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Recent studies of dynamic properties in complex systems point out the profound impact of hidden geometry
features known as simplicial complexes, which enable geometrically conditioned many-body interactions.
Studies of collective behaviors on the controlled-structure complexes can reveal the subtle interplay of geometry
and dynamics. Here we investigate the phase synchronization (Kuramoto) dynamics under the competing
interactions embedded on 1-simplex (edges) and 2-simplex (triangles) faces of a homogeneous four-dimensional
simplicial complex. Its underlying network is a 1-hyperbolic graph with the assortative correlations among
the node’s degrees and the spectral dimension that exceeds ds = 4. By numerically solving the set of coupled
equations for the phase oscillators associated with the network nodes, we determine the time-averaged system’s
order parameter to characterize the synchronization level. Our results reveal a variety of synchronization
and desynchronization scenarios, including partially synchronized states and nonsymmetrical hysteresis loops,
depending on the sign and strength of the pairwise interactions and the geometric frustrations promoted by
couplings on triangle faces. For substantial triangle-based interactions, the frustration effects prevail, preventing
the complete synchronization and the abrupt desynchronization transition disappears. These findings shed new
light on the mechanisms by which the high-dimensional simplicial complexes in natural systems, such as human
connectomes, can modulate their native synchronization processes.
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I. INTRODUCTION

In complex systems, collective dynamics is a marked sig-
nature of emerging properties related to complex structure,
studied by mapping onto networks [1]. The synchronization
of oscillator systems is a paradigmatic stochastic process
for study the emergence of coherent behavior in many nat-
ural and laboratory systems [2]. In recent years, research
focuses on the system’s hidden geometry features [3,4]
and their impact on dynamics. Notably, new dynamical
phenomena appear that can be related to the higher-order con-
nectivity and interactions supported by the system’s hidden
geometry, which is mathematically described by simplicial
complexes [5–11].

A formal theory of the simplicial complexes of graphs
[12–14] defines a simplicial complex as a structure consist-
ing of different simplexes, e.g., n-cliques, which share one
or more common nodes representing a geometrical face of
the implicated simplexes. For example, an n-clique is a full
graph of n nodes, and its faces are simplexes of the order q =
0, 1, 2, 3, ...qmax, where qmax = n-1 defines the dimension of
the simplex. Hence, the dimension of the simplicial complex
is defined by the order of the largest simplex that it contains.
Recent studies revealed simplicial architecture in networks
mapping many complex systems from the brain [15–18],
designed materials [19], and physics problems [20–23] to

structures emerging from online social endeavors [24] and
large-scale social networks [25,26]. Such simplicial struc-
ture naturally underlies many-body interactions [6] and, more
generally, nonlinear couplings that cannot be reduced to pair-
wise interactions [27]. However, revealing the mechanisms by
which such high-dimensional simplicial complexes determine
collective dynamics in these complex systems represents a
challenging problem. For example, patterns of brain circuits
that perform complex integration or segregation processes
are known to involve larger distributed structures of brain
areas, hypersimplexes [28], as well as smaller densely con-
nected groups recognized as cliques and cavities [29,30].
Such cliques appear to form hierarchically organized sim-
plicial complexes in the human connectome [16,17]. At the
same time, powerful imaging techniques revealed that the
brain functions, in particular the cognition processes, are
closely related with the appearance of brain rhythms and
a large-scale neural synchronization, represented by mul-
tichannel phase correlations (see Ref. [31] and references
therein). In the opinion paper [31], the authors stated that
“the study of brain rhythms and synchronisation of oscillatory
activity is currently one of the hottest topics in neuro-
science,” calling for computational modeling and nonlinear
dynamics analysis.

