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Rotobreathers in a chain of coupled elastic rotators
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Rotobreathers in the chain of coupled linearly elastic rotators are analyzed. Each rotator is a particle connected
by a massless elastic rod with a frictionless pivot; it has two degrees of freedom, length and angle of rotation. The
rods of the rotators and the elastic bonds between the nearest rotators are linearly elastic, and the nonlinearity of
the system is of a purely geometric nature. It is shown that long-lived rotobreathers can exist if the stiffness of the
rods is high enough to create a relatively wide gap in the phonon spectrum of the chain. The frequency of angular
rotation of the rotobreather cannot be above the optical band of the phonon spectrum and is in the spectrum gap.
Generally speaking, the rotation of the rotobreather is accompanied by radial oscillations; however, one can
choose such initial conditions so that the radial oscillations are minimal. Some parameters of rotobreathers with
minimal radial vibrations are presented on the basis of numerical simulations. The results obtained qualitatively
describe the behavior of physical systems with coupled rotators.
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I. INTRODUCTION

Mechanisms of energy localization and transport in non-
linear discrete systems are attracting a lot of attention from
physicists because they play a decisive role in a variety
of processes. Topological solitons [1,2], shock waves [3–5],
crowdions [6–8], discrete breathers [9–13], modes localized
on defects [14], and rotobreathers [15,16] are examples of
spatially localized objects that exist in nonlinear lattices. Dy-
namics of coupled rotators has been analyzed in the early
works by Benettin et al. [17,18] and later in the works of
[19,20].

Rotobreathers are observed experimentally in supercon-
ducting Josephson junction arrays [21–28] and in a polymer
crystal which consists of one-dimensional (1D) columns of
nested rotors arranged in helical arrays [29]. The single-
crystal neutron-diffraction technique was used to analyze the
structure of the 4-methylpyridine crystal with the methyl
groups rotating about the c axis, revealing the breather modes
[30].

The rotor lattice model [17,31–33] was used in the work
[34] to show that strength of the thermal rectification effect
can increase in the thermodynamic limit in contrast to earlier
work on the Frenkel-Kontorova model [35]. The underlying
mechanism is transition from anomalous to normal heat con-
duction with increasing temperature [36–38], which is due
to the excitation of rotobreathers at high temperatures. The
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model of coupled rotators [17] found its application in de-
scribing the relative rotation of polymer fragments around
the axis of the macromolecule [39] and it was shown that a
strong effect of thermal rectification is possible in a system of
polyethylene nanofibers [40], possibly due to the excitation of
rotobreather modes [34]. Appearance of chaos and synchro-
nization structures in the chains of rotating pendulums have
been analyzed in the works of [41–44]. Introducing additional
degrees of freedom into nonlinear chains helps capture some
of the new physical effects [45,46].

Recently, rotational dynamics of molecules was studied in
molecular crystals such as fullerites [47,48], chain (or col-
umn) of disk-shaped B42 molecules [49], and carbon nanotube
bundles [50]. Rotobreathers can be excited thermally [15] and
hence they can contribute to heat capacity of the molecular
crystals.

When considering complex nonlinear lattices, such as
molecular crystals with many degrees of freedom per rotating
particle, rigorous proof of the existence of rotobreathers as
time-periodic dynamic regimes becomes problematic. Numer-
ical analysis of real crystals is always based on a number of
approximations, for example, on the use of phenomenological
interatomic potentials, and even the mass of an atom is a
probabilistic characteristic due to the presence of isotopes.
The chain of rotators considered here is not as complicated
as real crystals, but, nevertheless, the problem of finding exact
solutions is deliberately replaced by the search for long-lived
rotobreathers, which can be obtained using very simple initial
conditions. Finding exact solutions remains an important issue
and must be done in future works. For discrete breathers, a
step towards real lattices was made in [51], where the concept
of quasibreathers was proposed.
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FIG. 1. Schematic of a chain of coupled elastic rotators num-
bered by the index n. A rotator is a pointwise particle of mass M
connected by a massless, linear elastic rod of stiffness k to a friction-
less pivot. Particles rotate parallel to the (y, z) plane about common
rigid spoke, which is parallel to the x axis. Each particle is coupled
to the nearest neighbors by linear elastic bonds of stiffness K . The
rods and bonds have equilibrium lengths r0 and R0, respectively, and
current lengths rn and Rn, respectively.

Most of the analyzed chains supporting rotobreathers had
one rotational degree of freedom per particle [36–38,52–56],
although Josephson junctions are described by models with
two degrees of freedom per site [26]. In a chain of connected
beads sliding along rigid rings considered in [56], it was
shown that rotobreathers have no upper limit on the rotation
frequency.

Here we consider a chain of coupled elastic rotators with
two degrees of freedom, radial and angular, and demonstrate
that, due to the finite rigidity of the linearly elastic rotators,
the angular rotation frequency of rotobreathers cannot exceed
the optical band of the phonon spectrum.

The chain of coupled rotators is described in Sec. II,
phonon spectra for the chain in the ground states are analyzed
in Sec. III, rotobreathers are modeled in Sec. IV, and conclu-
sions are drown in Sec. V.

