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High-speed soliton ejection generated from the scattering of bright solitons by modulated
reflectionless potential wells
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We investigate numerically and theoretically the conditions leading to soliton ejection stimulated through
the scattering of bright solitons by modulated reflectionless potential wells. Such potential wells allow for
the possibility of controlled ejection of solitons with significantly high speeds. At the outset, we describe the
scattering setup and characterize the soliton ejection in terms of the different parameters of the system. Then,
we formulate a theoretical model revealing the underlying physics of soliton ejection. The model is based on
energy and norm exchange between the incident soliton and a stable trapped mode corresponding to an exact
solution of the governing nonlinear Schrödinger equation. Remarkably, stationary solitons can lead to high-speed
soliton ejection where part of the nonlinear interaction energy transforms to translational kinetic energy of the
ejected soliton. Our investigation shows that soliton ejection always occurs whenever the incident soliton norm
is greater than that of the trapped mode whereas their energy is almost the same. Once the incident soliton
is trapped, the excess in norm turns to an ejected soliton in addition to a small amount of radiation that share
translational kinetic energy. We found that higher ejection speeds are obtained with multinode trapped modes that
have higher binding energy. Simultaneous two-soliton ejection has been also induced by two solitons scattering
with the potential from both of its sides. An ejection speed almost twice as that of single soliton ejection was
obtained. Ejection outcome and ejection speed turn out to be sensitive to the relative phase between the two
incoming solitons, which suggests a tool for soliton phase interferometry.
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I. INTRODUCTION

Solitons are the stable solitary waves that can preserve
their shape, amplitude, and speed, before and after collisions
with barriers as well as collision with other solitons. This
robust nonlinear translation of solitons arises from the precise
balance between linear dispersion and nonlinear interaction
forces. After its original observation in 1834 on water waves
[1], the mathematical description of such an exciting phe-
nomenon was formulated during 1895 [2]. Followed by the
pioneering numerical work by Zabusky and Kruskal in 1965,
describing the localized stable pulselike propagation of waves
in nonlinear systems, numerous research efforts are made to
understand this novel phenomenon [3]. Many of the natu-
rally occurring waves, to mention a few, ocean waves [4],
magnetic domain walls [5], nerve impulse [6], tornados, and
vortices [7] belong to the category of solitons. This universal
phenomenon with rich dynamics appears in diverse fields of
nonlinear science and engineering, namely, ocean waves [4],
Bose-Einstein condensates (BECs) [8], nonlinear photonics
[9], plasma physics [10], biophysics [6], etc.

In general, these solitons are the localized solutions of
the nonlinear integrable equations describing nonlinear evo-
lution. Such dynamic evolution of the soliton through the
aforementioned nonlinear systems is governed by the non-
linear Schrödinger equation (NLSE) [11–13]. Notably, in
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autonomous systems, solitons withhold their initial shape
and speed before and after collisions with a phase shift [3].
This is apparent due to the absence of time dependence in
the nonlinear evolution equations [14–16]. However, in real
physical situations, soliton interactions are quite complex and
experience the external time and space-dependent forces. Fur-
thermore, solitons in these nonautonomous systems can still
sustain their initial profile after collisions and adjust to the
external potentials but renouncing the stability in amplitude,
speed, and spectra [17–19]. Significant efforts have been made
to understand the scattering and interaction dynamics of soli-
tons with varied external potentials, namely, surfaces [20–22],
steps [23,24], barriers [25–28], and wells [29,30].

Interaction of bright solitons with attractive potential wells
in BEC displayed the dependence of reflection, trapping,
and transmission on the potential depth. It signified that the
overall resonant interaction within the incoming solitons and
the bound states of the potential well leads to soliton trap-
ping whereas nonlinear interactions initiate the process of
transmission [31]. Additionally, the propagation of solitons
through a combination of potential wells was exploited to pro-
pose a unidirectional flow of solitons [32]. Further exploration
of cases with parity-time-symmetric potentials have shed fur-
ther light on the physical mechanism of such a phenomenon
resulting from the energy exchange mechanism between the
internal modes of the soliton and its center of mass dynam-
ics during the scattering process [33] where trapping was
shown to be insignificant [34]. Along this line, a discrete
soliton-based soliton diode, all-optical switches, logic gates,
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and filters were proposed through suitably modulating the
coupling coefficients and adjusting the control soliton power
in the waveguide arrays with an effective potential [35,36].

