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Direct product of random unitary matrices: Two-point correlations and fluctuations
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We study the ensembles of direct product of m random unitary matrices of size N drawn from a given circular
ensemble. We calculate the statistical measures, viz. number variance and spacing distribution to investigate the
level correlations and fluctuation properties of the eigenangle spectrum. Similar to the random unitary matrices,
the level statistics is stationary for the ensemble constructed by their direct product. We find that the eigenangles
are uncorrelated in the small spectral intervals. While, in large spectral intervals, the spectrum is rigid due
to strong long-range correlations between the eigenangles. The analytical and numerical results are in good
agreement. We also test our findings on the multipartite system of quantum kicked rotors.
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I. INTRODUCTION

The circular ensembles of random unitary matrices were
introduced by Dyson [1–3] to study the spectral properties of
complex quantum systems. Due to the simplicity, the circular
ensembles are advantageous over the Gaussian ensembles of
Hermitian random matrices. Numerous studies [4–8], includ-
ing time-periodic quantum chaotic systems, quantum maps,
and scattering matrices, have used the random unitary ma-
trices as an appropriate universal model. Depending on the
symmetries of the underlying system, the ensembles of ran-
dom unitary matrices are classified into three universality
classes [3,9]. The circular unitary ensembles (CUEs) of ar-
bitrary unitary matrices are appropriate to model a system
without the time-reversal symmetry. When the system with
integer spin preserves the time-reversal and rotational sym-
metries, circular orthogonal ensembles (COEs) of symmetric
unitary matrices are appropriate. For systems with half-integer
spin, which preserves the time-reversal but the rotational sym-
metry no longer holds, one should use circular symplectic
ensembles (CSEs) of self-dual unitary quaternion matrices.
The eigenangle spectrum of each universality class possesses
nonzero level repulsion unique in itself.

In the field of random matrix theory (RMT), the main
interest lies in the local fluctuation properties of the spectrum.
Such properties are independent of the global constraints
imposed by the average level density and exhibit universal
features. Before investigating the local properties, one first
unfolds the spectrum by transforming the average level den-
sity to unity. The local properties of the unfolded spectrum
are then analyzed by the two-point statistical measures, e.g.,
number variance statistics �2(r); here �2(r) is the variance

*ramgopal.sps@gmail.com
†apandey2006@gmail.com; ap0700@mail.jnu.ac.in
‡raviprakash.sps@gmail.com; ravi.prakash@mnnit.ac.in

of the number of levels in an interval of size rD and D
is the average level spacing. It is a direct measure of the
rigidity of the spectrum. For uncorrelated spectrum, �2(r)
grows linear with interval size r while, for the spectrum from
RMT-ensemble, it has logarithmic increment with r. This slow
growth (logarithmic) indicates the presence of level correla-
tions. The level-spacing distribution P(s) is another useful
measure. It has Poissonian behavior for uncorrelated spectrum
and Wigner-Dyson for RMT-spectrum.

Today, random matrices are widely used in diverse areas
of physics and sciences. While the classical RMT-ensembles
(Gaussian or circular) have been a stepping stone for the
development of RMT, they only serve as pure phenomenolog-
ical models. We often require the generalized ensembles of
random matrices to model a complicated system. This paper
will discuss such an ensemble composed by the direct prod-
uct of random unitary matrices. The ensembles of the direct
product of random matrices are useful to model the spatially
extended systems in the fields of quantum information and
graph networks [10,11]. Their extension in terms of transi-
tion ensembles have recently found applications in quantum
entanglement [12–14]. Despite the good physical relevance,
there are only a few preliminary works [15,16] available in
this direction. Moreover, these works focus on the short-range
spectral fluctuations only. Our aim in the present paper is to
provide a detailed account of the two-point spectral correla-
tions in the ensembles of direct product of m independent
random unitary matrices of size N drawn from a given cir-
cular ensemble. We present the analytical results for the direct
product of m independent random unitary matrices in general
and support them numerically for m = 2. We also formulate
a multipartite system of quantum kicked rotors (QKRs) to
verify our results. The spectral statistics of QKRs is consistent
with those of COEs/CUEs [17,18]. Therefore, we expect that
their multipartite version should serve as a test bed for direct
product ensembles. The interesting observations of our paper
are as follows:
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(1) The eigenangles of the spectrum obtained from direct
product of m independent random unitary matrices are uncor-
related in the small spectral intervals, as characterized by the
linear growth of number variance and Poissonian behavior of
spacing distribution.