In this context, the generative models of high-dimensional
simplicial complexes of a controlled structure are of great
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importance [32–35]. For example, in the model of self-
assembly of cliques of different size developed in Ref. [32],
the assembly is controlled by two factors. These are the
geometric compatibility of the attaching clique’s faces with
the once already built into the growing structure and the
chemical affinity toward the addition of new nodes. Varying
the chemical affinity, one can grow different structures from
sparsely connected cliques that share a single node to the
very dense structure of large cliques sharing their most promi-
nent subclique, see the online demo in Ref. [34]. Moreover,
the architecture of simplicial complexes manifests on several
unique properties of the underlying network (1-skeleton of
the simplicial complex), which can affect the pairwise in-
teraction, see Sec. II for details. For example, the network’s
spectral dimension can vary from the values close to the
tree graphs in sparsely connected cliques of any size to the
values ds � 4 in the case of large densely connected cliques,
as shown in Ref. [36]. Hence, the structure-dynamics in-
terplay can be expected both because of the pairwise and
higher-order interactions due to the actual architecture of sim-
plicial complexes. More precisely, it has been demonstrated
by studies of spin kinetics [7,8], contagious dynamics [11],
and synchronization processes [9,10,37] on various simplicial
complexes. Notably, in the field-driven magnetization reversal
on simplicial complexes [7,8], the antiferromagnetic interac-
tions via links of the triangle faces provide strong geometric
frustration effects that determine the shape of the hysteresis
loop. The higher-order interactions then affect its symme-
try; meanwhile, the width of the hysteresis remains strictly
determined by the dimension of the simplicial complex. In
the contagious and synchronization processes, on the other
hand, the appearance of the hysteresis loop is strictly related
to the higher-order interactions. The synchronization has been
studied extensively on a variety of networks [2,38] using an
ensemble of phase oscillators (Kuramoto model) with interac-
tions via network edges. It has been understood that the onset
of synchronous behavior can be affected by the local con-
nectivity and correlations among the nodes [39], and global
features captured by the network’s spectral dimension [40].
The nature of synchronization transition can depend on the
process’ sensitivity to the sign of interactions, time delay, and
the frustration effects causing new phenomena [41–46]. Fur-
thermore, the presence of higher-order interactions are shown
to induce an abrupt desynchronization, depending on the di-
mension of the dynamical variable and the range of couplings
[9,10]. It remains unexplored how the coincidental interac-
tions of a different order, encoded by the faces of a large
simplicial complex, cooperate during the synchronization
processes.

Here we tackle this problem by numerical investigations of
synchronization and desynchronization processes among Ku-
ramoto phase oscillators considering the leading interactions
based on 1-simplices (edges) and 2-simplices (triangles) as
the faces of homogeneous four-dimensional simplicial com-
plexes. The structure is grown by self-assembly of 5-cliques
that preferably share the most extensive face. The underlying
graph of this simplicial complex possesses several unique
features. These are hyperbolicity, assortative mixing, and a
high spectral dimension, allowing complete synchronization
when the positive pairwise interaction is increased. Our re-

sults suggest that these geometrical properties, even in the
absence of the higher-order interactions, can lead to new
states with partial synchronization, mainly when the pairwise
coupling is negative, which can be attributed to frustration.
Furthermore, these simplex-based interactions have compet-
ing effects, leading to different patterns of synchronization
and desynchronization. Remarkably, the triangle-based inter-
actions tend to hinder the synchronization processes promoted
by the increasing pairwise coupling, leading to the hystere-
sis loop and the abrupt desynchronization when the fully
synchronized state can be reached, i.e., for a moderate
strength of interaction. Both the complete synchrony and
the abrupt desynchronization disappear for strong triangle-
based interactions, suggesting the dominance of geometric
frustration.

In Sec. II, we present the relevant details of the struc-
ture of the simplicial complex and the underlying network.
Section III introduces the dynamical model with the simplex-
based interactions and discusses the case with pairwise
interaction alone. In Sec. IV, the effects of the triangle-based
interactions on the order-parameter and hysteresis loop are
shown. Section V presents a summary and discussion of the
results.

II. NETWORK GEOMETRY UNDERLYING
SYNCHRONIZATION PROCESSES

As mentioned in the Introduction, we use the algorithm of
cooperative self-assembly introduced in Refs. [32,34] to grow
a simplicial complex (SC) by an assembly of 5-cliques, i.e.,
full graphs of the size n = 5 = qmax + 1. The network growth
starts with a single clique; then, each new clique is attached
by sharing its q-face with one of the existing cliques. The
remaining qmax − q nodes are added to form that clique on
the growing network (cf. online demo [34]). The geometric
compatibility of its faces determines the attachment rules of a
new clique to the growing structure with the currently built-in
cliques; besides, the chemical affinity parameter ν modu-
lates the probability of binding along a q-dimensional face.
Specifically, the probability that the clique of the order qmax

