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Signal amplification enhanced by large phase disorder in coupled bistable units
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We study the maximum response of network-coupled bistable units to subthreshold signals focusing on the
effect of phase disorder. We find that for signals with large levels of phase disorder, the network exhibits
an enhanced response for intermediate coupling strength, while generating a damped response for low levels
of phase disorder. We observe that the large phase-disorder-enhanced response depends mainly on the signal
intensity but not on the signal frequency or the network topology. We show that a zero average activity of the units
caused by large phase disorder plays a key role in the enhancement of the maximum response. With a detailed
analysis, we demonstrate that large phase disorder can suppress the synchronization of the units, leading to the
observed resonancelike response. Finally, we examine the robustness of this phenomenon to the unit bistability,
the initial phase distribution, and various signal waveform. Our result demonstrates a potential benefit of phase
disorder on signal amplification in complex systems.
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I. INTRODUCTION

Traditionally, the noise accompanying a desired signal
is regarded as a disadvantageous factor in signal process-
ing. However, under some circumstances, noise can become
helpful for the detection of a faint signal [1–3], and this con-
structive role is known as stochastic resonance [4,5]. Because
of its generic nature, stochastic resonance has been observed
in various nonlinear systems, including ring lasers, nanome-
chanical oscillators, sensory receptors, and climate networks
[6–10]. In most scenarios, noise comes from environmental
variability [11], whereas it may also arise from the intrinsic di-
versity of the individual units composing the systems [12–14].
For instance, no two neurons are identical, even when they
are from the same neural network and are of the same type
[15,16]. Unlike environmental noise varying with time, the
intrinsic diversity is almost time-independent; however, it can
play a constructive role in signal amplification similar to that
of noise. This effect is termed diversity-induced resonance
[17–19]. Moreover, heterogeneous network topology such as
irregular structures and weighted connections provide another
source of diversity that may enhance the amplification of faint
signals [20–24].

Most studies in signal amplification focused on the case
of identical initial phases, i.e., the signal phases reaching the
units are the same. This setting of identical initial phases
might not fit the realistic scenarios, since phase difference in
the arriving signals provides a major cue for sensory neurons
to locate the signal source [25,26]. For instance, the owl tracks
the sound source by comparing the interaural phase difference
between two ears [27,28]; the clawed frog measures the di-
rection by detecting the time differences along the lateral-line
organs [29,30]. Therefore, to better understand the mechanism
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underlying signal detection in biological systems, it is essen-
tial to investigate the role of phase difference.

To this end, Brandt et al. studied the dynamics of coupled
chaotic pendula driven by disordered forces. With increasing
the level of phase disorder of the driven forces, the motion
pattern of coupled pendula changes from chaotic to regular
[31,32]. Later on, Liang et al. investigated the response of
globally coupled excitable neurons to subthreshold signals
with phase disorder. Compared to identical phases, an opti-
mal level of disordered phases can induce coherent neuronal
firing activity [33]. Recently, Chacón et al. explored the im-
pact of phase disorder on the maximum response of coupled
overdamped bistable units, and found that the resonantlike
amplifying effect of scale-free network structure is drastically
reduced when the level of phase disorder in external signals is
increased [34].

In this paper, we investigate how phase disorder can affect
the maximum response of network-coupled bistable units to
subthreshold signals, and find that phase disorder can assist
in signal amplification under certain circumstances. We show
that this desired effect appears only for large levels of phase
disorder and intermediate values of coupling strength. We
further show that this effect is sensitive to the signal intensity,
while it is insensitive to the signal frequency and the network
topology. Utilizing reduced models, we reveal the mechanism
underlying the positive effect of large phase disorder in sig-
nal amplification. Finally, we discuss the applicability of this
mechanism in more complex situations. Our findings, on the
one hand, complement the study of Ref. [34]; on the other
hand, they can help us understand the dual role of phase
disorder in signal processing.