(2) The number variance for large spectral intervals shows
saturation behavior, which implies that the spectrum is rigid,
i.e., there are strong correlations between the distant eige-
nangles. The level-spacing distribution is non-Poissonian for
large spacings.

(3) The spectral statistics of the multipartite system of
QKRs is in good agreement with our findings for direct prod-
uct ensembles.

This paper is organized as follows. First, in Sec. II, we
briefly discuss the random unitary matrices. In Sec. III, the
ensembles of direct product of random unitary matrices are
described. We discuss the spectral properties of the direct
product matrices in Sec. IV. In Sec. V, we provide our numer-
ical results. Further, in Sec. VI, we explore the multipartite
system of QKRs. Finally, in Sec. VII, we give a summary and
discuss our results obtained so far in the paper.

II. RANDOM UNITARY MATRICES

For the circular ensembles of random unitary matrices, the
joint probability distribution (JPD) of eigenangles {θi}i=1,2,..,N

is given by [2,3]

PN,β (θ1, ..., θN ) = CN,β

∏
j>k

∣∣eiθ j − eiθk
∣∣β, (1)

where CNβ is the normalization constant, N is the dimension-
ality of the matrices, and β is the degree of level repulsion
with β = 1 for orthogonal, 2 for unitary, and 4 for symplectic
class. Since JPD PN,β depends only on the differences be-
tween the eigenangles, circular ensembles are homogeneous.
In particular, the ensemble-averaged level-density

R1(θ ) = ρ(θ )

=
∫ 2π

0

∫ 2π

0
....

∫ 2π

0

{∑
i

δ[θ − θi]

}
× PN,β (θ1, ..., θN ) dθ1dθ2.... dθN (2)

is constant (= N/2π ); here the bar denotes the ensemble av-
erage. The eigenangle spectrum is then unfolded simply by
multiplying the constant N/2π .

The two-point correlations in the eigenangle spectrum are
characterized by the two-point correlation function of level
density [2],

K (θ, θ ′) = ρ(θ )ρ(θ ′), (3)

with the normalization condition∫ 2π

0

∫ 2π

0
K (θ, θ ′) dθdθ ′ = N2. (4)

The connected version of the two-point function is sometimes
more useful and is calculated from the disconnected one by
subtracting the product of two average level densities:

Kc(θ, θ ′) = K (θ, θ ′) − R1(θ )R1(θ ′). (5)

Since the eigenangles of a unitary matrix lie on the unit
circle (0 < θi < 2π ), the level density of the spectrum can be
expressed in terms of Fourier expansion,

ρ(θ ) = 1

2π

∞∑
p=−∞

Mp eipθ , (6)

where Mp = TrU p are the traces of pth power of the random
unitary matrix U drawn from a circular ensemble and the
index p is an integer (p = 0,±1,±2, ....).

By use of Eq. (6), Kc can be written in terms of Mp as

Kc(θ, θ ′) = 1

(2π )2

∑
p�=0

|Mp|2 eip(θ−θ ′ ), (7)

with the identity Mp Mq = δp,−q|Mp|2 due to homogeneity of
the spectra. The Fourier coefficient of Kc(θ, θ ′), also known
as the spectral form factor, is given as [2]

C(p, q) =
∫ 2π

0

∫ 2π

0
eipθ eiqθ ′

Kc(θ, θ ′) dθdθ ′

= Mp Mq − Mp Mq; p, q = 0,±1,±2, .... (8)

which is nonzero for p + q = 0. We will denote it as C(p) in
the paper.

C(p) is useful to calculate two-point fluctuation measures.
The exact results of C(p) for finite N are derived in Ref. [19].
For β = 1, it is given as

C(p) = 2|p| − |p|
(N−1)/2∑

μ=(N−1)/2−|p|+1

1

μ + |p| , |p| � N,

= 2N − |p|
(N−1)/2∑

μ=−(N−1)/2

1

μ + |p| , |p| � N. (9)

For β = 2, C(p) is

C(p) = |p|, |p| � N,

= N, |p| � N. (10)

And, for β = 4, it is

C(p) = |p|
2

+ |p|
4

N− 1
2∑

μ=N−|p|+ 1
2

1

μ
, |p| � 2N,

= N, |p| � 2N. (11)

In the next section, we describe the direct product of ran-
dom unitary matrices and detail the two-point function results.