II. CHAIN OF COUPLED ELASTIC ROTATORS

Consider a chain of coupled elastic rotators numbered by
the index n and spaced apart by a distance a, as shown in
Fig. 1. Each rotator is a pointwise particle of mass M con-
nected by a massless, linear elastic rod of stiffness k to a
frictionless pivot. Particles rotate parallel to the (y, z) plane
about common rigid spoke, which is parallel to the x axis.
Each particle is coupled to the nearest neighbors by linear
elastic bonds of stiffness K . The rods and bonds have equi-
librium lengths r0 and R0, respectively. Each particle has
two degrees of freedom, the distance from the spoke, rn,
and the angle of rotation, φn, counted counterclockwise from
the y axis. Coordinates of the nth particle are (xn, yn, zn) =
(na, rn cos φn, rn sin φn) and the distance between particles n
and n + 1 is

Rn =
√

a2 + r2
n+1 + r2

n − 2rnrn+1 cos(φn+1 − φn). (1)

The Hamiltonian of the chain of rotators has the form

H =
∑

n

[
M

2

(
r2

n φ̇
2
n + ṙ2

n

) + k

2
(rn − r0)2 + K

2
(Rn − R0)2

]
,

(2)

FIG. 2. Phase diagram of the chain of rotators. Regime I is re-
alized for R0 � a = 1, regime III for R0 �

√
a2 + 4r2

0 = √
1 + 4r2

0 ,
and regime II in between. Ground states in these regimes are de-
scribed in the text.

where the overdot means differentiation with respect to time.
The first, second, and third terms in the square brackets
present the kinetic energy, potential energy of the elastic rods,
and potential energy of the elastic bonds, respectively.

With the help of Hamilton’s equation, the following equa-
tions of motion can be derived from the Hamiltonian Eq. (2),

Mr̈n = Mrnφ̇
2
n − k(rn − r0)

− K

(
1 − R0

Rn

)
[rn − rn+1 cos(φn+1 − φn)]

− K

(
1 − R0

Rn−1

)
[rn − rn−1 cos(φn − φn−1)], (3)

Mφ̈n = −2M
ṙn

rn
φ̇n

+ K

(
1 − R0

Rn

)
rn+1

rn
sin(φn+1 − φn)

− K

(
1 − R0

Rn−1

)
rn−1

rn
sin(φn − φn−1). (4)

Out of the six model parameters (particle mass M, spring
constants k and K , distance between rotators a, rotator equi-
librium length r0, and bond equilibrium length R0) three can
be scaled out by proper choice of the units of time, distance,
and energy. With this in mind, in the numerical examples we
will always set M = 1, a = 1, and K = 1 and study the effect
of the remaining parameters, r0, R0, and k.

Similar to the beads and rings model [56], the considered
chain of rotators supports three different ground state struc-
tures depending on the geometry parameters r0 and R0, as
shown in the phase diagram, Fig. 2. In regime I, which is real-
ized for R0 � a = 1, all rotators have equilibrium length rn =
r0, all bonds are extended, Rn = a > R0, and φn = φ = const.
Regime III is observed for R0 �

√
a2 + 4r2

0 =
√

1 + 4r2
0 . In

this regime, rotators are extended, rn > r0, bonds are com-
pressed Rn < R0, and φn+1 − φn = π . Regime II is realized
for the portion of the phase diagram in between regimes I

034207-2



ROTOBREATHERS IN A CHAIN OF COUPLED ELASTIC … PHYSICAL REVIEW E 104, 034207 (2021)

and III. In this regime, rn = r0, Rn = R0 and, as follows from
Eq. (1),

cos(φn+1 − φn) = 1 + a2 − R2
0

2r2
0

. (5)

In regime II, the structure of the chain is indefinite because
the sign of φn+1 − φn ≡ �φn in Eq. (5) can be arbitrary. The
structure, for example, can be chiral if all �φn are of the
same sign, it can have a zigzag structure with alternating signs
of �φn, or it can be random if the sign of �φn is chosen
randomly.

In the Secs. IV B and IV C, rotobreathers will be analyzed
in well-defined structures I and III, respectively. We will take
r0 = 0.5 and two values of the parameter R0, namely 0.8 and
2
√

2 = 2.828, at which regimes I and III, respectively, are
realized relatively far from the borders of their existence.

III. DISPERSION RELATIONS FOR GROUND STATES

Spatially localized dynamic modes, including roto-
breathers, should have frequencies outside the phonon spec-
trum. Therefore, it is important to obtain dispersion relations
for low-amplitude oscillations around the ground states of
regimes I and III.

A. Regime I

In the case

R0 � a, (6)

the ground state of the considered system is

rn = r0, Rn = a, φn = φ = const. (7)

Let us consider a small perturbation of the ground state

rn(t ) = r0 + δn(t ), φn(t ) = φ + εn(t ), (8)

where δn(t ) � r0 and εn(t ) � 1.
Substituting Eq. (8) into Eqs. (3) and (4) and keeping in the

Taylor series expansions only up to linear terms in δn and εn

one obtains the following linearized equations of motion:

M δ̈n = −kδn + K

(
1 − R0

a

)
(δn−1 − 2δn + δn+1), (9)

M ε̈n = K

(
1 − R0

a

)
(εn−1 − 2εn + εn+1). (10)

It can be seen that the linearized equations of motion are
decoupled and rotational and radial displacements become
independent.