attaches by sharing its q-face is given by [32] P(qmax, q; t ) =
cq (t )e−ν(qmax−q)∑qmax−1

q=0 cq (t )e−ν(qmax−q)
, where Cq(t ) is the number of geometri-

cally compatible locations of the order q at the step t . For ν =
0, the leading probability is determined by strictly geometric
factor Cq(t ), whereas, for negative values of the chemical
affinity ν < 0, the maximum probability corresponds to the
largest number of added nodes qmax − q; thus, the cliques
preferably share a single-node face. Oppositely, the increasing
positive affinity parameter favors sharing larger faces, as the
larger probability corresponds to decreasing number of added
nodes qmax − q. Here we used a large positive value ν = +5.
Thus, the newly added clique mainly consists of a new node
and a 4-clique face shared with the previously added clique.
An example of the resulting compact structure consisting of
5-cliques is shown in Fig. 1 (top left). To assess the relevance
of a particular network property in the observed collective
dynamics, we also study the synchronization of phase oscil-
lators on two randomized versions of our simplicial complex.
Specifically, we perform random rewiring that preserves the
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FIG. 1. Visualization of the homogeneous four-dimensional simplicial complex SC of 1000 nodes (top left) and the structure randomized
to preserve the nodes degree, RN1 (top right). Panels (a)–(e) show different structural properties, in particular the cumulative distribution of the
node’s degree (a), assortativity (b), the distribution of the shortest path distances (c), the maximum hyperbolicity parameter (d), and the number
of faces of different orders q = 0, 1, 2 · · · 4 up to the maximal cliques (e). Different symbols (colors) are for the original four-dimensional SC,
and the networks of the same size with the degree-preserving randomized structure RN1, the fully randomized structure RN2, and the simple
scale-free network with the matching slope, SF. The same legend applies to panels (a)–(e). Panel (f) shows the normalized distribution of the
number of triangles per node (generalized degree) in the four-dimensional SC.

degree of each node (the network is also shown in Fig. 1 (top
right) and a fully randomized structure. For further compar-
ison, we also consider a simple scale-free network with the
power-law exponent that coincides with the slope observed in
the degree distribution of the SC for the intermediate degree,
cf. Fig. 1.

Besides the high spectral dimension of our SC, ds � 4
shown in Ref. [36], several other structural measures of these
networks relevant to the synchronization dynamics are given
in Figs. 1(a)–1(f). Figure 1(e) shows that even though they
all contain the same number of nodes (q = 0) and a similar
number of edges (q = 1 simplexes), they significantly differ
in the presence of higher simplexes. Specifically, a small num-
ber of triangles (q = 2 simplexes) as the highest structures

appear in the entirely random graph. Similarly, the simple
scale-free network possesses a small number of triangles and
no higher structures. On the other hand, the degree-preserving
randomized network still possesses about 30% of the trian-
gles compared to the original simplicial complex and a few
tetrahedrons (q = 3 simplexes). Meanwhile, the number of
tetrahedrons and 5-cliques in the original complex is com-
parable to the number of edges and nodes, respectively. The
distribution of the number of triangles in which a given node
participates, also known as generalized degree k(2)

i , of our
simplicial complex is shown in the panel Fig. 1(f). Besides the
four hubs with many triangles attached to them, the remaining
part of the distribution obeys an algebraic decay with the
increasing k(2)

i .
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At the level of edges, the underlying graph of our sim-
plicial complex exhibits some characteristic features depicted
in Figs. 1(a)–1(d) in comparison with the other three struc-
tures. Specifically, it exhibits a wide range of the degree
ki ≡ k(1)

i with a few large-degree nodes. In the intermediate
range, the cumulative degree distribution has a power-law
decay with the exponent γ ∼ 1.81 ± 0.05, matched by the
generated scale-free network, see Fig. 1(a). Naturally, the
degree-preserved randomized structure obeys the same degree
distribution; meanwhile, the exponentially decaying distribu-
tion characterises the fully randomized structure. Moreover,
our network possesses the assortative mixing among the
neighboring node’s degree [47]; it is quantified by the positive
exponent μ > 0 in the expression 〈knn〉i ∼ kμ