III. DIRECT PRODUCT OF RANDOM
UNITARY MATRICES

For the composed ensembles defined by the direct prod-
uct of random unitary matrices, we consider m random
unitary matrices U1,U2, ....,Um each of size N , with eigenan-
gles {θ (1)

i1
}i1=1,2,..,N , {θ (2)

i2
}i2=1,2,..,N ,...., {θ (m)

im
}im=1,2,..,N , respec-

tively. The direct product of these m matrices is defined as

Ũ = U1 ⊗ U2 ⊗ .... ⊗ Um, (12)
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where the size of the matrix Ũ is Nm. The eigenvalues of Ũ
are obtained from the product of the eigenvalues of component
matrices U1,U2, .... Therefore, the eigenangles of the matrix
Ũ are

�i1i2..im = θ
(1)
i1

+ θ
(2)
i2

+ .... + θ
(m)
im

mod 2π, (13)

where indices i1, i2, .., im = 1, 2, ...., N . The ensembles of the
direct product of random unitary matrices each pertaining to
a given circular ensemble can be classified analogous to cir-
cular ones, i.e., ensemble of direct product of COE matrices,
ensemble of direct product of CUE matrices, and ensemble of
direct product of CSE matrices.

In this paper, we are considering a special case where the
component matrices {Ui} are independent of each other. The
direct product of identical matrices can also be explored on
the same ground, but we do not find any interesting feature to
discuss them here.

The advantage of the direct product of independent ma-
trices is that the eigenangles from independent matrices are
uncorrelated to each other and, therefore, the calculation of the
two-point function results becomes easier. First, the average
level density for the direct product of m independent random
unitary matrices is obtained from the following convolution

relation:

Rm⊗
1 (�) =

∫ 2π

0

∫ 2π

0
....

∫ 2π

0
{R1(θ (1) ) R1(θ (2) ).... R1(θ (m) )

× δ[� − (θ (1) + θ (2) + .... + θ (m) )]}
× dθ (1)dθ (2).... dθ (m), (14)

where R1(θ (1) ), R1(θ (2) ), ... are the average level-densities for
different random unitary matrices. Since � is periodic with
period 2π , we have δ(�) = δ(� + 2π ). We replace δ-term
by its Fourier series expansion,

δ

(
� −

∑
i

θ (i)

)
= 1

2π

∞∑
p=−∞

exp

(
ip

(
� −

∑
i

θ (i)

))
,

(15)
and substitute R1(θ (i) ) = N/(2π ) in Eq. (14). After evaluating
integrals over the θ (i) followed by the summation over integer
p, we get

Rm⊗
1 (�) = Nm

2π
. (16)

We further write the disconnected two-point function of
level density for the direct product of m independent random
unitary matrices, Km⊗(�,�′) as

Km⊗(�,�′) =
∫ 2π

0

∫ 2π

0
....

∫ 2π

0
{K (θ (1), θ ′(1) ) K (θ (2), θ ′(2) ). . . . K (θ (m), θ ′(m) )

× δ[� − (θ (1) + θ (2) + .... + θ (m) )] δ[�′ − (θ ′(1) + θ ′(2) + . . . . + θ ′(m) )]}dθ (1)dθ ′(1)dθ (2)dθ ′(2). . . . dθ (m)dθ ′(m),

(17)

where K (θ (1), θ ′(1) ), K (θ (2), θ ′(2) ), ... are the (disconnected)
two-point functions for the component matrices.

By using Eqs. (3) and (6) for the K (θ (i), θ ′(i) ), and Eq. (15)
for δ terms, we get

Km⊗(�,�′) = 1

(2π )2

∞∑
p=−∞

[|Mp|2
]m

eip(�−�′ ), (18)

where |Mp|2 are the ensemble-averaged squared-in-modulus
traces for the circular ensemble. The connected two-point
function is given by

Km⊗
c (�,�′) = 1

(2π )2

∑
p�=0

[|Mp|2
]m

eip(�−�′ ). (19)

It is straightforward to see from Eq. (19) that the Fourier
coefficient of Km⊗

c (spectral form factor) is

Cm⊗(p) = [C(p)]m, (20)

where C(p) is the spectral form factor of random uni-
tary matrices [Eqs. (9)–(11)]. In the next section, we will
exploit the above relation to analyze the spectral proper-
ties of the direct product of m independent random unitary
matrices.

