem A becomes 〈〈EKA〉〉QE = (FKA − FZ )〈〈ε〉〉QE. Because we
observe kinetic energy per bead, we divide the total kinetic
energy by the number of kinetic HDs. Therefore, the kinetic
energies per bead and particle for subsystems A and B are

〈〈εKA〉〉QE = FKA − FZ

FKA

〈〈ε〉〉QE, (29)

〈〈εKB〉〉QE = F QE
KB

FKB

〈〈ε〉〉QE

= 〈〈ε〉〉QE, (30)

respectively. Because subsystem B does not have frozen de-
grees, the number of HDs in the kinetic parts in QE is the same
as that in equilibrium, i.e., FKB = F QE

KB
, and FZ < FKA ,

〈〈εKA〉〉QE =
(

1 − FZ

FKA

)
〈〈ε〉〉QE, (31)

< 〈〈ε〉〉QE = 〈〈εKB〉〉QE. (32)

Therefore, the distributed energy per HD for subsystem A
with a frozen degree is always smaller than that without the
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frozen degrees. A schematic is shown in the bottom panel of
Fig. 9. Further, we obtain the ratio as

〈〈εKA〉〉QE

〈〈εKB〉〉QE
= 1 − FZ

FKA

. (33)

This means that the ratio does not depend on the number
of HDs for subsystem B. For bead-spring systems, since B
corresponds to the solvent, we conclude that the kinetic energy
of each solvent particle is always larger than that of the beads
in the molecule during QE. We adopt these results for the
chain and network molecules in the solvent, and verify the
numerical results.

C. Averaged kinetic energy for chain molecule in
quasiequilibrium

We apply the above theory to the chain molecule. In the
case of the chain molecule in the solvent, the system can be
divided into a chain molecule corresponding to subsystem A
and the solvent particles corresponding to subsystem B. The
number of HDs for chain molecule in the equilibrium is

Fchain = 2Nb + (Nb − 1), (34)

where Nb and Ns are the number of beads in the molecule
and in the solvent, respectively. The first term corresponds
to the number of HDs for the kinetic part of the beads in
the molecule, and the second term corresponds to the number
of HDs for the potential part of the molecule. The effective
number of HDs for the solvent is

Fsol = 2Ns + γ Ns, (35)

where the first and second terms correspond to the kinetic and
potential parts of the solvent, respectively. Because the inter-
action between the solvent and molecule has a cut-off distance
�α , as in Eq. (5), it cannot be treated by the potential energy as
a harmonic form. Thus, we estimate the interaction energy as
a linear function of the number of solvent particles with coef-
ficient γ . The parameter γ represents the effective quadratic
degrees of freedom for the interaction energy between beads
and solvent particles. Here, we used cut-off distance for the
interaction, and thus it is not a quadratic form. Setting γ to
zero corresponds to neglecting the interactions between beads
and solvent particles; if γ = 1, then we treat the interaction as
quadratic potential. Here we select the value γ = 1/4 ∈ [0, 1]
by fitting the numerical data.

Therefore, using Eq. (34) and (35), the energy per HD in
the equilibrium is given by

〈〈ε〉〉 = E0

Fsys
= E0

3Nb − 1 + (2 + γ )Ns
, (36)

where Fsys = Fchain + Fsol is the effective number of es-
timated HDs for the system. In QE, the energy exchange
between the vibration of the molecule and the other part is
prevented. The number of stiff springs is FZ = Nb − 1, and
thus the number of degrees of motion of the chain molecule
is reduced to F QE

Kchain
= 2Nb − (Nb − 1) because the distance

between the beads in a molecule is almost constant in QE. In
other words, each spring acts as a rigid link, and the molecule
behaves as if the motion has Nb − 1 constraints. Thus, the

total number of frozen HDs is 2FZ = 2(Nb − 1) and F QE
sys =

Fchain − 2FZ + Fsol. The energy distributed to these HDs is

〈〈ε〉〉QE = E0

F QE
sys

= E0

Nb + 1 + (2 + γ )Ns
. (37)