However, understanding the physics of translation, ejection
and shape formation of the solitons subjected to the diverse
external potentials is always a region of special interest. Ear-
lier attempts to understand the interaction of solitons with
external potentials reported both the transmission of pulselike
envelopes as well as the breathing at the center of mass frame.
In addition, they revealed that only certain simple potentials
allow the preservation of pulse profiles whereas for other
complex potentials the pulse profiles cannot be preserved,
resulting in complex shape deformations [37]. It is observed
for a large BEC trapped in a shallow Gaussian trap with
strong confinement in the transverse axis and weakly trapped
in the longitudinal axis, the displacement of the condensate
is induced by varying scattering length appropriately. When
this displaced condensate reaches the edge of the trap, the tail
of the condensate can form a single soliton owing to the out
coupling of higher internal energy from BEC cloud and the
tendency to eject outward. This process can be repeated by
refilling the condensate with the quantity carried away by the
ejected soliton. If the quantity of BEC atoms is substantial
this would lead to the blowup of solitons from the trap. To
understand the resulted features of the soliton emission from
the dense BEC trap, an averaged Lagrangian formalism is
employed. In the absence of spatial variation in the scattering
length, the cloud center is located at the bottom of the trap
corresponding to the fundamental eigenstate. Furthermore, if
the critical value related to the threshold for emission of the
soliton takes more negative values, the deformation of the
effective trapping cloud is initiated. This results in oscillation
of the atom clouds and the tendency for emission from the trap
is commenced. Subsequently, the Gross-Pitaevskii and NLSE
is analyzed through a fluid dynamics model that displayed the
formation of shock during the early stages of the tunneling
of a BEC droplet bound in a trap. This shock leads to a
formation of blip which splits itself from the border of the
trap, and this ejected portion transforms into a bright soliton.
Thereby predicted the possibility of a “soliton gun” with a
particular mass and speed [38,39]. An investigation depicting
the soliton interaction with an external δ potential leading to
the breaking of a soliton into two along with a radiation was
also reported with an estimation for the amplitudes and phases
of the transmitted and reflected solitons [40].

The tunneling and ejection of solitons through potential
barriers has also been demonstrated by launching a Gaus-
sian beam into the trap. For a barrier with a width wider
than that of the input beam, there is no transmission through
the barrier, and the input beam tends to oscillate within the
trap. By decreasing the width, tunneling is initiated linearly
through the barrier accompanied by a significant amount of
decay in the trapped power with the propagation. The tunneled
beam eventually takes the shape of an nonlocalized wave as
it propagates. Experimenting with the Gaussian beam shows
that it can transfer some of its power to radiation whereas
shaping a soliton within the trap. The remaining portion of
the beam in the trap also behaves as that of a soliton, and
intensity of this trapped beam sets the onset of ejection. As
long as the initial energy of the beam is lower than that of

the barrier energy, the beam remains indefinitely within the
barrier. On the other hand, by increasing the initial energy
above the energy of the barrier, the beam is allowed to pass
through the barrier resulting in soliton ejection [41]. Addi-
tionally, for a low-power beam introduced into an amplifying
trap potential enclosed in a medium with saturable nonlin-
earity, illustrated linear tunneling through the trap for weak
amplification. When the amplification is sufficiently greater
than the tunneling rate, identical solitons in periodic sequence
are ejected from the trap. Finally, for strong amplification,
nonperiodic multisoliton ejection is observed [42]. Another
interesting study envisaged the manifestation of a soliton-
based Newton’s cradle in various nonlinear models where
nonlinear absorption stimulates the breaking of higher-order
spatial solitons. The best illustration of such a phenomenon
is the formation of gap soliton chains in the photonic crystals
and Bragg gratings. The specific feature of Newton’s cradle
involves the formation of a chain of fundamental quasisolitons
under the action of third-order dispersion induced fission on
initial N solitons. During such a process, the tallest soliton
generated can travel through the entire chain with consecutive
collisions. This results in the ejection of the soliton with
a higher amplitude accompanied by a noticeable frequency
shift. Under such inelastic collision, the passing soliton is
found to acquire momentum and energy during its translation
through the soliton array. The importance of Newton’s cradle
under the action of the large N-soliton arrays is the power
enhancement of the ejected solitons. These ejected solitons
can generate a broadband supercontinuum along with the
background of multiple dispersive waves and considerable
radiations in the background. Furthermore, such a system
demonstrated a robust dynamics against the action of the stim-
ulated Raman and self-steepening effects as well as dispersive
effects greater than the third order [43,44].