Looking for the solution of the equations of motion
Eqs. (9) and (10) in the forms δn ∼ exp[i(qn − ωrt )] and
εn ∼ exp[i(qn − ωφt )] one comes to the dispersion relations

ωr =
√

k

M
+ 4K

M

(
1 − R0

a

)
sin2 q

2
, (11)

ωφ = 2

√
K

M

(
1 − R0

a

)
sin

q

2
. (12)

An example of phonon dispersion curves, Eqs. (11) and
(12), is given in Fig. 3(a) for r0 = 0.5, R0 = 0.8, and k = 5.

FIG. 3. (a) Example of phonon dispersion curves for the ground
state in regime I, Eqs. (11) and (12), for r0 = 0.5, R0 = 0.8, and
k = 5. (b) Maximal acoustic frequency, ωmax

φ , and minimal and max-
imal optic frequencies, ωmin

r and ωmax
r , as the functions of k.

Optic and acoustic bands are presented by ωr and ωφ , respec-
tively. In Fig. 3(b), as the functions of k, maximal acoustic
frequency, ωmax

φ , and minimal and maximal optic frequencies,
ωmin

r and ωmax
r , are plotted. It can be seen from the figure

and from Eq. (12) that the acoustic phonon frequencies are
k independent. On the other hand, optic frequencies increase
with increasing k.

B. Regime III

In the case

R0 �
√

a2 + 4r2
0 , (13)

the ground state is

rn = r = const, φn = (−1)n π

2
+ φ, (14)

with arbitrary constant φ and r found as a minimum of the
potential energy per atom

P(r) = k

2
(r − r0)2 + K

2
(
√

a2 + 4r2 − R0)2. (15)

Condition for the minimum of the function P(r), dP/dr = 0,
leads to the algebraic equation of the fourth order which is
solved numerically by the Newton-Raphson method.

Let us consider a small perturbation of the ground state

rn(t ) = r + δn(t ), φn(t ) = (−1)n π

2
+ εn(t ), (16)

where δn(t ) � r and εn(t ) � 1.
Substituting Eq. (16) into Eqs. (3) and (4) one can obtain

the following linearized equations of motion:

M δ̈n =−kδn − K

(
1− R0

L
+ 4R0r2

L3

)
(δn−1+2δn+δn+1), (17)

M ε̈n = −K

(
1 − R0

L

)
(εn−1 − 2εn + εn+1), (18)
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FIG. 4. (a) Example of phonon dispersion curves for the ground
state in regime III, Eqs. (20) and (21), for r0 = 0.5, R0 = 2

√
2,

and k = 5. (b) Maximal acoustic frequency, ωmax
φ , and minimal and

maximal optic frequencies, ωmin
r and ωmax

r , as the functions of k.

where

L =
√

a2 + 4r2. (19)

In this case, the linearized equations of motion are also decou-
pled.

The dispersion relations for the radial and rotational
displacements are found by substituting the ansatz δn ∼
exp[i(qn − ωrt )] into Eq. (17) and εn ∼ exp[i(qn − ωφt )] into
Eq. (18). The result reads

ωr =
√

k

M
+ 4K

M

(
1 − R0

L
+ 4R0r2

L3

)(
1 − sin2 q

2

)
, (20)

ωφ = 2

√
K

M

(
R0

L
− 1

)
sin

q

2
. (21)

The dependencies Eqs. (20) and (21) are presented in
Fig. 4(a) for r0 = 0.5, R0 = 2

√
2, and k = 5. In Fig. 4(b),

maximal acoustic frequency, ωmax
φ , and minimal and maximal

optic frequencies, ωmin
r and ωmax

r , are plotted as the functions
of k. In this case, the acoustic frequencies ωφ depend on k
through L given by Eq. (19), because equilibrium length of
rotators r corresponds to the minimum of function Eq. (15),
which includes k. Optic frequencies ωr increase with increas-
ing k.

IV. ROTOBREATHERS

It will be shown that the rotobreather frequency cannot
be higher than the optical band of the phonon spectrum, that
is, its frequency must be in the gap between the optical and
acoustic bands. It is clear that rotobreathers cannot exist in
a chain of rotators with very small k, since in this case the
gap is either absent [see Fig. 3(b) for regime I] or is too
narrow, while the second harmonic lies in the optic band
[Fig. 4(b) for regime III]. Therefore, we will consider chains
with sufficiently wide gaps in the phonon spectrum.

First, the anticontinuum limit with noninteracting rotators
will be considered, and then rotobreathers in the chain of
rotators will be analyzed in regimes I and III.

A. Single elastic rotator

Let us consider the anticontinuum limit by setting K = 0;
in this case the rotators become uncoupled. The Hamiltonian
Eq. (2) for a single rotator simplifies to

H = M

2
(r2φ̇2 + ṙ2) + k

2
(r − r0)2, (22)

where the first and the second terms in the right-hand side give
the kinetic and potential energies of the rotator, respectively.