i for the average
degree of the neighbours of a node i as a function of the node’s
i degree, suggesting that the nodes of similar connectivity
are mutually connected. Figure 1(b) shows the assortative
feature with μ ∼ 1.19 ± 0.06 for the graph of our simplicial
complex. Notably, statistically similar assortative correlations
are present in the degree-preserving randomized structure.
Meanwhile, the random graph and the simple scale-free net-
works have μ ∼ 0 compatible with the absence of degree
correlations. Furthermore, Figs. 1(c) and 1(d) shows that,
in the graph’s metric space (endowed with the shortest-path
distance), these graphs have a relatively small diameter and
hyperbolicity or negative curvature [48,49]; more precisely,
they are δ-hyperbolic with a small δ value [50,51]. More-
over, due to the attachments among cliques [52], which are
0-hyperbolic objects, it was shown [32] that the topological
graphs of the emergent assembly are always 1-hyperbolic.
Practically, this means that the maximum observed δ in the
Gromov hyperbolicity criterion [50] cannot exceed the value 1
for any four-tuple of nodes in that graph. In Fig. 1(d) we show
how the δmax can vary with the minimal distance in a large
number of sampled four-tuples for all four network structures.
Notably, δmax = 1 for the graph of our simplicial complex, as
expected, and it increases by 1/2 with the degree-preserving
randomization of edges. In the small-δ graphs, such increases
of the hyperbolicity parameter are attributed [51] to the ap-
pearance of a characteristic subjacent structure, usually a new
cycle compatible with the new δ value. Our graph’s complete
randomization and the simple scale-free structure appear to
possess even larger cycles, resulting in the δmax = 2. In the
following two sections, we will investigate the synchroniza-
tion processes among phase oscillators interacting via edges
and triangles of these networks.

III. PHASE SYNCHRONIZATION WITH THE COMPETING
SIMPLEX-BASED INTERACTIONS

The phase variable is an angle defined on a unit circle,
θi, associated with the network’s nodes i = 1, 2, 3, . . . , N .
The local interactions among these dynamical variables of the
strengths Kq are provided by the network’s topology elements,
which are strictly related to the corresponding faces of the
simplicial complex. In this work, we consider two leading
interactions associated with the edges (q = 1) and interac-
tions among triplets located on a triangle face (q = 2), with
the strength K1 and K2, respectively. The evolution equations

given by

θ̇i = ωi + K1

k(1)
i

N∑
j=1

Ai j sin (θ j − θi )

+ K2

2k(2)
i

N∑
j=1

N∑
l=1

Bi jl sin (θ j + θl − 2θi ) (1)

are coupled via the two interaction terms. In particular, Ai j

is an element of the 1-simplex adjacency matrix A, such that
Ai j = 1 if nodes i, j are conneted by a link and 0 otherwise;
meanwhile, Bi jl is an element of the 2-simplex adjacency
tensor B, such that Bi jl = 1 if nodes i, j, l belong to a com-
mon 2-simplex and 0 otherwise. The normalization factors
in Eq. (1) are the respective simplex degree of a node, k(q)

i ,
i.e., number of distinct q-simplices that node i is part of.
Specifically, k(1)

i is the number of 1-simplices (edges) incident
on node i, and k(2)

i is the number of 2-simplices (triangles)
incident on node i. Thus, equal weightage is given to all the
terms contributing to the sum in each interaction term. It is
important to note the number of edges and the number of
triangles per node in the underlying graph of our simplicial
complex obey a broad (partly a power-law) distribution, cf.
Figs. 1(a) and 1(f). In Eq. (1), ωi is the intrinsic frequency of
the ith oscillator, which dictates its motion when there is no
interaction with other oscillators in the network. The pairwise
interactions seek to reduce the difference between the phase
of the ith oscillator and each of its neighboring oscillators
when K1 > 0. In contrast, the oscillators tend toward opposite
phases when K1 < 0. The third term, representing three-node
interactions of the ith oscillator based on each 2-simplex in-
cident on node i, is a natural generalization of the pairwise
interaction term [10]. It should be stressed that the interactions
between these three nodes occur over faces of the simplicial
complex and not over any given three nodes. Furthermore, this
interaction term is symmetric in i, in that it is unaffected by
permutations in the other two indices. Revealing the impact of
the 2-simplex term in Eq. (1) on the synchronization processes
that are promoted by the pairwise interactions is one of the
objectives of this work.