IV. LEVEL CORRELATIONS AND FLUCTUATIONS

To investigate the local spectral properties, one often uses
the rigidity measure, namely, the number variance. For the
eigenangle spectrum of the direct product of m independent
random unitary matrices, it can be found from the two-point
function of level density as [2]

�2(	, ε) =
∫ ε+	/2

ε−	/2

∫ ε+	/2

ε−	/2
Km⊗

c (�,�′) d�d�′, (21)

where 	 is the width and ε is the location of the spectral
interval. Denoting z = � − �′ and s = (� + �′)/2, we see
from Eq. (19) that Km⊗

c (�,�′) = Km⊗
c (z), i.e., Km⊗

c depends
only on the difference z. It gives

�2(	, ε) = �2(	) = 2
∫ 	

0
(	 − |z|) Km⊗

c (z) dz. (22)

This property reflects the stationarity of the level statistics in
the direct product ensembles.

By using the Fourier expansion of Km⊗
c [Eq. (19)], we have

for the unfolded spectrum

�2(r) =
∞∑

p=−∞
Cm⊗(p)

sin2(π pr/Nm)

(π p)2
, (23)

where r = Rm⊗
1 	 is the unfolded width of the spectral inter-

val. Note that �2(r) = �2(Nm − r) due to the periodicity of
the spectrum. We further discuss the fluctuation properties for
the small and large spectral intervals.
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A. Small spectral intervals

The eigenangles of the direct product spectrum observe
the sum of eigenangles from different random unitary ma-
trices with modulo-2π [Eq. (13)]. Because of that, a degree
of randomness arises in the small spectral intervals. Similar
behavior is also recovered when one superposes many inde-
pendent spectra [20]. This fact can be understood from the
behavior of form factor Cm⊗(p) at large p. The form factor of
circular ensembles C(p) goes to N for |p| � N , where |p| = N
is the timescale conjugate to the average level spacing D of
the spectrum [21]. It gives Cm⊗(p) � Nm for |p| � N [see
Eq. (20)]. Then, from the expression in Eq. (23), the number
variance

�2(r) ∼ Nm
∞∑

p=−∞

sin2(π pr/Nm)

(π p)2
= r (24)

for intervals of size r � Nm−1. It implies that the eigenangles
are uncorrelated in the small spectral intervals. Obviously,
the width of the interval is extended for large N or m. In
Sec. V, we will numerically verify the above linear growth
of �2(r).

B. Large spectral intervals

Contrary to the uncorrelated eigenangles in the small
intervals, we expect the development of the strong level
repulsion in the large intervals. The reason is the global rigid-
ity of the spectrum. In circular ensembles, level repulsion
arises for r � 1 wherein �2(r) grows logarithmic (slowly)
with r. The integrable systems, which are generic to Pois-
son statistics, also exhibit strong rigidity at large energy
scales [22,23].

The behavior of form factor Cm⊗(p) at small p is crucial
for the local fluctuations in the large spectral intervals. With
the increase in p from zero, Cm⊗(p) increases from zero with
the mth power of C(p), where C(p) is the form factor of
random unitary matrices. Therefore, when m > 1, Cm⊗(p) has
suppressed increase at small p and steeper increase around
|p| � N . This regime of small p, where the form factor has
suppressed increase, indicates the strong two-point correla-
tions between the far-lying eigenangles. We further explain
this fact with the help of a model originally proposed for the
integrable systems [23,24]. Consider the spectral form factor
of the form

C(p) =
{

0, 0 � |p| � t
L, t < |p| < ∞.

(25)

Here, L is the size of the spectrum and t is an integer with
0 � t < L. In Fig. 1, we plot �2(r) vs r using Eq. (23) for
above model. When t is zero, �2(r) grows linear at all r,
yielding the uncorrelated nature of levels in the spectrum. As
soon as t becomes nonzero, it grows linear for small intervals
but approaches a constant value (∝ 1/t ) for larger intervals
(see inset of the same figure). This saturation of �2(r) at
large r implies the presence of strong long-range correlations
in the spectrum. Since the form factor of the direct product
ensembles is suppressed at early times (small p), we expect
the similar saturation of �2(r) to appear therein.