II. MODEL

We consider a network of overdamped, periodically forced
bistable units. The dynamics of a single unit is given by

ẋ = x − x3 + A sin(ωt + φ). (1)
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In the absence of periodic forcing (A = 0), Eq. (1) has two
nonzero solutions:

x(t ) = ±[
1 − (

1 − x−2
0

)
e−2t

]− 1
2 , (2)

with x0 = x(0). As t → ∞, x(t ) approaches the stable fixed
points xs = ±1. When a subthreshold signal is introduced,
i.e., A < Ac, the unit vibrates around one of the two stable
fixed points, whereas for A � Ac, it can switch between them.
Accordingly, Ac is a threshold intensity which tends to Ac =
2
√

3/9 for long signal period T = 2π/ω [19,35].
The dynamics of N coupled overdamped bistable units are

given as follows:

ẋi = xi − x3
i + λ

N∑
j=1

Li j (x j − xi ) + A sin(ωt + φi ), (3)

with i = 1, · · · , N . λ is the coupling strength, and Li j is the
element of the adjacency matrix L representing the structure
of the network. Specifically, Li j = Lji = 1 if units i and j are
connected, and zero otherwise. Note that Eq. (3) is a paradig-
matic model for studying signal amplification and propagation
in complex systems under the influence of noise [35–40].
Here, we use it to study the effect of phase disorder on signal
amplification. If not specified otherwise, then the initial phase
φi follows a uniform distribution on the interval [−γπ, γπ ),
where γ ∈ [0, 1] controls the level of phase disorder.

As all units are subjected to external signals with the same
period, it is convenient to characterize their dynamics by the
amplitudes

gi = maxt xi − mint xi

2
(4)

and the centers

ci = maxt xi + mint xi

2
. (5)

According to Eq. (4), the maximum response of the network
to external signals is given by [20,34]

G = maxN
i=1gi. (6)

To reveal the connection between the maximum response
and the network synchronization, we apply the degree of
spatial synchronization of the units as [20,41]

ρ = |n+ − n−|
N

, (7)

where n+ and n− are the number of units in the positive (ci >

θ ) and negative (ci < −θ ) well, respectively. θ is a threshold,
fixed to θ = 0.2, which is applied to determine the states of
the units. If half of the units vibrate in the positive well and
the other half in the negative well, i.e., n+ = n− = N/2, then
the network is asynchronous with ρ = 0. On the contrary, if
all units vibrate in the same well, i.e., n+ = N or n− = N ,
then the network is synchronous with ρ = 1. Note that if all
units oscillate widely between the wells, i.e., −θ � ci � θ ,
then n+ = n− = 0 and the degree of spatial synchronization
is also ρ = 0.

Regarding the numerical simulations, the initial conditions
of the units are randomly chosen from the two fixed points
xs = ±1, the maximum response and the degree of spatial

FIG. 1. (a) The maximum response G of Eq. (3) versus coupling
strength λ for γ = 0, 0.5, 1. (b) The normalized maximum response
G̃ = G(γ )/G(0) versus coupling strength λ and level of phase disor-
der γ .

synchronization are obtained by averaging results from 500
independent realizations over different initial conditions.

III. NUMERICAL RESULTS

A. Signal amplification in a global network

Let us first consider the case of a global network with
Li j = 1, ∀ i �= j, driven by subthreshold signals with inten-
sity A = 0.35 and period T = 100 [the intensity threshold is
Ac ≈ 0.41 at this period, see Fig. 3(a)]. Figure 1 plots the
maximum response G as a function of coupling strength λ for
three different levels of phase disorder γ . In the absence of
phase disorder (γ = 0), the maximum response G increases
with λ until a critical coupling strength λc = 1.2 × 10−4,
after which it drops down to the value as at λ = 0. For
an intermediate level of phase disorder (e.g., γ = 0.5), the
maximum response G attains the peak at λc = 1.4 × 10−4,
and then decreases linearly with λ, exhibiting a smaller value
than that of γ = 0. In contrast, for sufficiently large phase
disorder (γ = 1), the critical coupling strength is slightly
increased to λc = 1.6 × 10−4, but the value of G is largely
enhanced from λ1 = 2.6 × 10−4 to λ2 = 9 × 10−4 with a sec-
ondary peak at λ = 5 × 10−4, which is much higher than
the first one at λc. To obtain an overall view, we show in
Fig. 1(b) the dependence of G̃ on the combination of λ and γ ,
where G̃ = G(γ )/G(0) is the normalized maximum response
divided by the value in the absence of phase disorder. The en-
hanced response G̃ (i.e., G̃ > 1) appears only for large levels
of phase disorder γ ≈ 1 combined with intermediate values
of coupling strength λ ∈ (λ1, λ2). These results demonstrate
that phase disorder in subthreshold signals does not always
weaken signal amplification, but can also enhance it under
certain circumstances.