As it is widely accepted, the degree of synchronization
of the whole network is quantified by the Kuramoto order
parameter

r =
〈∣∣∣∣∣ 1

N

N∑
j=1

eiθ j

∣∣∣∣∣
〉
, (2)

where the brackets 〈·〉 indicate the time average. Hence, r =
1 represents the perfect synchronization, i.e., all phases are
equal, and r = 0 in the disordered phase. Meanwhile, the
stable states with 0 < r < 1 indicate the presence of more
complex patterns and partial synchronization.

In the simulations, for each network node i = 1, 2, . . . , N ,
where we have N = 1000, the initial conditions are set for
θi and ωi as the uniform random number in the range θi ∈
[0, 2π ] and the Gaussian random number with a zero mean
and unit variance, respectively. The numerical solution of the
set of equations (1) is performed using a numerical integrat-
ing function odeint from Python’s SciPy library [53]. This

034206-4



HYSTERESIS AND SYNCHRONIZATION PROCESSES OF … PHYSICAL REVIEW E 104, 034206 (2021)

FIG. 2. The order parameter r as a function of the 1-simplex
coupling strength K1 without the higher-order interactions. Different
lines and symbols are for four-dimensional simplicial complex (◦),
randomized network with the original degree distribution (×), fully
randomized network (�), and a simple scale-free network with the
same number of nodes and edges (�).

function integrates a system of ordinary differential equations
(ODEs) using the lsoda solver from the Fortran library ODE-
PACK. It solves ODEs with the Adams (predictor-corrector)
method the backward differentiation formula for nonstiff and
stiff cases, respectively. For each set of parameter values,
the system is iterated for 50 000 steps, with the time step
dt = 0.01. The last 20 000 iterations are used to calculate the
order parameter as in Eq. (2). Further, to study hysteresis, we
track the system’s trajectory as the coupling parameter K1 is
first adiabatically increased and then decreased. The step size
of the coupling K1 is taken to be 0.1. Alternatively, K2 is varied
in a suitable range, meanwhile fixing several representative K1

values, as described in the second part of Sec. IV. A detailed
program flow is given in the Appendix.

A. The case K2 = 0: Synchronization under exclusively
pairwise interactions

Before considering the competing simplex-based interac-
tions, we will describe the synchronization process under the
pairwise interactions alone, i.e., when K2 = 0 in Eq. (1). As
mentioned, these interactions are enabled by the edges of
the substrate network, which is the 1-skeleton of our four-
dimensional simplicial complex. Hence, different network
features from local to global level are expected to play a role
in the cooperative behaviors, depending on the interaction
strength K1. For the four-dimensional simplicial complex, as
K1 is increased from zero up to K1 = 2.0, and we observe
a continuous transition from a desynchronized state (r ≈ 0)
to a completely synchronized state (r ≈ 1), see Fig. 2. On
the other hand, with the negative values of K1 decreased
from K1 = 0 to K1 = −2.0, the order-parameter increases in
a different manner and reaches the value r ≈ 0.6, comprising
a partially synchronized state. To demonstrate what network
property can be responsible for the observed synchronization
properties, we performed the simulations on the two random-
ized versions of the network, as described in Sec. II. Notably,

for the degree-preserving randomized structure, RN1, qual-
itatively similar behavior of the order parameter is found.
In contrast, for the fully randomized network, the order pa-
rameter remains zero for all values of K1 � 0. Interestingly,
almost identical values of the order-parameter compatible
with the absence of synchronization at negative pairwise inter-
actions are found in a simple scale-free network, as shown in
Fig. 2. Therefore, we can conclude that the node’s assortative
degree correlations in the network of our simplicial com-
plex and in the corresponding degree-preserving randomized
version, cf. Fig. 1(b), can be responsible for the appear-
ance of the partial synchronization for the negative pairwise
interaction.