Although numerous investigations reported on the mech-
anism of soliton ejection from external potentials, there are
no significant analytical and numerical studies that account
for the speed dynamics of the soliton scattered by external
potentials. In our paper we investigate bright solitons scattered
by a modulated reflectionless potential well via the NLSE.
Our preliminary results have revealed, for certain values of the
relevant parameters, the ejection of a well-defined solitonic
pulse featured with constant intensity and width throughout
the trajectory. To explain the physics underlying soliton ejec-
tion and most importantly to account for the ejection speed,
we provide a theoretical model based on energy exchange
between the incoming soliton and a trapped mode. We then
shift our investigation towards the understanding of soliton
ejection in a potential well with multinode trapped modes.
Under this condition, the system is able to eject the solitons
with significantly higher speeds compared to the previous
situation. We consider also another interesting setup resulting
in a simultaneous two-soliton ejection which occurs as a result
of two incoming solitons scattered by the potential from both
of its sides.

The rest of the paper is organized as follows. In Sec. II, we
present the characterization of the soliton ejection in terms
of the parameters of the input soliton and the potential. In
Sec. III, we formulate the theoretical model that explains
the physics of the ejection mechanism and accounts for the
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ejection speed. The soliton ejection mechanism of the
multinode trapped modes and the two-soliton ejection are in-
vestigated in Sec. IV. Lastly, Sec. V provides the conclusions
and discussions of our findings in the proposed paper.

II. CHARACTERIZATION OF SOLITON EJECTION

Here we describe the setup and parameter regime that lead
to soliton ejection. We also investigate the dependence of the
ejection speed on the various parameters of the system.

Typically, when a bright soliton of the NLSE is scattered
by a reflectionless potential well, such as the Pöschl-Teller
potential, full transmission or full reflection takes place [45].
The two scattering outcomes are separated by a sharp tran-
sition taking place at a specific critical speed below which,
full (quantum) reflection occurs and above which the soliton
fully transmits the potential well [31,46]. At the critical speed,
an unstable trapped mode is formed where the energy and
norm of the incident soliton are equal to those of the trapped
mode [47]. In both full transmission and full reflection cases,
a small trapped mode is formed temporarily during the scat-
tering process which is then evacuated out of the potential to
join the scattered soliton. For such a case, no soliton ejection
occurs and the speed of the scattered soliton, whether reflected
or transmitted, is equal to the speed of the incident soliton.
In contrast, soliton ejection occurs when part of the incident
soliton forms a stable trapped mode whereas the remaining
part is ejected from the potential mainly in the form of a
soliton accompanied by a small amount of radiation. The
trapped mode turns out to be a stable stationary state of the
NLSE in the presence of the reflectionless potential. It has a
lower energy and norm compared with the incident soliton.
In a sense, the effect can be looked at as a transition from an
energy level corresponding to the incident soliton to a lower
energy level corresponding to the trapped soliton where the
difference is converted to translational kinetic energy (KE) of
an ejected soliton. It is interesting to see that the difference in
energy which is essentially in the form of nonlinear interaction
is converted to translational kinetic energy. Our numerical
simulations have indeed shown that, for soliton ejection to
take place, the norm of the incident soliton should be larger
than the norm of the trapped mode. We found also that the
potential has to deviate from being reflectionless for this effect
to be realized. Specifically, the width of the potential has to be
larger than what a reflectionless potential should have as we
will detail shortly.