Therefore, the kinetic energies for chain beads and solvent
particles can be estimated as

〈〈εchain〉〉QE = E0

Nb + 1 + (2 + γ )Ns

(
Nb + 1

3Nb − 1

)
, (38)

〈〈εsol〉〉QE = E0

Nb + 1 + (2 + γ )Ns
, (39)

and the quasiequilibrium to equilibrium ratios for these kinetic
energies are

〈〈εchain〉〉QE

〈〈ε〉〉 = Nb − 1

2Nb
〈〈ε〉〉QE

=
( 〈〈εsol〉〉QE

〈〈ε〉〉
)(

1

2
+ 1

2Nb

)
, (40)

〈〈εsol〉〉QE

〈〈ε〉〉 = 1 + 2(1 − Nb)

Nb + 1 + (2 + γ )Ns
. (41)

Comparisons between these analytic expressions and numer-
ical experiments are shown in Fig. 10. In these figures, the
theoretical expressions are indicated by the dashed and dotted-
dashed lines. The dashed lines correspond to the theoretical
estimations using Eq. (40) with γ = 1/4, and the dotted-
dashed lines correspond to the theoretical estimation using
Eq. (41) with γ = 1/4.

The time-averaged kinetic energy in the QE dependency
on the number of beads Nb and solvent particles Ns is in
good agreement with the theoretical estimations. The ratio
〈〈εsol〉〉QE/〈〈εchain〉〉QE does not depend on the number of solvent
particles and the parameter γ , that is,

〈〈εsol〉〉QE

〈〈εchain〉〉QE
= 2 − 2

Nb + 1
. (42)

This means that the kinetic energy of the solvent particle
is twice that of the long chain molecule for any number of
solvent particles, and for a long chain molecule with any fixed
Ns, we get

lim
Nb→∞

〈〈εchain〉〉QE

〈〈ε〉〉 = 3

2
.

lim
Nb→∞

〈〈εsol〉〉QE

〈〈ε〉〉 = 3.

The kinetic energy per HD for both the chain bead and solvent
particles in QE is always higher than that for the equilibrium
values. For a large number of solvent particles with fixed Nb,
we derive that

lim
Ns→∞

〈〈εchain〉〉QE

〈〈ε〉〉 = 2

3
.

lim
Ns→∞

〈〈εsol〉〉QE

〈〈ε〉〉 = 1.

The kinetic energy of the solvent particles in QE converges
to the equilibrium value as Ns increases, while the kinetic
energy of the chain bead in QE is always lower than that of
the equilibrium value.
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FIG. 10. (a) Time-averaged kinetic energies for beads in chain molecules and solvent particles normalized by their equilibrium values as
a function of Nb are shown by circles and squares on the error bars, respectively. The dashed and the dotted-dashed lines are the theoretical
estimations obtained using Eqs. (40) and (41) with Ns = 2 and γ = 1/4, respectively. (b) Time-averaged kinetic energies for beads and solvent
particles normalized by their equilibrium values are shown as a function of the number of solvent particles Ns. The dashed and the dotted-dashed
lines are the same as in (a) with Nb = 3. k = 1000 and M = 10, and the other parameters are the same as those in Fig. 6.

D. Averaged kinetic energy for network
molecule in quasiequilibrium

We consider the theoretical estimation of the kinetic en-
ergy per HD for the network molecule. Here we consider the
complete graph as a connection topology for the molecule; the
number of springs in the molecule is NbC2 = Nb(Nb − 1)/2.
Thus, the number of springs is larger than that of the beads
when Nb is larger than three. When these springs are stiff,
the motion of the network molecule is restricted by the many
springs, and it behaves as one particle. Therefore, only the
translational and rotational degrees of freedom remain in QE;
thus, F QE

net = 3. The number of independent HDs for the po-
tential energy of the springs in the molecule can be considered
in the following manner. Let us consider a simple scenario
wherein the two beads are connected by two different springs
with spring constants k1 and k2. In this case, the two springs
are not independent; rather, they behave as one spring with
a spring constant k1 + k2. Thus, the number of independent
HDs for such a molecule is five, to which the energy is
equally distributed, i.e., four kinetic HDs and one potential
HD for these springs. In the case of a molecule comprising
four beads, any pair of beads is connected by a stiff spring.
The connection topology is a complete graph, and there are
six springs in the molecule. The motion of these springs is no
longer independent, and there are four independent springs in
this case. For the molecule with a complete-graph connection
topology, there are Nb(Nb − 1)/2 springs; however, the num-
ber of independent HDs entered in such a potential energy is