In Fig. 2(a) we show the degree of spatial synchronization
ρ corresponding to the maximum response G as depicted
in Fig. 1(a). A sharp transition is observed from ρ ≈ 0 to
ρ = 1 at the critical coupling strength λc. Beyond λc, the
degree of spatial synchronization ρ remains unchanged for
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FIG. 2. (a) The degree of spatial synchronization ρ of Eq. (3)
versus coupling strength λ for γ = 0, 0.5, 1. Snapshots of the spatial
positions of the units are shown in panel (b) for λ = 5 × 10−5, in
panel (c) for λ = 2 × 10−4, and in panel (d) for λ = 5 × 10−4, where
the indices of the units are rearranged based on the rank of the initial
phases of driven signals.

γ = 0 and γ = 0.5, while it decreases to 0 < ρ < 1 on the
interval (λ1, λ2) for γ = 1. To illustrate the details of these
different transitions, Figs. 2(b)–2(d) show the snapshots for
spatial positions of the units, where the indices of the units
are rearranged based on the rank of the initial phases of
driven signals. The spatial position xi exhibits relevance to the
initial phase φi approximately satisfying xi ≈ ci + gi sin(φi).
In addition, xi distributes differently for different coupling
strength. When λ � λc, the units are randomly distributed
into the two wells, according to their initial conditions [see
Fig. 2(b)]. This gives n+ ≈ n− ≈ N/2 that corresponds to
the situation of network desynchronization with ρ ≈ 0. When
λ > λc, the units are synchronized at the same well, result-
ing in n+ = N , n− = 0, and ρ = 1 for γ = 0 and γ = 0.5,
respectively [see Fig. 2(c)]. However, for γ = 1 the spatial
positions of the units display three different stationary states
on the interval (λ1, λ2): (i) concentrates at the positive well
(network synchronization with ρ = 1), (ii) concentrates at
the negative well (network synchronization with ρ = 1), and
(iii) distributes across the two wells (network desynchroniza-
tion with ρ ≈ 0) [see Fig. 2(d)]. Further, when the coupling
strength is too large, i.e., λ > λ2, the desynchronous state
across two wells vanishes, only two synchronous states con-
centrating at the positive or negative well remain. Comparing
the maximum response during these possible stationary states,
we find that the enhanced signal amplification occurs only
for the desynchronous state. Therefore, the network desyn-
chronization induced by large phase disorder accounts for the
resonancelike behavior observed in Fig. 1.

In Fig. 3 we investigate the effect of signal intensity on the
maximum response. When the global network is subjected to
identical signals with a long period T = 100, the maximum
response G first increases for small A, then slightly drops at
A1 = 0.19, and finally jumps discontinuously at the intensity
threshold Ac ≈ 0.41 [see Fig. 3(a)]. Figure 3(b) shows the
degree of spatial synchronization ρ corresponding to Fig. 3(a).

FIG. 3. The maximum response G and the degree of spatial syn-
chronization ρ versus signal intensity A for γ = 0 and γ = 1. The
period of external signals is T = 100 for panels (a, b) and T = 10 for
panels (c, d). The coupling strength λ = 5 × 10−4 is used in Eq. (3).

It can be seen that the slight drop of G is associated with
a synchronization transition from ρ ≈ 0 to ρ = 1, indicat-
ing that the units are driven to vibrate at the same well.
In comparison, the discontinuous jump of G is due to the
dynamics of the units changes from an intrawell vibration to
an interwell oscillation, manifested by the degree of spatial
synchronization changes from ρ = 1 to ρ = 1. When the large
phase disorder (γ = 1) is present, the value of A1 is increased
to A′

1 = 0.24, whereas the intensity threshold is decreased to
A′

c = 0.34. A similar phenomenon can be found for the signals
with a short period T = 10 [see Fig. 3(c)]. In the case of
short-period signals, there is no obvious intensity threshold
Ac, since the maximum response G increases continuously
when A > A1 = 0.38. However, as shown in Fig. 3(d), the de-
gree of spatial synchronization transits from ρ = 1 to ρ = 0 at
A = 0.68, which can be considered as the intensity threshold
Ac for the short-period signals. Summarizing the observations
in Fig. 3, the amplifying effect of large phase disorder appears
for a broad range of signal periods, while it depends strongly
on the signal intensity, and is most obvious when the signal
intensity closes to the intensity threshold.