The distribution of phases over nodes, or the synchroniza-
tion pattern, is expected to depend on the structure. Here, the
histograms of phases corresponding to different representative
values of the coupling strength K1 are shown in Fig. 3 for
different network structures. For a fair comparison of differ-
ent cases (the same network with different coupling strength
and different networks with the same coupling strength), the
phases are taken after 50 000 time steps, always starting from
the same initial conditions (the same sequence of random
numbers). While the order parameter in the scale-free and
entirely random network is practically identical, cf. Fig. 2, the
histograms of phases in the synchronized state shown in Fig. 3
appear to be different; this is in accordance with different
evolution times to reach complete synchrony, which can be
attributed to the degree distribution as the only measurable
difference between these networks. On the other hand, there
is a remarkable similarity in the distribution of phases in
the simplicial-complex network and its degree-preserving ran-
domized version. Moreover, the peak for large positive values
of K1 is close to the one seen in the corresponding scale-free
structure with the same power-law exponent. These findings
suggest the relevance of the network’s degree distribution to
the outcome distribution of phases when the complete syn-
chrony can occur in the absence of higher-order couplings.
Investigating the pattern of phases in the network and the pre-
cise role of individual nodes in its development exceeds this
work’s scope. On the negative K1 side, the majority of phases
also appear to be in the same region; see the top two rows of
Fig. 3. How the partially synchronized state in these correlated
networks appears is another vital issue. We anticipate that
a large number of triangles, as shown in Fig. 1(e), can be
responsible for the frustration effects leading to the partially
synchronized states in these two networks. In the following,
we will examine the impact of the triangle-based interactions
in our simplicial complex.

IV. HYSTERESIS LOOP INDUCED BY HIGHER-ORDER
INTERACTIONS

In this section, we will focus attention on synchronization
dynamics on our network in the presence of triangle-based
interactions, i.e., using K2 	= 0 in Eq. (1). We plot the
time averaged order parameter r as a function of 1-simplex
coupling K1, for different 2-simplex coupling values K2 =
0.0, 0.2, 0.4, 0.5, 0.8, 1.0 in Fig. 4. In these plots, first K1

is increased adiabatically from K1 = −2.0 to +2.0 (for-
ward sweep), and then decreased from K1 = +2.0 to −2.0
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FIG. 3. Distribution of phases (measured in radians) in the initial (black, shading) and final (red, solid pattern) states of the synchronization
simulations for different values of the pairwise interaction for four network structures described in Sec. II, always starting with the same initial
conditions. The first row of panels is for the network of the four-dimensional simplicial complex, the second row is for the randomized
network with the original degree distribution (RN1), the third row is for the fully randomized network (RN2), and the last row is for the
scale-free network (SF), all of which have the same number of nodes and edges.

FIG. 4. Synchronization with higher-order interactions: Hysteresis sweep of the order parameter as a function of 1-simplex coupling
strength K1 for different 2-simplex coupling strength K2 values. As the value of K2 increases, we notice an increase in the size of the hysteresis
loop.
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FIG. 5. Hysteresis loop for strong 2-simplex interaction K2: Only
partial synchronization is accessible even at a large positive K1; the
abrupt desynchronization disappears.

(backward sweep) in steps of dK1 = 0.1. For each plot shown
in Fig. 4, we see that at K1 = −2, the system is partially
synchronized, with a finite r value. The system gradually
desynchronizes as K1 tends toward zero. Next, as K1 is in-
creased toward +2.0, a continuous increase of the level of
synchronization occurs. For higher values of K2, the transition
remains continuous but the growth of the order parameter
slows down in the region around K1 ∼ 0.5 and gradually
reaches the complete synchrony at larger values of K1. In
the backward sweep, as K1 decreases from +2.0 to zero
and further toward K1 = −2, the desynchronization transition
largely depends on the value of the triangle-based interactions.
Namely, when K2 = 0, the transition is continuous following
the same trajectory as the forward transition, through the
fully desynchronized state at K1 = 0, and ending up with the
partially synchronized state at K1 = −2. As the coupling K2 is
increased, the forward and backward transitions are no longer
reversible. More precisely, when K2 � 0.4, the 2-simplex
interactions come into effect by slowing down the level of syn-
chronization in the forward sweep, as mentioned above. The
underlying dynamical mechanisms remain to be investigated;
some preliminary results suggest the emergence of different
clusters in this range of competing interactions. Meanwhile,
in the backward sweep, we note a discontinuous desynchro-
nization decay toward the K1 < 0 branch. The occurrence of
an abrupt desynchronization has been previously reported in
Refs. [5,9,10] as a prominent effect of higher-order interac-
tions with different coupling types. In this context, the abrupt
destruction of the synchronized state in our simplicial com-
plex is also expected. What is new is the specific dependence
of the hysteresis loop and thus the abrupt desynchronization
phenomenon on the strength of the 2-simplex interactions,
as demonstrated by the results in Figs. 4 and 5. The abrupt
transition is to a partially synchronized state with a nonzero
value of the order parameter. Notably, an abrupt decay of the
completely synchronized state occurs when K2 is large enough
to balance the effects of the nonpositive pairwise interaction
K1 � 0. Thus, the only complete desynchronization transition
appears at the point K1 = 0 for a small K2 value, as Fig. 4