Fspring = 2Nb − 3. (43)

The number of independent springs is the same as the degree
of the framework, which is the rank of the rigid matrix in
the literature [22–25]. In Appendix, we check the number of
independent HDs for network molecules by directly calcu-
lating the thermal average of the potential energy using the
Markov-chain Monte Carlo (MCMC) method.

This estimation of the number of independent HDs can be
explained intuitively as follows. When the spring constant is

sufficiently large, we observe that springs act as constraints for
the motion of the beads in the molecule, and the molecule be-
haves as one particle, as explained previously. In fact, during
QE, the energy exchange between the springs and other parts
is prevented; thus, the potential energy for springs is almost
zero, which is the initial value. Then, the total number of de-
grees for the network molecule is the sum of the transnational
and rotational degrees. Thus, the following equation holds:

F QE
net = 2Nb − FZ = 3, (44)

where FZ = Fspring. The effective number of HDs in the
solvent part is the same as in the case of the chain molecule,
as explained in the previous subsection:

Fsol = 2Ns + γ Ns.

Therefore, the effective number of HDs for the whole system
can be estimated using

Fsys = 2Nb + Fspring + Fsol

= 4Nb − 3 + (2 + γ )Ns, (45)

F QE
sys = 2Nb − FZ + Fsol

= 3 + (2 + γ )Ns. (46)

Thus, the distributed energy per HD during QE is given as

〈〈ε〉〉QE = E0

F QE
sys

= E0

3 + (2 + γ )Ns
. (47)

Using the above estimation of the number of HDs and assum-
ing that the total energy is distributed equally to these degrees,
we obtain the average energy per HD as

〈〈εnet〉〉QE = 〈〈ε〉〉QE
F QE

net

Fnet
= 3E0

{3 + (2 + γ )Ns}(4Nb − 3)
, (48)

〈〈εsol〉〉QE = 〈〈ε〉〉QE = E0

3 + (2 + γ )Ns
, (49)
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FIG. 11. (a) Time-averaged kinetic energies for beads in network molecules and solvent particles normalized by their equilibrium values as
a function of the number of beads Nb are shown by circles and squares on the error bars, respectively. The dashed and the dotted-dashed lines
represent the theoretical estimations using Eqs. (50) and (51) with Ns = 2. (b) The same as in (a) with the function of the number of solvent
particles Ns. The dashed and dotted-dashed lines are the same as in (a) with Nb = 6. E0 = 0.1. The other parameters are the same as those in
Fig. 6.

and the ratios to its equilibrium value 〈〈ε〉〉 = E0/Fsys are

〈〈εnet〉〉QE

〈〈ε〉〉 =
{

1 + 4Nb − 6

3 + (2 + γ )Ns

}
3

2Nb
, (50)

〈〈εsol〉〉QE

〈〈ε〉〉 =
{

1 + 4Nb − 6

3 + (2 + γ )Ns

}
. (51)

The time-averaged energy dependency on the number of
beads Nb and solvent particles Ns are plotted with these
theoretical estimations, as shown in Figs. 11(a) and 11(b),
respectively. The dashed and dotted-dashed lines in these fig-
ures represent the theoretical estimations by Eqs. (50) and (51)
with γ = 1/4, respectively. These theoretical estimations are
in good agreement with the numerical results.