Soliton scattering dynamics is governed by the NLSE [8],

i
∂

∂t
ψ (x, t ) = −1

2

∂2

∂x2
ψ (x, t ) − g|ψ (x, t )|2 ψ (x, t )

+V (x)ψ (x, t ), (1)

where ψ (x, t ) is the field describing the intensity of the soli-
ton. For matter-wave solitons in Bose-Einstein condensates, it
corresponds to the wave function of the condensate. Here, g is
a positive constant determining the strength of the cubic non-
linearity. The potential well is the Pöschl-Teller reflectionless
potential,

V (x) = −V0 sech2(αx), (2)

FIG. 1. Spatiotemporal plot showing soliton ejection from the
potential well with V0 = 3.9 and α = 0.69

√
V0 with an ejection speed

ve = 0.32. Other parameters: u0 = 1, x0 = −10, vi = 0.15, g = 1.

where the depth V0 of the potential and its inverse width α

are related by V0 = α2. However, as we mentioned above, this
reflectionless potential condition is to be violated in order to
obtain soliton ejection, namely, we will use α �= √

V0. The
incident soliton is taken as the exact bright soliton solution
of the fundamental NLSE, i.e., Eq. (1) without the potential,

ψ (x, t ) = u0√
g

sech[u0(x − x0 − vi t )]

× exp

{
i[vi(x − x0) + u2

0 − v2
i

2
(t − t0)]

}
, (3)

where x0, u0, and vi are arbitrary real constants representing
the soliton initial position, amplitude, and speed. It is assumed
that the soliton is initially located at the left side of the
potential x0 < 0 and is launched towards the potential with
initial speed vi > 0. The scattering outcome is determined by
solving numerically Eq. (1) using the iterative power series
method [48] with ψ (x, 0) from Eq. (3) as an initial profile.
The scattered intensities are quantified by calculating the scat-
tering coefficients,

R = (1/N )
∫ −l

−∞
|ψ (x, t )|2dx, (4)

T = (1/N )
∫ ∞

l
|ψ (x, t )|2dx, (5)

L = (1/N )
∫ l

−l
|ψ (x, t )|2dx, (6)

where R, T , and L are the scattering coefficients of reflection,
transmission, and trapping, respectively. Here, 2l encom-
passes the potential region which can be guaranteed by taking,
for instance, l ≈ 5/α. Normalization of the soliton is defined
by N = ∫ ∞

−∞ |ψ (x, t )|2dx.
In Fig. 1, we show a typical soliton ejection case. It is

clear that the well-localized ejected pulse is solitonic since its
intensity and width are preserved along its trajectory. It is also
noticed that an amount of radiation is emitted as well, which
is due to breaking the reflectionless criterion of the potential.
Interestingly, the ejection speed is significantly larger than the
speed of the incident soliton. In fact, we will show below
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FIG. 2. Scattering coefficients of the soliton with initial ampli-
tude u0 = 6.3 using the considered potential well in terms of inci-
dence speed. Other parameters: g = 1, V0 = 100, x0 = −15, α =
0.69

√
V0.

that high-speed ejection is possible even with stationary input
solitons.

It is instructive to know the size of the ejected soliton.
Therefore, we calculate the scattering coefficients long after
scattering which show in Fig. 2 that the norm of the ejected
soliton is about half of the incident norm (≈56%), whereas the
other half is mainly trapped (≈40%), and a small portion is
emitted in the form of radiation (≈4%). Similar to the ejection
speed, the norm of ejected soliton is almost insensitive to the
speed of incidence for incidence speeds away from the critical
speed for quantum reflection at vi ≈ 0.075.

In the following, we present a detailed investigation of the
parameters that affect the value of the ejection speed. This
will help to identify regimes in the parameters space where
high-speed ejection can be obtained. Specifically, we will
investigate the effects of initial soliton speed vi, initial soliton
position x0, its initial amplitude u0, and the potential depth V0.