B. Signal amplification in complex networks

The amplifying effect of large phase disorder is not specific
to the global network structure. In Fig. 4 we compare the
maximum response G between identical signals (γ = 0) and
phase-disordered signals (γ = 1) in small-world (SW) and
scale-free (SF) networks, respectively. The SW network is
constructed by the Watts-Strogatz algorithm [42] with an av-
erage degree 〈k〉 = 4 and a rewiring probability p = 0.2. The
SF network is constructed by the Barabasi-Albert algorithm
[43] with an average degree 〈k〉 = 4. Figure 4 shows the max-
imum response and the degree of spatial synchronization as a
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FIG. 4. The maximum response G and the degree of spatial
synchronization ρ versus coupling strength λ for γ = 0 and γ = 1
in SW and SF networks. (a, b) SW network with T = 100 and
A = 0.35, (c, d) SW network with T = 10 and A = 0.65, (e, f) SF
network with T = 100 and A = 0.35, and (g, h) SF network with
T = 10 and A = 0.65.

function of coupling strength. For the SW network, the signal
can be amplified for a wide range of coupling strength with
the presence of large phase disorder, whereas can be amplified
only for very small λ when the phase disorder is absent [see
Figs. 4(a) and 4(c)]. This enhancement in signal amplification
can be ascribed to that large phase disorder can suppress the
synchronization among the units [see Figs. 4(b) and 4(d)].
With this suppression, for relatively strong coupling strength
some units can still keep oscillating between two wells, lead-
ing to the wide range of signal amplification. Similarly, for
the SF network large phase disorder in the driven signals
can also suppress network synchronization, which results in
an amplifying effect for relatively strong coupling strength

[see Figs. 4(e)–4(h)]. However, it has been reported that the
maximum response drastically reduces with increasing the
level of phase disorder in SF networks [34]. The explanation
for this is that the signal intensity of the driven signals is set to
A = 0.01 in Ref. [34] which is far from the intensity threshold,
so making a drastic reduction of signal amplification. Our re-
sults in Fig. 4 demonstrate that large phase disorder is harmful
for network synchronization but is useful for amplification of
subthreshold signals.

IV. ANALYSIS

In this section, we propose an underlying mechanism for
the large phase-disorder-enhanced signal amplification. For
simplicity, we take the global network as an example. Then
Eq. (3) becomes

ẋi = (1 − λN )xi − x3
i + λNX + A sin (ωt + φi ), (8)

where X = 〈xi〉 represents the average activity of the units
and the angles 〈· 〉 = N−1 ∑N

i=1 denote the ensemble average.
In Eq. (8) the average activity drives all units, which plays
a crucial role in signal amplification. As seen in Fig. 2, the
average activity becomes zero for the intermediate coupling
interval (λ1, λ2) corresponding to the enhanced maximum
response of γ = 1. To understand the emergence of the zero
average activity, we define the potential of Eq. (8) as

Vi = (λN − 1)
x2

i

2
+ x4

i

4
− λNXxi − xiA sin (ωt + φi). (9)

As the initial conditions of the units are assigned randomly,
we can consider a zero average activity X = 0 at t = 0. With
this assumption, we next explore how the zero average activity
evolves when the network is subjected to signals without
and with phase disorder, respectively. Substituting X = 0 into
Eq. (9), the potential becomes

Vi = (λN − 1)
x2

i

2
+ x4

i

4
− xiA sin (ωt + φi ). (10)

With γ = 0 at t = 0, Eq. (10) describes a symmetrical poten-
tial with two wells and one barrier in between [see Fig. 5(a)].
As t evolves to t = T/4, the external signal arrives at the
maximum which can reduce the potential barrier direction-
ally, namely, Eq. (10) becomes a single-well potential [see
Fig. 5(a)]. In this situation, the units initially assigned at the
negative well can jump to the positive well. Once all units
are at the positive well, they attain fully synchronization be-
having like a single unit, i.e., Eq. (3) at λ = 0. This indicates
that the zero average activity originated from random initial
conditions cannot be maintained by identical signals on the
coupling interval (λ1, λ2). With γ = 1, the initial phases dis-
tribute uniformly over the full range −π � φi < π , which
allows two signals with φi = π/2 and φi = −π/2 to arrive
at the maximum and minimum from the beginning (t = 0),
respectively. Then one unit initially at the negative well driven
by the signal with φi = −π/2 will jump to the positive well,
and another unit initially at the positive well driven by the
signal with φi = π/2 will jump to the negative well [see
Figs. 5(b) and 5(c)]. With the evolving of time, there always
exists signals satisfying ωt + φi = 2 jπ ± π/2, j = 1, 2, · · · .
As a result, units with vanished potential barriers are always
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FIG. 5. The potential Vi of Eq. (9) for various combinations
of parameters. (a) φi = 0, X = 0, λ = 1.4 × 10−4, (b) t = 0, φi =
±π/2, X = 0, λ = 1.4 × 10−4, (d) t = 0, φi = ±π/2, X = 0.1, λ =
1.4 × 10−4, (f) t = 0, φi = ±π/2, X = 0.1, λ = 1.8 × 10−4, and (h)
t = 0, φi = ±π/2, X = 0.1, λ = 1 × 10−3. Panels (c, e, g) are the
enlarged views of panels (b, d, f), respectively.

existing with time, and the symmetrical jumps across the wells
occur sequentially. As a consequence of this process, the zero
average activity is maintained for γ = 1.