The equations of motion Eqs. (3) and (4) obtain the form

Mr̈ = Mrφ̇2 − k(r − r0), (23)

φ̈ = −2
ṙ

r
φ̇. (24)

In the absence of rotation, i.e., for φ(t ) = const, and hence
φ̇(t ) = 0, Eq. (23) describes harmonic oscillations of the ro-
tator radius with frequency

�r =
√

k

M
. (25)

Next, consider the vibration-free rotation of the rotator for
which

r(t ) = r = const. (26)

Then from Eq. (24) one has φ̈ = 0 and hence φ̇ = const.
Moreover, from Eq. (23) it follows that

φ̇v =
√

k(r − r0)

Mr
. (27)

Periods of rotation and angular frequency of the vibrationless
rotobreather are

T = 2π

φ̇v

, �φ = 2π

T
= φ̇v, (28)

respectively.
Energy of the vibrationless rotobreather can be obtained by

substituting ṙ = 0 and Eq. (27) into Eq. (22). The result reads

H = kr

2
(r − r0) + k

2
(r − r0)2. (29)

Equation (29) shows that, with increasing r, the total en-
ergy of the vibrationless rotobreather diverges as ∼r2. Kinetic
energy of the rotobreather is greater than the potential energy
and the difference between them vanishes in the limit r → ∞,
when the circular motion becomes rectilinear.

Interestingly, from Eqs. (27) and (28) it follows that, with
increasing total energy of the rotator, in the limit r → ∞, the
angular frequency of the rotobreather approaches the value

�φ →
√

k

M
= �r . (30)

We conclude that the angular frequency of rotations �φ

increases with r (i.e., it increases with total energy of the roto-
breather) but it cannot exceed the frequency of radial vibration
�r . It will be shown that the frequency of rotobreathers in the
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chain of rotators also cannot exceed the frequency of radial
vibrations.

B. Regime I

Note that this work does not pose the problem of finding
rotobreathers that are strictly periodic in time; therefore, the
simplest initial conditions are used, when at t = 0 one ro-
tator is excited in the middle of the chain, while the other
rotators are initially in their equilibrium positions. Absorbing
boundary conditions are used to exclude the influence of the
radiation of the central rotator on its dynamics. The typical
number of rotators in a chain is N = 300, with 100 rotators in
the middle without attenuation, and 100 rotators in the left and
right parts of the chain are used to absorb radiation. This size
of the computational cell was sufficient, since only sharply
localized rotobreathers were analyzed.

The ground state of the chain of coupled rotators (K > 0)
in regime I is described by Eq. (7). The following initial
conditions are used. For the rotator in the middle of the chain,
n = N/2, we set

rN/2(0) = r∗, ṙN/2(0) = 0,

φN/2(0) = 0, φ̇N/2(0) = φ̇∗, (31)

which means that the rotator at t = 0 has initial length r∗, zero
initial radial velocity, zero initial angle, and initial angular
velocity φ̇∗. All other rotators are in their ground states with
zero initial velocities

rn(0) = r0, ṙn(0) = 0,

φn(0) = 0, φ̇n(0) = 0, n 	= N/2. (32)

Under these initial conditions, the rotobreather kinetic en-
ergy at t = 0 is equal to

T ∗ = M

2
(r∗)2(φ̇∗)2. (33)

The change in the potential energy at t = 0 is

�P∗ = k

2
(r∗ − r0)2 + K (R∗ − R0)2 − K (a − R0)2, (34)

where the initial length of the bonds connecting rotator
n = N/2 with its neighbors is

R∗ =
√

a2 + r2
0 + (r∗)2 − 2r∗r0. (35)

Note that the third term on the right-hand side of Eq. (34) is
introduced to subtract the potential energy of the ground state.

Initial energy given to the chain is

H∗ = T ∗ + �P∗. (36)

Let us take the model parameters r0 = 0.5, R0 = 0.8, and k =
20. Dispersion curves for these parameters are presented in
Fig. 3 from which it is seen that for k = 20 the gap in the
phonon spectrum is relatively wide.

Our strategy for searching for quasiperiodic rotobreathers
is to excite a central rotator with initial parameters r∗ and φ̇∗
and wait until the energy emitted by the rotator is absorbed
at the boundaries of the chain. This strategy will produce
several families of quasiperiodic rotobreathers; each family is

FIG. 5. Results for regime I. (a) Time evolution of the total
energy of the chain with absorbing boundary conditions and central
rotator initially excited with r∗ = 0.6 and φ̇∗ = 1.6. (b)–(d) Trajec-
tories of the excited rotator on the (y, z) plane for time intervals
specified for each case. In (d), a periodic motion of the rotator is
observed, since the trajectory is closed. Model parameters: r0 = 0.5,
R0 = 0.8, and k = 20.

characterized by the topology of the trajectory of the central
rotator on the (y, z) plane.

One example is presented in Fig. 5 for r∗ = 0.6 and
φ̇∗ = 1.6. In (a), the total energy of the chain with absorbing
boundary conditions is presented. The total energy decreases
over time because the energy emitted by the central rotator is
absorbed at the boundaries of the chain. However, the total
energy becomes almost constant for t > 1900, because the
emission of energy practically stops. Panels (b)–(d) show the
trajectories of the excited rotator in the (y, z) plane for the time
intervals specified for each case. As seen in (d), for t > 1900,
a (quasi)periodic motion of the rotator is observed because the
trajectory is closed.