A. Effect of the initial speed of input soliton

Here, we investigate the effect of input soliton’s initial
speed on the appearance or nonappearance of soliton ejec-
tion as well as on ejection speed. We consider a fixed initial
position and vary the speed over a range that comprises all
different possible outcomes. In Fig. 3, we plot the speed of
the ejected soliton ve versus the speed of incidence vi. The
figure shows that ve acquires a constant value for 0 < vi <

0.285 followed by an almost linear increase for large vi. The
spatiotemporal inset figures show that soliton ejection is grad-
ually disappearing for large ve. It is appearing for the smaller
values of ve where the speed gain ve/vi is significant.

B. Effect of the initial position of a stationary input soliton

Interestingly, soliton ejection can be obtained even with a
stationary input soliton. However, if the input soliton is too
far from, or too close to the potential well, soliton ejection
does not occur. Here, we consider initial positions ranging
from x0 = −20 to the center of the potential well and using
the specific set of parameters u0 = 1, g = 1, V0 = 2, and

FIG. 3. Speed of the ejected soliton propagated with different
initial velocities. Spatiotemporal inset figures describe the dynam-
ics of the soliton propagated with certain specific initial velocities.
Constant ejection speed ve = 0.32 is obtained for incident velocities
up to the vertical dotted line at incident soliton speed vi = 0.285.
Parameters: x0 = −10, u0 = g = 1, V0 = 2, α = 0.69

√
V0.

α = 0.69
√

V0. The results obtained are provided in Fig. 4. For
x0 � −15, the input soliton is not affected by the potential
and, thus, remains stationary at its initial position. This is
indicated by the region before the dashed vertical red line in
Fig. 4, and the inset plot portrays its dynamics at this situation.
For x0 > −15, soliton ejection starts to take place with ejec-
tion speed ve = 0.31. The spatiotemporal plot in the inset for
x0 = −10 clearly shows the soliton ejection from the potential
well. A constant ejection speed of ve = 0.32 is observed for a
rather wide range of x0, varying from −12.1 to −8.0, which
is indicated by the region in between the vertical blue lines of
Fig. 4. For initial positions closer to the potential, ve decreases
to reach a minimum of 0.0015 at x0 = −0.4 with significantly

FIG. 4. Speed of ejected soliton versus the position of stationary
input soliton. Spatiotemporal inset figures describe the dynamics of
the soliton propagated from certain specific initial positions. Vertical
dotted lines show the boarders at which soliton ejection disappears
(x0 < −15 and x0 > −0.3) and the boarders within which the ejec-
tion speed is constant (−12.1 < x0 < −8). Parameters: u0 = g =
1, V0 = 2, α = 0.69

√
V0.
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FIG. 5. Speed of the ejected soliton for soliton propagating from
different initial positions with vi = 0.15. Spatiotemporal inset figures
describe the dynamics of the soliton propagated from certain spe-
cific initial positions. Other parameters: u0 = g = 1, V0 = 2, α =
0.69

√
V0.

high radiation loss. This portrays the highly attractive dynam-
ics of the potential well which results in the increased soliton
trapping. The complete trapping of the soliton is observed for
the stationary soliton positioned at x0 = −0.3 as shown in the
inset plot.

C. Effect of the initial position of a moving input soliton

The aim here is to investigate the effect of input soliton
speed on the results of the previous case. Obviously, with
a finite speed, the input soliton will reach the potential af-
ter some time. Thus, the nonappearance of soliton ejection
for large initial positions will not occur here; ejection will
eventually always take place as long as the input soliton is
not too close to the potential. We consider the same set of
parameter values as in the previous case with an initial soliton
speed vi = 0.15. The initial position of the soliton is varied
from x0 = −100 to the center of the potential well. From the
dynamics as displayed in Fig. 5, solitons are found to eject
with a constant speed over a wide range of initial positions
ranging from x0 = −100 to x0 = −15. Throughout this range
of initial positions, the speed of ejection is ve = 0.33 with a
constant speed gain of ve/vi = 2.2. Thereafter, ve reduces to
reach a minimum value of ve = 0.3 for x0 = −5. For initial
positions closer to the potential x0 > −5, the soliton ejection
mechanism is lost and trapping with a small amount of ra-
diation dominates. For x0 � −0.5, the soliton is completely
trapped in the potential well as shown in the inset plot.