FIG. 6. (a) The size of the hysteresis loop obtained by in-
creasing and then decreasing pairwise interaction K1, as shown in
Fig. 4, plotted against K2; the parameters of the cubic polyno-
mial fit are given in the text. (b) The order parameter r against
K2 for increasing (bottom to top lines) values of K1 indicated in
the legend.

shows. Figure 4 shows that, beyond this value of K2, the
hysteresis loop grows in size as K2 is increased, affecting both
the forward sweep at the positive K1 side and the size of the
first-order jump. This scenario continues for a wider range
of values of the 2-simplex interaction strength as long as the
large positive pairwise interactions are sufficient to maintain
a complete synchrony. However, for larger values of K2, the
fully synchronized state is no longer accessible; instead, a
kind of partial synchronization is reached under the competing
interactions. The backward sweep from such a state, as shown
in Fig. 5, closes up an entirely different shape of the hysteresis
loop with two distinct parts at positive and negative K1, and
continuous changes of the order parameter. Hence, we can
conclude that the impact of the 2-simplex encoded interac-
tions on our four-dimensional simplicial complex strongly
depends on the sign and strength of the pairwise interactions.
An overview of its effects is displayed in Fig. 6, and discussed
in Sec. V.

Furthermore, we analyze how the hysteresis loop area
grows with increasing K2. Particularly, we plot the area
of the hysteresis loops for different values of K2 against
K2 in Fig. 6(a). The curve is best fitted with a cu-
bic function f (x) = −2.3767K3

2 + 4.1631K2
2 − 0.0050K2 −

0.1043 with root-mean-square error 0.01866.
We highlight the competing nature of the 1-simplex and

2-simplex interactions. To that end, we carry out synchroniza-
tion simulations for different pairs of coupling strengths K1

and K2, illustrated by plotting the order parameter, r, as a func-
tion of 2-simplex coupling K2 in Fig. 6(b). We notice that the
order parameter remains negligible if the pairwise interactions
are absent, K1 = 0, for all values of K2 considered, suggesting
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that the 2-simplex interactions alone cannot induce the sys-
tem’s synchronization. Next, we notice that for finite but low
values of K1, increasing K2 leads to higher synchronization but
only until around K2 � 0.2. A further increase in K2 leads to
decreasing the system’s level of synchronization, as seen from
the decaying values of r with K2. Note that higher K1 are grad-
ually needed to compete with the desynchronizing effects due
to high K2. Subsequently, the curves of r in Fig. 6(b) decrease
with the increasing K2. In this range of K2 values, the complete
synchrony is no longer accessible, as also demonstrated with
the hysteresis loop in Fig. 5.

V. DISCUSSION AND CONCLUSIONS

How high-dimensional simplicial complexes can shape the
dynamics is a question of great relevance to many functional
systems. Among these, a prominent example is the human
connectome structure underlying the brain functional com-
plexity [16,17,29,30]. To address this issue, we have studied
the processes of phase synchronization on a homogeneous
four-dimensional simplicial complex of a given size (103

nodes); we have considered the leading interactions encoded
by 1-simplex (edges) and 2-simplex (triangles) faces and vary-
ing the respective strengths K1 and K2. Our results revealed
a variety of scenarios for the synchronization and desyn-
chronization (both to complete and partially desynchronized
states), depending on the sign of the pairwise interactions and
the geometric frustration promoted by the triangle-based inter-
actions. The latter can be attributed to the actual organization
of 5-cliques that make the simplicial complex; notably, every
link in this complex is a shared face of at least three trian-
gles. In addition, the 1-skeleton of this simplicial complex
that enables pairwise interactions has specific geometrical
properties. Apart from the high spectral dimension [36], the
assortative degree correlations play their role in the synchro-
nization processes, as discussed above in Sec. III A. Moreover,
the graph’s hyperbolicity is a salient feature of these simplicial
complexes [32,52], cf. Sec. II.