The analyses mentioned above are based on the assumption
of X = 0. However, due to the random initial conditions, the
average activity usually deviates from zero, which may affect
significantly the symmetry of the potential. For instance, at
t = 0 a small deviation of X = 0.1 can lift (reduce) the po-
tential barrier of Eq. (9) with φi = −π/2 (φi = π/2) for the
units in the positive (negative) well [see Figs. 5(d) and 5(e)].
This asymmetrical potential leads to a directional preference
of jump which, in turn, induces a larger deviation of X , and

eventually causes the network synchronization. Under such
circumstance, increasing coupling strength can effectively
lower the potential barrier, which overcomes the asymmetry
induced by X �= 0 [see Figs. 5(f) and 5(g)]. This explains why
we observe the amplifying effect of the large phase disorder
at a slightly larger coupling λ1 other than at λc. However, if
the coupling strength is increased too much, over λ2, then
it changes obviously the symmetry of the potential, which
makes one of the two wells deeper and that facilitates the
network synchronization [see Fig. 5(h)].

The damped response of the global network for 0 < γ < 1
can be understood in the same manner. The initial phases are
distributed in a range narrower than [−π, π ) for γ < 1. When
t > tc, the potential barriers start to disappear directionally,
where tc = min(T/4 − γ T/2, 0). Thus, the units will jump
into one well and synchronize within it.

To understand the dependence of the maximum response
on the phase disorder, we next derive an analytical relation
between them focusing on the global network. Specifically,
we only discuss the cases of γ = 0 and γ = 1, since the
maximum responses are similar when γ < 1 [see Fig. 1].

A. Case I: γ = 0

For signals without phase disorder, the network undergoes
a synchronization transition from X ≈ 0 to X ≈ 1 at λc. When
λ � λc, we thus assume X = 0 in Eq. (8) and obtain

ẋi = (1 − λN )xi − x3
i + A sin (ωt + φ), (11)

where the initial phase φi = φ. Using the method of lineariza-
tion, we can obtain the approximate solution of Eq. (11) as

xi(t ) = ±√
1 − λN + A√

4(1 − λ′)2 + ω2
sin (ωt + ψ ),

(12)

where ψ is the phase shift. When λ > λc, the network attains
full synchronization, i.e., X = xi, then Eq. (8) becomes

ẋi = xi − x3
i + A sin (ωt ). (13)

Its approximate solution follows the form of

xi(t ) = 1 + A√
4 + ω2

sin (ωt + ψ ′), (14)

where ψ ′ represents the phase shift. Combining these results
yields

G =
{ 1√

4(1−λN )2+ω2
, if λ � λc,

1√
4+ω2 , if λ > λc.

(15)

Equation (15) indicates that the maximum response of the
global network appears at λ = λc, and then drops to a con-
stant. Figure 6(a) shows the estimation of Eq. (15), which
exhibits a similar tendency to the result obtained from Eq. (3).

Following [24], we estimate the critical coupling strength
for network synchronization shown in Fig. 2(a). It satisfies(A

2

)2

=
(

1 − λN

3

)3

. (16)

For A = 0.35, Eq. (16) gives λc = 1.2 × 10−4, which is con-
sistent with the result of γ = 0 shown in Fig. 2(a). When λ is
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FIG. 6. (a) The analytical maximum response G for γ = 0 and
γ = 1, obtained from Eqs. (15) and (22) for a global network with
T = 100 and A = 0.35. (b) The analytical Mx of Eq. (25) versus
coupling strength λ, where the dashed line denotes Mx = 1/3.

just over λc, the signals become suprathreshold in Eq. (11),
driving all units to the same well and leading to network
synchronization. After network synchronization, the coupling
term in Eq. (8) vanishes and Eq. (11) becomes Eq. (13).