In the case of the network molecule, the ratio of these
averaged energies is inversely proportional to Nb as

〈〈εnet〉〉QE

〈〈εsol〉〉QE
= 3

2Nb
, (52)

and does not depend on the parameter γ . This implies that
for a molecule composed of a large number of atoms (e.g., a
biomolecule), the averaged kinetic energy of such a molecule
becomes considerably lower than that of a solvent particle
during QE.

For a large number of solvent particles with a fixed number
of beads, we get

lim
Ns→∞

〈〈εnet〉〉QE

〈〈ε〉〉 = 3

2Nb
.

lim
Ns→∞

〈〈εsol〉〉QE

〈〈ε〉〉 = 1.

These ratios also do not depend on the parameter γ .

VI. SUMMARY

We investigated the emergence of the QE over the course
of relaxation to equipartition for Hamiltonian dynamics with
fast and slow timescales. We used the bead-spring model as a

simple model of molecules and analyzed the energy distribu-
tion of molecules and solvents during the QE state. The model
molecule is composed of the masses (beads) connected by
linear springs in a two-dimensional space, which interact with
solvent particles. Further, we considered the initial condition
that a molecule has only translational kinetic energy without
fast vibration, which means that the potential energy of the
springs between the beads in the molecule is initially set to
zero. For such initial conditions, the numerical simulations
showed that all kinetic energies for beads in the molecule
and solvent particles become equal on average, meaning that
they relax to equipartition. However, the relaxation time to
equipartition depends on the stiffness of the spring between
the beads, which determines the timescale of the molecular
vibration. The relaxation time can be extremely long when
the timescale of the molecular vibration is shorter than that of
the collision between the molecule and solvent particles. The
relaxation time obeys the Boltzmann-Jeans law [18]. During
such a long transition to equipartition, we observed that the
time-averaged kinetic energy for beads and solvent particles
was almost constant for a long time. We call this state the QE.

During the QE, we observed that the time-averaged kinetic
energy of a solvent particle is always larger than that of
the bead irrespective of the type of molecular structure (we
considered two types of molecules: chain and network). In
other words, the solvent particles behave more energetically
than the beads in the molecule during the QE. We numerically
show the time-averaged kinetic energy dependency on the
number of beads and solvent particles. For chain molecules,
both the molecular and solvent kinetic energies decrease as the
length of the chain molecule increases. However, a network
molecule, the solvent kinetic energy takes a constant value as
the number of beads in the molecule increases. The ratio of
molecule energy to solvent energy increases with an increase
in the number of beads for both types of molecules. We state
that the ratio does not depend on the number of solvent parti-
cles, which is usually large in reality. The functional forms
of these dependencies are different, and the dependency is
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determined by the connection topology of the molecule. To
clarify these dependencies, we adopt the equipartition theo-
rem for QE by considering “frozen degrees.”

In equilibrium, the equipartition theorem states that the
thermal average of the energy for all HDs is equal. Here the
number of HDs denotes the number of independent harmonic
terms that enter the Hamiltonian of the system. We explained
that the numerical results observed in QE can be understood
by adopting the equipartition theory and by estimating the
effective number of HDs. The theoretical analysis is in good
agreement with the numerical results.

In the case of a chain molecule, the molecular vibration
is frozen, and the motion of the molecule behaves as if the
distance between the beads is constant. Then the number
of frozen HDs is 2(Nb − 1), where Nb denotes the number
of beads in the chain molecule. We showed that the kinetic
energy of the chain molecule in QE is lower than that in
equilibrium for the short-length molecule Nb � 3; further, it
becomes higher when Nb > 3. For the long chain, the energy
of solvent is double that of the molecule in QE. The solvent’s
kinetic energy in QE is triple that in equilibrium. These results
show that solvent behaves in a more energetic manner than
molecule with frozen degrees.

In the case of network molecules, we determined that
the energy ratio increases linearly with the number of beads
in the molecule by estimating the number of “independent”
springs in the molecule. This implies that large molecules
with complex connection topology, such as biomolecules, are
less energetic than solvents. When the number of solvent
particles is larger, the kinetic energy per HD of the molecule
in QE equals that of the equilibrium value. The energy of the
molecule depends linearly on the inverse of the number of
beads in the molecule. Both facts suggest that the energy ratio
in QE does not depend on the number of solvent particles,
which is usually large in reality. This suggests that QE can
be observed by measuring the kinetic energy ratio, and it
indicates the value of “frozen degrees” that exist in the system
in QE.