More precisely, we have demonstrated that:
(i) the 1-simplex interactions of both signs K1 ≷ 0 pro-

mote the synchronization but with different mechanisms; no
synchrony can arise due to 2-simplex interactions alone;

(ii) for K1 > 0 the two interaction types have competing
effects, and the complete synchrony can be reached for a
moderate range of K2, balanced by the increasingly stronger
pairwise coupling K1;

(iii) for the negative pairwise interactions K1 < 0, how-
ever, the 2-simplex interactions support the mechanisms
leading to partially ordered states due to K1;

(iv) the prominent impact of the 2-simplex interactions is
seen in the opening-up of the hysteresis loop and the appear-
ance of a finite jump in the backward sweep starting from
the completely synchronized state, in analogy to the abrupt
desynchronization found in other studies [5,9,35]. Note that,
in our case, the desynchronization is partial following the

forward branch for K1 � 0, except when it occurs precisely
at the point K1 = 0;

(v) eventually, for substantial 2-simplex interactions K2 �
K∗ the geometric frustration prevailed, leading to partial syn-
chronization even though a large positive K1 is applied; the
abrupt desynchronization entirely disappears; on the neg-
ative K1 < 0 side, a new segment of the hysteresis loop
opens up, suggesting that potentially different orderings in
the frustrated synchronization may be competing before a
significant negative K1 prevails. Finally, we note that the
2-simplex interactions do not promote additional order, cf.
Fig. 6(b), and we expect that the loop closes up at the partial
synchronization level determined by significant negative K1;
the final value r ∼ 0.52 in Fig. 5 is determined numerically
at K1 = −2.

Our four-dimensional simplicial complex with the
simplex-encoded interactions represent an excellent example
to investigate how geometry influences the synchronization
and desynchronization processes on it. Even though the
studied higher-order interactions are the leading cause
of new dynamical phenomena, the collective behavior’s
genesis is rooted in the pairwise interactions. Hence, certain
nontrivial features of the underlying network are highly
relevant. Our study sheds new light on the competing role
of simplex-embedded interactions in high-dimensional
simplicial complexes, which occur in many natural dynamical
systems. As mentioned, the prominent example represents the
brain dynamics, where current studies [16,17,28–31] clearly
point out the connections between the network structure,
captured by simplicial complexes, and the occurrence of a
large-scale synchronization of the oscillatory activity related
to brain functions. In this context, some outstanding questions
remain for future study. For example, such questions regard
the relative importance of the order of interactions that can
be embedded in a given simplicial complex, and the type
of hysteresis loop that may occur due to the competing
higher-order interactions. Prompted by an anonymous
reviewer, we point out a subject of particular interest
to the community regarding the hysteresis loop due to
the competing pairwise couplings of different signs and
range of interactions embedded on the high-dimensional
simplicial complexes. Moreover, our approach traces the
ways to study the role of defect simplexes, the temporally
varying simplicial architecture and distributed weights,
which can have profound effects on collective dynamic
behaviors.
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APPENDIX

1. Program Flow

1: INPUT Graph G , stored as an list of edges and list of triangles;
2: Initialize phases of the oscillators, θi, such that they are distributed uniformly between 0 and 2π ;
3: Initialize intrinsic frequencies of the oscillators, ωi, such that they are distributed normally, with zero mean and unit variance;
4: Set the value K2. Assign K2 = 0, if 2-simplex interactions are to be ignored. Assign finite K2, if 2-simplex interactions are to be added;
5: Set the value K1 = −2.0; Set the incremental change in K1 to be dK1 = 0.1;
6: Forward sweep:

7: while K1 � +2.0 do
8: for all nodes i ∈ G do
9: solve the differential Eq. (1);
10: end for
11: Calculate order parameter for the system, using Eq. (2);
12: Increase K1 by dK1;
13: end while
14: Backward sweep:

15: while K1 � −2.0 do
16: for all nodes i ∈ G do
17: solve the differential Eq. (1);
18: end for
19: Calculate order parameter for the system, using Eq. (2);
20: Decrease K1 by dK1;
21: end while
22: END
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[7] B. Tadić, M. Andjelković, M. Šuvakov, and G. J. Rodgers, Mag-
netisation processes in geometrically frustrated spin networks
with self-assembled cliques, Entropy 22, 336 (2020).
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