B. Case II: γ = 1

For signals with the large phase disorder γ = 1, both the
critical coupling strength λc and the average activity X are
analogous to those of γ = 0 when λ � λc [see Fig. 2]. Thus,
we just need to investigate the influence of X ≈ ±1 and X ≈ 0
on signal amplification for λ > λc. In the case of X ≈ ±1,
Eq. (8) takes the form

ẋi = (1 − λN )xi − x3
i ± λN + A sin (ωt + φi ). (17)

According to Eq. (16), the external signal is always sub-
threshold in Eq. (17). Using the method of linearization, the
approximate solution of Eq. (17) is obtained as

xi(t ) = ±1 + A√
(2 + λN )2 + ω2

sin (ωt + ψ ′′), (18)

where ψ ′′ denotes the phase shift. The amplitude of Eq. (18)
decreases with λ, indicating a damped response for X ≈ ±1.

In the case of X ≈ 0, Eq. (8) becomes

ẋi = (1 − λN )xi − x3
i + A sin (ωt + φi ). (19)

From Eq. (16), the external signal becomes suprathreshold in
Eq. (19) when λ > λc. Thus, the unit can oscillate between
the two wells, following the variation of the signal. This is the
mechanism underlying the enhanced maximum response for
γ = 1.

Assuming the frequency ω is sufficiently low, the solution
of Eq. (19) can be approximately described by the cubic
function:

(1 − λN )xi − x3
i + A = 0. (20)

Solving this function, we obtain

xi(t ) = 2α cosh

[
1

3
arcosh

( A

2α3

)]
sin (ωt + φi ), (21)

where α =
√

1−λN
3 . In summary, the analytical maximum re-

sponse of the global network for γ = 1 is obtained as

G =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1√
4(1−λN )2+ω2

, if λ � λc,

1√
(2+λN )2+ω2

, if λc < λ � λ1,

2α cosh
[

1
3 arcosh

(
A

2α3

)]
, if λ1 < λ < λ2,

1√
(2+λN )2+ω2

, if λ � λ2.

(22)

The prediction of Eq. (22) is shown in Fig. 6(a). The maxi-
mum response is enhanced only on the intermediate coupling
interval (λ1, λ2). However, there exists a disagreement be-
tween the analytic prediction and the numerical result [see
Figs. 1(a) and 6(a)]. The reason for this disagreement is that,
the global network can exhibit both damped and enhanced
responses on this coupling interval. The maximum response
shown in Fig. 1(a) is the result averaged over these two re-
sponses, rather than only the enhanced one.

Finally, we explain why the zero average activity disap-
pears at λ2. Let xi = X + δi, we average Eq. (8) over the
ensemble and achieve

Ẋ = X − X 3 − 3X
〈
δ2

i

〉 − 〈
δ3

i

〉
. (23)

Considering X ≈ 0 and using Eq. (21), the trajectory devia-
tion is

δi ≈ xi ≈ 2α cosh

[
1

3
arcosh

( A

2α3

)]
sin (ωt + φi ). (24)

As the initial phases are uniformly distributed between −π to
π , leading to 〈sin(ωt + φi )〉 = 0, 〈sin2(ωt + φi )〉 = 1/2, and
〈sin3(ωt + φi )〉 = 0. Accordingly, the variance

Mx = 〈δ2
i 〉 ≈ 2α2 cosh2

[
1

3
arcosh

( A

2α3

)]
(25)

and the odd moment 〈δ3
i 〉 ≈ 0. Then Eq. (23) can be rewritten

as

Ẋ = (1 − 3Mx )X − X 3. (26)

Equation (26) has three fixed points X ∗ = ±√
1 − 3Mx and

X ∗ = 0, which can be considered as the three stationary states
of X ≈ ±1 and X ≈ 0. The stability of these fixed points is
determined by the value of Mx. With the increase of coupling
strength till Mx > 1/3, the fixed point X ∗ = 0 becomes unsta-
ble, while the other two fixed points X ∗ = ±√

1 − 3Mx be-
come stable. This corresponds to the transition from network
desynchronization to synchronization at λ2. Submitting Mx =
1/3 into Eq. (25), we obtain the analytical coupling strength
λ2 = 1.5 × 10−3, which is much larger than the numerical
result shown in Fig. 1(a). This is due to that the analytical
variance Mx of Eq. (25) is obtained from an ideal condition
of X = 0, and it decreases with λ since λ1 [see Fig. 6(b)].
However, for simulations with finite size of the network we
have X �= 0, and thus the value of Mx is smaller than Eq. (25)
as the amplitudes of the units are smaller than Eq. (21).
This makes Mx = 1/3 happen before λ2 = 1.5 × 10−3,
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resulting in the deviation between the simulation result and
the analytic prediction. Thus, the analytical coupling strength
λ2 = 1.5 × 10−3 gives only the upper boundary of the cou-
pling strength for synchronization for the global network with
γ = 1.