The saturation behavior of number variance has been re-
ported in the studies of several systems [22,25–27]. For the

FIG. 1. The plot of number variance �2(r) vs interval size r for
form factor in Eq. (25) of main text. Inset represents the same data
for large r.

present case, this saturation value can be estimated by averag-
ing out the oscillating part in Eq. (23) over the large spectral
intervals. For any saturation behavior in �2(r), the resulting
series should be convergent. We replace the sine squared term
in Eq. (23) by its average over large intervals, 1/2. Thus, we
get

�2
sat =

∞∑
p=−∞

Cm⊗(p)
1

2π2 p2
(26)

for large r ∼ O(Nm−1). The above sum can be calculated with
an appropriate cutoff.

V. NUMERICAL STUDY

In the present section, we provide a numerical verifi-
cation of the results obtained in the previous section. We
deal specifically with the ensembles of a direct product of
two independent random unitary matrices and investigate
the statistical quantities like number variance and spacing
distribution.

To obtain the eigenangle spectrum of the direct product,
we first generate random unitary matrices from CUEs using
QR-decomposition technique [28,29]. The COE and CSE ma-
trices are then obtained using the properties U ′ → U T U and
U ′ → U RU , respectively, with U being the random unitary
matrix from CUE, U T its transpose, and U R being the dual
of matrix U [3,4]. These matrices are diagonalized using
standard LAPACK routine [30]. The eigenangles of the direct
product of two independent CUE matrices (CUE ⊗ CUE),
COE matrices (COE ⊗ COE), or CSE matrices (CSE ⊗ CSE)
are obtained by adding the eigenangles of component matrices
[see Eq. (13)]. The quantities of interest are then calculated
from the obtained eigenangle spectrum.

We calculate the spectral form factor C2⊗(p) from the
relation

C2⊗(p) = ∣∣Tr Ũ p
∣∣2 −

∣∣∣Tr Ũ p
∣∣∣2

=
∣∣∣∣∣∑

j

eip� j

∣∣∣∣∣
2

−
∣∣∣∣∣∑

j

eip� j

∣∣∣∣∣
2

,

(27)
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FIG. 2. The plot of form factor C2⊗(p) vs p for (a) COE ⊗ COE, (b) CUE ⊗ CUE, and (c) CSE ⊗ CSE. The circles denote numerical
data. The size of the spectrum is N2 = 1002. The solid curves in (a)–(c) denote analytical results (see main text). The dashed lines indicate
C2⊗(p) = N2.

where the bar denotes the ensemble average and the matrix
Ũ is the direct product of two random unitary matrices (Ũ =
U1 ⊗ U2).

For number variance, we first unfold the spectrum using
unfolding function (N2/2π ) �i. The number variance is then
calculated by taking the variance of the number of eigenangles
n(r) in interval size r:

�2(r) = n2(r) − n(r)
2
. (28)

Another important quantity that we calculate is the level-
spacing distribution Pn−1(s). It is the distribution of spacings
between two levels with n − 1 levels in the middle. This
quantity is straightforward to calculate from an increasingly
ordered spectrum.

For the numerical results reported in this paper, the size
of the single random unitary matrix from COEs and CUEs is
taken N = 100, while the random unitary matrices of size 2N
are considered from CSEs. One should note that the eigenan-
gles of matrices from CSE are doubly degenerate. Therefore,
we remove the duplicate eigenangles by hand from the spec-
trum and, in this way, N number of eigenangles are obtained

from the diagonalization of the 2N-sized CSE matrix. The
numerical data of the form factor is obtained by averaging
over an ensemble of 50 000 spectra. The number variance
in an interval of size r is calculated by averaging over 1500
spectra. The level-spacing distribution is calculated from 500
spectra.

A. Form factor and number variance

The form factor for the direct product of two indepen-
dent random unitary matrices C2⊗(p) can be calculated from
Eq. (20) as

C2⊗(p) = [C(p)]2, (29)

where the form factor C(p) of circular ensembles (COE, CUE,
and CSE) are given by Eqs. (9)–(11). In Figs. 2(a)–2(c),
we display the numerical as well as the analytical results of
C2⊗(p) for COE ⊗ COE, CUE ⊗ CUE, and CSE ⊗ CSE. Both
have excellent agreement with each other in all three classes.
The suppression of C2⊗(p) at small p is also confirmed.