In Fig. 6 we present some characteristics of the quasiperi-
odic rotobreather shown in Fig. 5(d) and two other roto-
breathers of this family with similar trajectories on the (y, z)
plane. The rotobreathers were obtained with the initial condi-
tions r∗ = 0.6 and three different values of the initial angular
velocity, φ̇∗ = 1.55, 1.6, and 1.7. In Fig. 6(a), trajectories
of the central rotator on the (y, z) plane are shown by the
blue, red, and green lines, respectively. In (c), the length of
the central rotator as the function of time is shown by the
blue, red, and green lines, respectively. All three rotobreathers
have very close angular frequency �φ = 1.27 and radial fre-
quency �r = 4�φ , as shown in (b). Note that the period of
the rotational motion is the time required for one complete
rotation, while the period of the radial oscillations is calcu-
lated as the time between the nearest highs (or lows) of the
rN/2(t ) curve. Within one angular period of rotation there are
four radial oscillation periods, so the trajectory on the (y, z)
plane has a squarish shape. The dashed lines in (b) show
the borders of the phonon spectrum. It can be seen that �r

lies above the optic band and �φ in the gap of the spectrum.
The absence of resonances with phonons is the reason for the
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FIG. 6. Results for regime I. Properties of three rotobreathers
obtained with the initial length r∗ = 0.6 and three different values of
the initial angular velocity, φ̇∗ = 1.55, 1.6, and 1.7. In (a), trajectories
of the central rotator on the (y, z) plane are shown by the blue,
red, and green lines, respectively. In (c), the length of the central
rotator as the function of time is shown by the blue, red, and green
lines, respectively. All three rotobreathers have very close angular
frequency �φ = 1.27 and radial frequency �r = 4�φ , as shown in
(b). The dashed lines in (b) show the borders of the phonon spectrum
with a very narrow optic band. It can be seen that �r lies above the
optic band and �φ in the gap of the spectrum. Model parameters:
r0 = 0.5, R0 = 0.8, and k = 20.

extremely long lifetime of the rotobreathers. It is interesting
that a single rotator in the absence of rotation oscillates with
an amplitude-independent frequency given by Eq. (25), which
gives �r = 4.47 for the chosen parameters. However, in the
presence of rotation, due to the geometric nonlinearity, the
vibration frequency shifts to the value �r = 5.08. Energies
of the three obtained rotobreathers are H = 0.446, 0.490, and
0.538, respectively.

The value of the initial angular velocity φ̇∗ should be
compared to the angular velocity of vibrationless rotation of
a single rotator, φ̇v; see Eq. (27). For chosen parameters one
has φ̇v = 1.83. The family of rotobreathers shown in Fig. 6
was excited with the initial angular velocities below φ̇v; there-
fore, noticeable radial oscillations can be seen in Fig. 6(c).
Our next step is to obtain a rotobreather with minimal radial
oscillations.

For the value r∗ = 0.6, the quasiperiodic rotobreather with
minimal radial oscillations is observed for φ̇∗ = 1.75, which
is close to φ̇v = 1.83. The breather practically stops radiating
energy at t = 1000 at the energy level H = 0.607. Parameters
of the rotobreather can be seen in Fig. 7. Panel (a) shows the
trajectory of the central rotator, which is very close to a circle
whose center is offset from the origin in the y direction by
0.040. The most interesting feature of this rotobreather can
be seen in (b), which is the equality of the frequencies of
radial and rotational motion, �r = �φ = 1.59. The frequency
is in the phonon spectrum gap and this explains why the
rotobreather has an extremely long lifetime. Panel (c) shows
the length of the central rotator as the function of time.

FIG. 7. Results for regime I. Quasiperiodic rotobreather with
minimal radial vibrations obtained with the initial parameters
r∗ = 0.6 and φ̇∗ = 1.75. (a) Nearly circular trajectory of the central
rotator on the (y, z) plane. (b) Radial frequency �r and angular
frequency �φ as the functions of time in the regime of quasiperiodic
motion. These frequencies are equal in this case. Dashed lines show
the borders of the acoustic and optic bands of the phonon spectrum.
(c) Length of the central rotator as the function of time. Model
parameters: r0 = 0.5, R0 = 0.8, and k = 20.

Families of quasiperiodic in time rotobreathers can also be
excited with the initial angular velocities above φ̇v . In Fig. 8,
a family of rotobreathers obtained with the initial parameters
r∗ = 0.6 and φ̇∗ = 2.3, 2.4, and 2.6 is presented. These initial
velocities are noticeably above the velocity of vibrationless
rotation of a single rotator, φ̇v = 1.83. In (a), closed trajec-
tories of the central rotator on the (y, z) plane are shown by
the blue, red, and green lines, respectively. In (c), the length
of the central rotator as the function of time is shown by the
blue, red, and green lines, respectively. All three rotobreathers
in the regime of quasiperiodic motion have very close angu-
lar frequency �φ ≈ 1.86 and radial frequency �r = 3�φ , as
shown in (b). Within one angular period of rotation there are
three radial oscillation periods, so the trajectory on the (y, z)
plane has a triangulish shape. The dashed lines in (b) show
the borders of the phonon spectrum. It can be seen that �r

lies above the optic band and �φ in the gap of the spectrum.
Energies of the rotobreathers are H = 1.03, 1.11, and 1.27,
respectively.