Similarly, we can analyze the stability of the states X ≈
±1. Using Eq. (18), the variance now becomes

Mx ≈ A2

2(2 + λN )2 + 2ω2
≈ 0. (27)

Putting it into Eq. (26), we can find that the states X ≈ ±1 are
stable for arbitrary coupling strength when γ = 1.

V. ROBUSTNESS

A. Other examples of bistable systems

To evaluate how robust the above results are to the dy-
namics of bistable system, we provide two other examples of
bistable systems that exhibit the signal amplification enhanced
by large phase disorder. We first show a global network of N
Duffing oscillators with damping parameter δ = 0.25 [44,45]:

ẋi = yi,

ẏi = −δyi + xi − x3
i + λ

N∑
j=1

(x j − xi )

+ A sin(ωt + φi ). (28)

Without coupling (λ = 0), the single Duffing oscillator has
a double-well potential with two minima at xs = ±1. With
a subthreshold periodic forcing, the oscillator vibrates with
a small amplitude in one well. With a suprathreshold peri-
odic forcing, the oscillator oscillates with a large amplitude
between the two wells. For T = 100, the intensity threshold
for the transition from intrawell vibration to interwell oscil-
lation is Ac ≈ 0.4. We calculate from xi(t ) the amplitude gi

of the oscillator according to Eq. (4). Figure 7(a) shows the
maximum response of the network to subthreshold signals as
a function of coupling strength for identical and disordered
phases, respectively. Similarly, the maximum response G is
enhanced by large phase disorder at the intermediate coupling
strength. Figures 7(b) and 7(c) further show the phase portraits
of one representative oscillator at two coupling strength for
γ = 1. When the coupling strength is weak λ = 1 × 10−4,
the oscillator vibrates in one of the two wells depending on its
initial condition. However, as λ is increased to an intermediate
value λ = 3 × 10−4, the oscillator starts to cross the wells
under the effect of phase disorder.

As the next example we consider a global network of N
Lorenz oscillators, whose dynamics are described by [46,47]

ẋi = σ (yi − xi ) + λ

N∑
j=1

(x j − xi ),

ẏi = rxi − yi − xizi + A sin (ωt + φi ),

żi = xiyi − bzi, (29)

where σ = 10, b = 8/3, r = 19, A = 16, and T = 100. With
these parameters, the single Lorenz oscillator (λ = 0) ro-
tates in the neighborhood of one of two fixed points C± =

FIG. 7. (a) The maximum response G of Eq. (28) versus coupling
strength λ for γ = 0 and γ = 1. Phase portraits of one representative
oscillator i from Eq. (28) for γ = 1: (b) two possible intrawell
rotations at λ = 1 × 10−4 depending on the initial condition of the
Duffing oscillator, (c) interwell oscillation at λ = 1 × 10−4. The
intensity A = 0.35 and the period T = 100 are used.

(±√
b(r − 1),±√

b(r − 1), r − 1), which may be treated as
a generalized bistable system. Note that, the single Lorenz
oscillator starts to exhibit irregular switches between the fixed
points when A � Ac ≈ 36.06 at T = 100. Similarly, we use
xi(t ) to calculate the amplitude gi of the Lorenz oscilla-
tor according to Eq. (4). The results presented in Fig. 8(a)
demonstrate the large phase-disorder-enhanced response in
coupled Lorenz oscillators. Moreover, Figs. 8(b) and 8(c)
present two trajectories of one representative Lorenz oscillator
on x-y plane for weak and intermediate coupling strength,

FIG. 8. (a) The maximum response G of Eq. (29) versus coupling
strength λ for γ = 0 and γ = 1. Phase portraits of one represen-
tative oscillator i from Eq. (29) for γ = 1: (b) two possible limit
cycles about one of two fixed points at λ = 5 × 10−5 depending on
the initial condition of the Lorenz oscillator, (c) irregular switches
between two fixed points at λ = 1 × 10−3. The intensity A = 16 and
the period T = 100 are used.
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FIG. 9. (a) Density of the von Mises distribution (30) for κ =
0.1, 0.2, 0.5. (b) The maximum response G of Eq. (3) versus coupling
strength λ for κ = 0.1, 0.2, 0.5. The intensity A = 0.35 and the
period T = 100 are used.

respectively. Likewise, the oscillator transits from a small-
amplitude limit cycle to a large-amplitude irregular oscillation
with the aid of large phase disorder.