Further, by substituting C2⊗(p) in Eq. (23), we calculate
the expressions of the number variance for different classes.
For COE ⊗ COE, it is given as

�2(r) = 2
N∑

p=1

[
2 − ψ

(
N + 1

2
+ p

)
+ ψ

(
N + 1

2

)]2 sin2 (π pr/N2)

π2

+ 2
∞∑

p=N+1

[
2N

p
− ψ

(
N + 1

2
+ p

)
+ ψ

(
1 − N

2
+ p

)]2 sin2 (π pr/N2)

π2
. (30)
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FIG. 3. Number variance �2(r) vs interval size r for (a) COE ⊗
COE, (b) CUE ⊗ CUE, and (c) CSE ⊗ CSE. The numerical data
is shown by circles. The size of the spectrum is N2 = 1002. Data
for small intervals is shown in insets, where the dashed lines denote
�2(r) = r. The solid curves in both main frame and inset of panels
(a)–(c) are plotted using Eqs. (30)–(32), respectively.

The expression for CUE ⊗ CUE is

�2(r) = 2
N∑

p=1

sin2 (π pr/N2)

π2
+ 2N2

∞∑
p=N+1

sin2 (π pr/N2)

(π p)2
,

(31)

and for CSE ⊗ CSE, the expression of �2(r) is

�2(r) = 1

8

2N∑
p=1

[
2 + ψ

(
N + 1

2

)
− ψ

(
N − p + 1

2

)]2

× sin2 (π pr/N2)

π2
+ 2N2

∞∑
p=2N+1

sin2 (π pr/N2)

(π p)2
.

(32)

Here ψ (z) is the digamma function (= −γ + ∑∞
n=1[ 1

n −
1

n+z−1 ]); γ is Euler’s gamma. For N → ∞, the summations in
the above expressions can be replaced by the integrals over a
variable k such that p/N2 → k. However, for finite N , one has
to deal with the summations directly. We calculate the infinite

TABLE I. The saturation values �2
sat from the expression in

Eq. (26) and the numerical data in Fig. 3. �2
sat from numerical data

is estimated as the arithmetic mean of �2(r) over r ∈ [500 − 4000].
The corresponding error bars represent the standard deviation of the
mean from original data.

�2
sat [Eq. (26)] �2

sat (from numerical data)

COE ⊗ COE 29.01 28.99(7)
CUE ⊗ CUE 20.26 20.25(4)
CSE ⊗ CSE 17.73 17.74(25)

summations in the above expressions with a reasonable high
cutoff using MATHEMATICA [31].

In Figs. 3(a)–3(c), the numerical results of �2(r) for
all three classes COE ⊗ COE, CUE ⊗ CUE, and CSE ⊗
CSE are shown. The numerical data for different classes has
good agreement with the respective analytical expressions
[Eqs. (30)–(32)]. �2(r) for small intervals is displayed in the
insets. The linear growth of �2(r) in different insets exhibits
the uncorrelated nature of eigenangles, irrespective of the
different classes. The saturation behavior of �2(r) at large r
can be clearly observed in the main frames. To become more
quantitative, we estimate the saturation values from numerical
data and mention them in Table I. These are consistent with
the values obtained from the infinite series in Eq. (26). One
can also see that the saturation values are different for all
classes, indicating the different degrees of level repulsion as
in the symmetry classes of circular ensembles.

We have separately verified the linear growth and the
saturation behavior of �2(r) for the direct product of three
independent random unitary matrices. For the sake of brevity,
we refrain from presenting this detailed data here. Albeit, for
completeness, we show in Fig. 4 the data of �2(r) vs r for
small intervals. One can notice that with the increase in m
the regime of linear growth of �2(r) is also extended. In
case of m = 2 (N = 100), �2(r) ∼ r only up to � 10 (see

0 50 100 150 200
r

0

50

100

150

200

Σ2 (r
)

FIG. 4. Number variance �2(r) versus interval size r for di-
rect product of three independent random unitary matrices drawn
from COE (circle), CUE (square), and CSE (diamond), respec-
tively. The size of the spectrum is N3 = 1003. The dashed line
indicates �2(r) = r.
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FIG. 5. Level-spacing distribution Pn−1(s) for different values of
n (see keys). The different symbols circle, square, and diamond in
the same panel represent numerical data for COE ⊗ COE, CUE
⊗ CUE, and CSE ⊗ CSE, respectively. The size of the spectrum
is N2 = 1002. The solid curve in different panels denotes Poisson
distribution [Eq. (33)].