The proper functioning of biomolecules occurs out of equi-
librium. Recent NMR studies showed that the high mobility
of terminal residues appears to change only via an amino
acid [26]. The change in the amino acid causes a helical
conformation, and the hydrogen bonds are regarded as “frozen
degrees.” Thus, introducing the “frozen degrees” may induce
differences in the mobility [26]. Because QE lasts a long
time, we can observe the difference in the average kinetic
energy in the experiments, and through the kinetic energy
ratio of the molecule to solvent, we can estimate how many
frozen or resting degrees of freedom exist in the molecule.
Such an inhomogeneity of energy distribution emerging from
the frozen degree may be an indicator of how far it is from
equilibrium, and it can shed some light on the functioning of
the biomolecule.
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APPENDIX: ESTIMATION OF THE HARMONIC DEGREES
USING THE MARKOV-CHAIN MONTE CARLO

In Secs. V C and V D, we adopt the equipartition theorem
to estimate the energy distribution during the QE state. We
use the HDs in which the energy is distributed equally to such
degrees in QE. In the case of a chain molecule, the number
of frozen motions originates from that of the springs in the
molecule. However, for the bead-spring network molecule, if
the number of springs exceeds 2Nb − 3, then the polygon can
be triangulated. This means that we cannot change the spring
length independently, i.e., a change in the length of the spring
leads to a change(s) in the other length(s). Thus, the potential
energy of all springs is not a simple sum of the harmonic terms
of the springs for such network molecules. In Sec. V D, we
estimated the number of independent HDs as Fspring = 2Nb −
3 for network molecules with the complete-graph connection
topology. This is the same as the degree of a framework, which
is the rank of a rigid matrix in the literature [22–25].

In this Appendix, we verify the number of the indepen-
dent HDs for randomly connected network molecules using
MCMC in equilibrium. The randomly connected network
molecules with a fixed number of springs are simply generated
in the following manner. The beads are located at an angle
of the equilateral polygon placed on the unit circle, and the
randomly selected Nspring pairs of beads are connected by
a spring; duplicate pairs are forbidden. That is, the spring
coefficient is ki, j = k in Eq. (11) if the i and j beads are
connected; otherwise, ki, j = 0.

V
to

t
β

FIG. 12. Thermal-average of the total potential energy of springs
for randomly connected network molecules as a function of the
number of springs. The thermal average is calculated by MCMC.
The vertical dashed line represents the triangulation threshold above
which the total potential energy is not a sum of independent HDs.
The horizontal dashed line indicates the maximum total potential
energy, i.e., 2Nb−3

2β
. The parameters are Nb = 8, β = 1, and M = 500.

034209-12



EMERGENCE OF QUASIEQUILIBRIUM STATE AND … PHYSICAL REVIEW E 104, 034209 (2021)

The thermal average of the total spring energy 〈Vtot〉β for a
randomly connected network molecule with a fixed Nspring is

〈Vtot〉β =
〈

Nb−1∑
i=1

Nb∑
j=i+1

ki, j

2
(|−→r j − −→ri | − �i, j )

2

〉
β

(A1)

calculated by MCMC [27,28]. Further, we average the total
spring energy over M different random networks. Figure 12
shows the thermal average of the total potential energy as a

function of the number of springs with Nb = 8. The thermal
average 〈Vtot〉β increases linearly with the number of springs,
whereas the number is below the regularization threshold.
Above the threshold, the total potential energy takes a constant
value, i.e., 2Nb−3

2β
. Therefore, the number of independent HDs

for which the energy is equally distributed does not increase
as the number of springs increases. The MCMC result is
consistent with the previous estimation that the number of
independent HDs is 2Nb − 3 for the complete graph.
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