B. Influence of the phase distribution on signal amplification

Next, we investigate how the phase distribution affects
signal amplification. To illustrate this, we assume that the
initial phases of the subthreshold signals follow the von Mises
distribution (also known as the circular normal distribution)
with probability density function [48]

p(φ) = eκ cos(φ)

2π I0(κ )
, (30)

where φ ∈ [−π, π ) is the random initial phase, I0 is the
modified Bessel function of the first kind and order zero,
and κ � 0 is the concentration parameter. Figure 9(a) shows
the density for three different κ: 0.1, 0.2, 0.5. For small κ ,
the distribution tends to the uniform distribution, while ap-
proaching a Gaussian distribution for large κ . Fixing A = 0.35
and T = 100, Fig. 9(b) shows the maximum response G of
Eq. (3) as a function of coupling strength, corresponding to
the three distributions of phase disorder shown in Fig. 9(a).
As κ increases, the amplifying effect of phase disorder grad-
ually weakens and eventually disappears. The reason for the
disappearance is that, with high κ the distribution of initial
phases is narrow, and most driven signals are nearly identical.
These nearly identical signals drive the oscillators in to a
highly synchronous state, and thus destroying the zero average
activity of the network.

C. Influence of the signal waveform on signal amplification

The discussions above assume that the external signal re-
ceived by each unit is a sine function. In fact, sine wave is a
ideal wave form, and most signals in nature are more complex
than this. Signal amplification of complex waveforms has
been studied in Refs. [49–53]. We here check the influence of
signal waveform on the amplifying effect of the large phase

FIG. 10. (a) Signal S(t ) of Eq. (31) versus t for m = 0, 0.72,
0.99. (b) The maximum response G of Eq. (3) versus coupling
strength λ for m = 0.72 and m = 0.99. The parameters A = 0.35 and
T = 100 are used.

disorder. Following previous efforts [52,53], we now consider
that the external signal in Eq. (3) takes the form:

S(t ) = AN (m)sn

[
2Kω

π

(
t + φ

ω

)]
dn

[
2Kω

π

(
t + φ

ω

)]
,

(31)

where A is the signal intensity, φ is the initial phase, sn[·] =
sn[·; m] and dn[·] = dn[·; m] are Jacobian elliptic functions
of parameter m ∈ [0, 1]. K = K (m) is the complete elliptic
integral of the first kind. N (m) = 1/[a + b/(1 + e(m−c)/d )] is
a normalization function with a = 0.43932, b = 0.69796, c =
0.3727, and d = 0.26883, which is introduced for the signal to
have the same intensity A [52]. Here, the parameter m changes
the waveform of the signal Eq. (31) and the illustrations are
shown in Fig. 10(a). When m = 0, the pulse returns to the
sine wave, while becoming narrow for high value of m ≈
1. In addition, Fig. 10(b) illustrates the maximum response
for m = 0.72 and m = 0.99 by fixing A = 0.35 and T =
100. Similarly, the maximum response is enhanced for large
phase disorder and intermediate coupling strength, suggesting
that the amplifying effect of large phase-disorder-enhanced
response can be applied for more complex signals. Note
that, the maximum response at the intermediate m = 0.72 is
higher than that of m = 0 and m = 0.99, which is because
the signal (31) has the largest waveform area at m = 0.72
[52].

VI. CONCLUSION

In conclusion, we have studied the maximum response of
network-coupled overdamped bistable units to subthreshold
signals with disordered phases. When the phases are suffi-
ciently disordered, the network can exhibit a resonancelike
response by varying the coupling strength, compared with
the damped response of the signals with moderately dis-
ordered or fully identical phases. We have shown that the
effect of phase-disorder-induced resonance is sensitive to the
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signal intensity, which becomes evident near the intensity
threshold. We also showed that this effect is robust to the
signal frequency and the network topology. Taking the global
network as an example, we have analyzed the mechanism
underlying this phenomenon, and found that large phase
disorder can cause network desynchronization with a zero av-
erage activity leading to the resonantlike response. We finally
demonstrated the robustness of this mechanism, and found
that it can be applied for different bistable systems, various
phase distributions, and also for signals with more complex
waveforms. These results imply that phase disorder has an
important impact on signal amplification, and complex sys-

tems may benefit from it to regulate their responses to external
signals.
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