Fig. 3), while for m = 3 (N = 100) the present figure shows
that �2(r) ∼ r at least up to � 100, a fact that �2(r) ∼ r for
r � Nm−1 predicted in Sec. IV.

B. Level-spacing distribution

The nth nearest-neighbor spacing distribution for a se-
quence of uncorrelated levels is Poisson distribution [3],

P(n; s) = sn−1

(n − 1)!
exp(−s), (33)

where the variance of the distribution is n. We have seen
above that the eigenangles in the spectrum from direct product
ensembles are uncorrelated for interval size r � Nm−1. It is,
therefore, expected that the level-spacing distribution Pn−1(s)
should be Poissonian for n � r. This behavior was proved for
the direct product of two large CUE matrices in Ref. [15].

In Fig. 5, we numerically calculate Pn−1(s) for different
classes (COE ⊗ COE, CUE ⊗ CUE, CSE ⊗ CSE) and dif-
ferent values of n. When n is small (= 1, 2, 3, 4), Pn−1(s)
for all three classes has nice agreement with Poisson dis-
tribution. However, with increase in n, the deviations from

FIG. 6. Level-spacing distribution Pn−1(s) for different values of
n (see keys). The symbols circle, square, and diamond in the same
panel represent numerical data for COE ⊗ COE, CUE ⊗ CUE, and
CSE ⊗ CSE, respectively. The size of the spectrum is N2 = 1002.
The dashed curves represent Gaussian distribution plotted using
Eq. (34). The solid curves denote Poisson distribution [Eq. (33)].

Poisson begin (see panels for n = 5, 10 in the same figure).
These deviations arise due to the long-range correlations in
the spectrum. One should note that the variance of distribution
Pn−1(s) is similar to the number variance �2(r) and will cease
to increase at large n. The large spacings in a spectrum are the
sum of several consecutive level spacings. We expect from the
central limit theorem that the level-spacing distribution, with
increase in n, will tend to a Gaussian distribution:

G(s) = 1√
2πσ 2

exp

(
− (s − μ)2

2σ 2

)
. (34)

In Fig. 6, Pn−1(s) are calculated for n = 20, 50, 100, 200.
The dashed curves are plotted from Eq. (34) with mean μ

and variance σ 2 determined from the numerical data. One
can clearly see the deviation from Poisson distribution. While,
with increase in n, Pn−1(s) is approached to Gaussian distribu-
tion. Especially, at very large n (= 100, 200), the agreement
of numerical data of distribution Pn−1(s) and Gaussian is
excellent.

VI. MULTIPARTITE SYSTEM OF QUANTUM
KICKED ROTORS

We now discuss a composite system [32] constructed by
the noninteracting QKRs, where the spectral properties of the
above discussed direct product ensembles may be realized.
The QKR is a paradigmatic example of quantum chaos, whose
spectral statistics mimic RMT-behavior. The time-evolution
operator of QKR can be represented by an N-dimensional
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matrix in position basis [18,33]

Ukl = 1

N
exp

[
−iα

{
cos

(
2πk

N
+ θ0

)}]

×
(N−1)/2∑

n=−(N−1)/2

exp

[
−i

(
n2

2
− λn − 2πn

(k − l )

N

)]
,

(35)

where α is the kicking parameter that brings nonintegrability
in QKR, and parameters λ and θ0 control the time-reversal
and parity symmetry breaking, respectively. When α 
 N ,
with setting θ0 �= 0 and λ = 0 the eigenangle spectrum of the
matrix U exhibits local fluctuations similar to those of the
COE matrix. Further, if λ �= 0 too, the fluctuations correspond
to the CUE class. Here, we construct a multipartite system of
independent QKRs. Let H1, H2, ...., Hm be the Hamiltonians
of QKRs, each defined in N-dimensional Hilbert space. Then,
the total Hamiltonian of the multipartite QKR system is given
by

H = H1 ⊗ I + I ⊗ H2 + ..... + I ⊗ Hm, (36)

which is defined in Nm-dimensional Hilbert space. The time-
evolution operator for this system is expressed as

Ũ = U1 ⊗ U2 ⊗ ..... ⊗ Um. (37)

It is clear that the operators U1,U2, ... are the time-
evolution operators of independent QKRs. When writing in
a generic basis, Ũ takes the form of a matrix obtained from
the direct product of component matrices U1,U2, ... each be-
longing to a circular ensemble.