To support the statements about the dynamic localization of
the rotobreather energy, in Fig. 9 we present the time evolution
of angular coordinates [panels (a)–(c)] and radial coordinates
[panels (d)–(g)] for rotobreather excited with r∗ = 0.6 and
φ̇∗ = 2.6. One can see a rapid decrease in vibration ampli-
tudes with distance from the central rotator.

For even larger values of φ̇∗ the closed trajectories with
intersections on the (y, z) plane can be realized. In Fig. 10 we
present members of the rotobreather families with flowerlike
trajectories with (a) five and (b) seven petals. The trajectory in
(a) closes in two rotations and in (b) in three rotations. The ro-
tobreathers were obtained with the initial parameters r∗ = 0.6
and (a) φ̇∗ = 3.55 and (b) φ̇∗ = 5.03. The rotobreather in (a)
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FIG. 8. Results for regime I. Properties of three quasiperiodic
rotobreathers obtained with the initial conditions r∗ = 0.6 and three
values of the initial angular velocity, φ̇∗ = 2.3, 2.4, and 2.6. In (a),
trajectories of the central rotator on the (y, z) plane are shown by
the blue, red, and green lines, respectively. In (c), the length of the
central rotator as the function of time is shown by the blue, red,
and green lines, respectively. All three rotobreathers in the regime
of quasiperiodic motion have very close radial frequency �r ≈ 5.62
and angular frequency �φ ≈ 1.86, as shown in (b). The dashed lines
in (b) show the borders of the phonon spectrum. It can be seen that �r

lies above the optic band and �φ in the gap of the spectrum. Model
parameters: r0 = 0.5, R0 = 0.8, and k = 20.

has frequencies �φ = 2.55 and �r = (5/2)�φ , and energy
H = 2.35. The rotobreather parameters in (b) are �φ = 2.92,
�r = (7/3)�φ , and H = 4.63.

All the rotobreathers described so far have been obtained
for a fixed initial length of the central rotator r∗ = 0.6 and
different values of the initial angular velocity φ̇∗, below, close
to, and above the angular velocity of vibrationless rotation
of a single rotator, φ̇v = 1.83. Our next task is to get roto-
breathers with different energies and practically without radial
vibrations. For this, different values of the initial length will
be considered and for each of them the value of the initial
angular velocity will be found at which the rotobreather will
have minimal radial oscillations. As a zero approximation for
the initial value of φ̇∗ the value φ̇v obtained from Eq. (27) is
taken. By applying small increments to this estimate, the value
φ̇∗ is found that produces the smallest radial vibrations.

The main characteristics of such rotobreathers are pre-
sented in Fig. 11. As the functions of initial length of the
rotator r∗ we plot (a) the initial angular velocity φ̇∗ (red
color) and equal radial and angular frequencies of the ro-
tobreather �r = �ψ (blue color), as well as the borders of
the phonon spectrum (dashed lines), and (b) energy of the
rotobreather and, in the inset, the ratio of the rotobreather
energy to the initial energy given to the system defined by
Eqs. (33)–(35). It can be seen in (a) that when r∗ decreases
approaching the minimum possible value of r0 = 0.5, the ro-
tobreather angular frequency �φ decreases rapidly and enters
the acoustic phonon band. For this reason we were unable
to excite rotobreathers with r∗ < 0.57. Also note that we

FIG. 9. Results for regime I. Time evolution of angular coor-
dinates [panels (a)–(c)] and radial coordinates [panels (d)–(g)] for
rotobreather excited with r∗ = 0.6 and φ̇∗ = 2.6. Model parameters:
r0 = 0.5, R0 = 0.8, and k = 20.

use sharply localized initial conditions that are not suitable
for excitation of less localized rotobreathers with frequen-
cies close to the acoustic band. When r∗ increases, �φ also
increases approaching the optic phonon band. Rotobreathers
with angular frequencies above the optical band are impos-
sible, as demonstrated in Sec. IV A for uncoupled rotators.
The energy of rotobreathers increases with increasing r∗; see
(b). The inset in (b) tells us that the energy emitted from

FIG. 10. Results for regime I. Members of the families of
quasiperiodic rotobreathers having closed trajectories with inter-
sections on the (y, z) plane. The rotobreathers were excited with
r∗ = 0.6 and (a) φ̇∗ = 3.55 and (b) φ̇∗ = 5.03. Model parameters:
r0 = 0.5, R0 = 0.8, and k = 20.
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FIG. 11. Results for regime I. Characteristics of the rotobreathers
with minimal radial vibrations as the functions of the initial rotator
length r∗. (a) Initial angular velocity φ̇∗ (the red line) and equal radial
and angular frequencies of the rotobreather �r = �ψ (blue line).
Dashed lines show the borders of the phonon spectrum. (b) Energy of
the rotobreather. The inset in (b) shows the ratio of the rotobreather
energy to the energy initially given to the system. Model parameters:
r0 = 0.5, R0 = 0.8, and k = 20.

the rotobreather increases as r∗ decreases and approaches the
minimum value r∗ = r0 = 0.5, which was explained above by
the use of sharply localized initial conditions. For r∗ � 0.8,
the rotobreather emits less than 0.5% of the initial energy.