We numerically investigate the spectral properties of the
multipartite QKR system with m = 2. The size of individual
QKR matrices is N = 101. To obtain good accuracy in the
statistics, we constructed an ensemble of 1000 independent
realizations of the multipartite QKR system by setting the
parameter α = jα0 + (i − 1)	 in Eq. (35) with α0 = 50 000,
	 = 25 000, and j = 1, 2, ..., 1000. The index i runs over the
members of a multipartite system (i = 1, 2) to ensure their
independence. We have two possible cases to investigate, one
when λ = 0, and another when λ �= 0. For λ = 0, the spectral
statistics of the multipartite QKR system should be equivalent
to that of the direct product of independent random unitary
matrices from COE, while for λ �= 0 it should be equivalent
to the direct product of independent random unitary matrices
from CUE.

In Figs. 7(a)–7(b), the number variance �2(r) for λ = 0
and λ = 0.9 is calculated. When the width of the interval r
is small, �2(r) ∼ r for both cases (see insets), describing the
Poissonian behavior of the spectral statistics. Similar to our
direct product ensembles, the strong level repulsion in the
spectrum is developed at large r, indicated by the saturation
of �2(r) in the main frames of the figure. The data are also
in good agreement with the analytical expressions [Eqs. (30)
and (31)] obtained in Sec. V. It implies the plausibility of the
direct product ensembles.

The other quantity, level-spacing distribution, also has fea-
tures similar to the ensembles of direct product of independent
random unitary matrices. Again, for the sake of brevity, we did
not present those data here.

FIG. 7. Plot of number variance �2(r) vs interval size r for
(a) λ = 0, (b) λ = 0.9. The size of the spectrum obtained from
the direct product of independent matrices is N2 = 1012. Numerical
data for small r is given in insets, where the dashed lines indicate
�2(r) = r. The solid curves in main frame and inset of (a) and (b) are
plotted using Eqs. (30) and (31), respectively.

VII. SUMMARY AND DISCUSSION

We now conclude this paper with a summary and discus-
sion of our results. The random unitary matrices from circular
ensembles are considerably used to model the spectral fluc-
tuations of complex quantum systems. With the reach of the
field to a wide variety of systems, different generalized en-
sembles of random unitary matrices have also been proposed
in the literature. The ensemble composed by the direct product
of random unitary matrices is one of them. In this paper,
we have studied in detail the ensemble of a direct product
of m independent random unitary matrices of size N drawn
from a given circular ensemble. We investigated the two-point
level correlations and fluctuation properties of the eigenangle
spectrum. The analytical results are presented for the direct
product of m independent random unitary matrices of size
N in general, and their numerical verification is provided for
m = 2 and N = 100.

An important statistical measure to investigate the two-
point level correlations is the number variance �2(r). It can
be calculated in terms of the form factor C(p). We found that
the form factor Cm⊗(p) of direct product of m independent
random unitary matrices is simply the mth power of the form
factor C(p) of random unitary matrices. Using this relation,
we were able to see that the number variance �2(r) ∼ r for
interval size r � Nm−1, i.e., the eigenangles are uncorrelated
in the intervals of size r � Nm−1. Another important obser-
vation from this relation Cm⊗(p) = [C(p)]m is that the form
factor Cm⊗(p) is suppressed at small values of index p. With
the illustration of a model proposed by Berry [23] and Serota
and Wickramasinghe [24], we showed that the suppression of
the form factor at small p (short wave number) results in the
saturation of �2(r) at large r. It further implies the presence
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of strong correlations between the distant eigenangles of the
spectrum.

We numerically verified the linear growth of number vari-
ance �2(r) for direct product of two independent random
unitary matrices. The numerical data further verified the
saturation behavior of �2(r) at large r. We also numeri-
cally calculated the nth nearest-neighbor spacing distribution
Pn−1(s). For small spacings, Pn−1(s) is Poissonian showing
agreement with the linear variation of �2(r) at small r. For
large spacings, Pn−1(s) has non-Poissonian behavior. In fact,
with increase in n, Pn−1(s) tends to the Gaussian distribution.

Finally, we demonstrated a multipartite system of indepen-
dent QKRs. The spectral statistics of this composite system
shows good agreement with our findings for direct product
ensembles. Such direct product ensembles of random unitary
matrices have applications in quantum information theory,
wireless networks, etc.
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