Looking at Fig. 11(a), one could expect a resonance be-
tween the second harmonic of the rotobreather and optical
phonons. However, the optical band is very narrow, and we
did not observe such a resonance due to the relatively large
scanning step of the parameter r∗.

C. Regime III

We assume the model parameters r0 = 0.5, R0 = 2
√

2, and
k = 20, for which the gap between the acoustic and optical
bands is quite large, as shown in Fig. 4(b).

From the condition dP/dr = 0, where P(r) is defined by
Eq. (15), we find the equilibrium length of rotators r = 0.5974.

Rotobreathers in the ground state of regime III, described
by Eq. (14) with φ = −π/2, are excited using the following
initial conditions: for the rotator in the middle of the chain,

rN/2(0) = r∗, ṙN/2(0) = 0,

φN/2(0) = 0, φ̇N/2(0) = φ̇∗, (37)

and for n 	= N/2,

rn(0) = r, ṙn(0) = 0,

φn(0) = (−1)n π

2
− π

2
, φ̇n(0) = 0, (38)

where N is assumed to be an even number.
For the chosen initial parameters r∗ and φ̇∗, we observe

the dynamics of a system with absorbing boundary condi-
tions. At a sufficiently large initial angular velocity φ̇∗ after
a transition period, during which some energy is emitted and
absorbed at the boundaries, a rotobreather is formed in the
middle of the chain. One example is given in Fig. 12 for
r∗ = 1.2 and φ̇∗ = 10. In (a), total energy of the chain as the
function of time is shown. The energy decreases with time

FIG. 12. Results for regime III. (a) Time evolution of the total
energy of the chain with absorbing boundary conditions and central
rotator initially excited with r∗ = 1.2 and φ̇∗ = 10. (b)–(d) Trajec-
tories of the excited rotator on the (y, z) plane for time intervals
specified for each case. In (d), a periodic motion of the rotator is
observed, since the trajectory is closed. Model parameters: r0 = 0.5,
R0 = 2

√
2 = 2.828, and k = 20.

and, after reaching the time t = 900, the energy reaches an
almost constant value, indicating that the radiation of energy
by the rotobreather becomes extremely slow. In (b)–(d) the
trajectories of the excited rotator on the (y, z) plane are shown
for time intervals specified for each case. In (d), a periodic
motion of the rotator is observed, since the trajectory is
closed.

In regime III, the periodic motion of rotobreathers is al-
ways realized for almost circular trajectories in the (y, z)
plane, as exemplified in Fig. 12(d). In other words, all ro-
tobreathers excited with different initial values of r∗ and φ̇∗
reach a periodic regime of motion with minimal radial os-
cillations, and this is the main difference from regime I, in
which several families of periodic rotobreathers with a large
amplitude of radial vibrations were observed.

More information on rotobreathers in regime III can be
found in Fig. 13 obtained for fixed initial length of the central
rotator r∗ = 1.2 and different values of the initial angular
velocity φ̇∗. In (a), energy H∗ given to the chain at t = 0 is
shown by the blue line, while the energy of nearly periodic
rotobreathers H is shown by symbols. In (b), radial and an-
gular frequencies of quasiperiodic rotobreathers are shown as
the functions of the rotobreather energy by the blue triangles
and red circles, respectively. Four groups of rotobreathers can
be distinguished, as shown by the green lines and symbols in
Fig. 13. Excitation with an initial angular velocity in the range
3 � φ̇∗ < 6 produces the same rotobreather 1 with frequen-
cies of angular and radial motion �φ = 3.10 and �r = 2�φ .
An excess of energy given to the chain at t = 0 is radiated
and absorbed at the boundaries. Rotobreathers of group 2 are
obtained for 6 � φ̇∗ < 11.8 with very little energy radiation.
The radial frequency of group 2 rotobreathers is twice the
angular frequency. Initial angular velocity in the range 12 �
φ̇∗ < 13.3 does not produce a rotobreather. In this case, no
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FIG. 13. Results for regime III. (a) Initial energy given to the
system H∗ (blue solid line) and energy of the rotobreathers H (open
symbols) as the functions of the initial angular velocity of the central
rotator φ̇∗ for the fixed initial length of the central rotator r∗ = 1.2.
(b) Frequencies of radial and rotational motion, �r and �φ , as the
functions of the rotobreather energy presented by the blue triangles
and red circles, respectively. Dashed lines show the borders of the
phonon spectrum. The green lines and symbols in (a) and (b) show
the energies of the four families of rotobreathers. Model parameters:
r0 = 0.5, R0 = 2

√
2 = 2.828, and k = 20.

synchronization between angular and radial frequencies is ob-
served, which results in rather strong radiation of energy in the
form of radial waves. Initial velocities 13.25 � φ̇∗ < 14.75
produce the same rotobreather 3 with equal frequencies of ra-
dial and angular motion, �r = �φ = 4.08. For rotobreathers
of group 4 one has �r = 2�φ ; they are obtained for φ̇∗ � 15.
Prior to the formation of these rotobreathers a part of the
energy given to the chain is radiated and absorbed at the
boundaries.

From Fig. 13(b) it is clear that for growing rotobreather en-
ergy its rotational frequency �φ increases but remains below
the optic band, as explained in Sec. IV A. Since rotobreathers
in regime III perform rather small radial oscillations, it is
interesting to see how close their rotation frequencies are
to the prediction obtained for a single vibration-free rotator,
Eq. (27). This information is given in the inset of Fig. 13(a).
The solid line shows the angular velocity of a single vibration-
free rotator φ̇v (r) and symbols show how the rotobreather
angular velocity depends on the radius of its circular orbit. It
is seen that the result for a single rotator describes reasonably
well the circular orbits of rotobreathers.

Finally, in Fig. 14 we give examples of time dependence
of the radial coordinate of the central rotator for quasiperiodic
rotobreathers. Rotobreathers of groups 1 to 4 are presented in
panels (a) to (d). They were excited with the initial parameters
r∗ = 1.2 and different values of φ̇∗: (a) 4, (b) 10, (c) 13.5,
and (d) 16. The plots of Fig. 14 confirm that the amplitude
of radial oscillations in regime III is indeed small; it is 9% of
the averaged rotator length in (a) and does not exceed 3% in
the other three cases. Also note that in (a), (c), and (d) rN/2(t )
has two maximums per one rotation, while in (b) only one
maximum. That is why the frequency of radial vibrations of
rotobreathers is twice as high as the frequency of rotational
movement in all groups, except for group 3, where the fre-
quencies of vibrations and rotation are equal.

FIG. 14. Results for regime III. The length of the central rota-
tor as the function of time for quasiperiodic rotobreathers excited
with the initial parameters r∗ = 1.2 and different values of φ̇∗:
(a) 4, (b) 10, (c) 13.5, and (d) 16. Panels (a) to (d) present roto-
breathers of groups 1 to 4, respectively. Model parameters: r0 = 0.5,
R0 = 2

√
2 = 2.828, and k = 20.

Rotobreathers do not radiate energy because their radial
and rotational frequencies are outside the phonon spectrum of
the chain; see Fig. 13(b). However, before synchronization be-
tween radial and rotational frequencies rotobreather dynamics
is described by a number of harmonics and their interaction
with phonons results in energy radiation.

V. CONCLUSIONS

Rotobreathers in the chain of coupled rotators with linearly
elastic rods and bonds were analyzed numerically. Consider-
ing dynamics of a single rotator (anticontinuum limit), it was
shown that the angular frequency of the rotator cannot exceed
the frequency of radial oscillations (see Sec. IV A).

The chain of rotators can be considered in three different
regimes; see Fig. 2. Only regimes I and III are considered in
this work because regime II admits different types of ground
state structures.

In Secs. IV B and IV C it was shown that the rotational fre-
quency of rotobreathers in regimes I and III cannot be higher
than the optical band of the phonon spectrum and lies between
the optical and acoustic bands [see Figs. 11(a) and 13(b)].
Rotobreathers cannot exist in a chain of rotators with very
small k, because the gap in the phonon spectrum in this case
is either absent [see Fig. 3(b) for regime I] or is too narrow,
while the second harmonic lies in the optic band [Fig. 4(b) for
regime III]. Consequently, the conditions for the excitation of
rotobreathers improve with an increase in the rigidity of the
rods of the rotators, when the gap in the phonon spectrum is
large.
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These results can be compared with the results given in
[56] for a chain of rotators of a fixed radius (equivalent to
the absolutely rigid rods, k → ∞). The model considered in
[56] allows a rotobreather with an arbitrarily high rotation
frequency and does not predict that if the radial stiffness is
finite, then the rotobreather frequency will have an upper
bound.

In regime III, quasiperiodic rotobreathers can have large-
amplitude radial oscillations, as shown in Figs. 6, 8, and 10.
Even in such cases, rotobreathers emit energy extremely
slowly and have a very long lifetime, since their angular
frequency is in the phonon spectrum gap, and the oscillation
frequency of the rotator length lies either above the phonon
spectrum or is equal to the angular frequency and there-
fore lies in the gap. Without resonating with low-amplitude
phonons, the rotobreathers do not lose energy for their excita-
tion.

Radial oscillations of rotobreathers in regime III can be
minimized by proper choice of initial length of the rod r∗ and

initial angular velocity φ̇∗ of the excited rotator. Parameters of
rotobreathers with minimal radial oscillations are presented
in Figs. 7 and 11. In regime I, in contrast to regime III,
quasiperiodic rotobreathers always have a small amplitude of
radial oscillations; see Figs. 12 and 14.

In general, our results describe the dynamic behavior of
a chain of elastic rotators. The information presented can be
used to qualitatively understand nonlinear dynamics of dis-
crete systems with rotating elastic units, e.g., some polymer
chains, etc.
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