D. Effect of input soliton amplitude

Soliton ejection dynamics for input soliton with different
initial amplitudes is analyzed in this section. For the paper,
we use the parameters x0 = −15, vi = 0.1, V0 = 100, and
α = 3.5

√
V0. For input soliton amplitudes up to u0 = 3.3, no

clear soliton ejection takes place since soliton trapping in the
potential well is found to be dominant, which is also accom-
panied with a considerable amount of radiation as shown in
Fig. 6. Soliton ejection is initiated around u0 = 3.4 with an

FIG. 6. Speed of the ejected soliton for different input ampli-
tudes. Spatiotemporal inset figures describe the dynamics of the
soliton propagated with certain specific initial amplitudes. Trajectory
of the ejected soliton appears dotted due to the high soliton speed
which misses some snapshot frames. Parameters: x0 = −15, vi =
0.1, g = 1, V0 = 100, α = 3.5

√
V0.

ejection speed ve = 1.18 and gain ve/vi = 11.8. The soliton
ejection dynamics at this initial amplitude is provided in the
inset plot. For further increase in u0, the ejection speed is
found to increase considerably. A clear soliton ejection regime
with low radiation is obtained up to u0 = 6.6 with a speed gain
exceeding 30. Thereafter, an increased amount of radiation
dominates the scattering outcome.

E. Effect of potential depth

In this section, soliton ejection mechanism of the system is
characterized by varying the depth of the potential well. The
depth of the potential is varied up to V0 = 100 with u0 = 5
and vi = 0.1 whereas preserving the values of the other pa-
rameters as in the cases considered previously. The present
parameter setting does not support soliton ejection for the po-
tential depth V0 � 15 which instead exhibits soliton trapping
with a considerable amount of radiation. Soliton ejection is
initiated for V0 > 15 as shown in Fig. 7. The inset plots display
the soliton trapping and ejection for the corresponding values
of V0. For V0 = 16, the speed of the ejected soliton is found to
be ve = 0.75. For further increase in V0, the ejection speed
increases gradually reaching a maximum value of around
ve = 2.5 at V0 = 90. This provides a speed gain of ve/vi = 25.
For larger values of V0, the speed of the ejected soliton reduces
a little and saturates thereafter.

F. Characterization summary

As a result of the above characterization investigations, we
compare the speed gain of the ejected soliton for different
parameter settings as shown in Fig. 8 where the speed gain
is defined by the ratio of ve/vi. For the case of Fig. 8(a), the
initial soliton propagated with a finite constant vi has shown
a maximum gain of 2.19 times that of vi for a wide range
of initial positions. However, we observe from Fig. 8(b) that
increasing vi above a certain threshold does not yield further
gain and it tends to saturate. This emphasizes that lower
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FIG. 7. Speed of the ejected soliton for different potential depths.
Spatiotemporal inset figures describe the dynamics of the soli-
ton propagated with certain potential depths. Trajectory of the
ejected soliton appears dotted due to the high soliton speed which
misses some snapshot frames. Parameters: x0 = −15, u0 = 5, vi =
0.1, g = 1, α = 3.5

√
V0.

speeds allow for the sufficiently high gain values. On the other
hand, examining the speed gain in terms of input amplitude in
Fig. 8(c) and depth of the potential well in Fig. 8(d) shed light
on the possibility of achieving greater soliton ejection speeds.

In conclusion, we summarize the main results of the
present section as follows. We found speed gain to be con-
stant and not influenced by the initial position of propagation
unless the input soliton approaches very closely the potential
well where trapping dominates. Increasing the incident soliton
speed does not yield higher gain after a certain value where
thereafter it tends to saturate. A sufficiently high ejection
speed can be obtained for the incident soliton with a high
amplitude and with a large potential depth, albeit the higher
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FIG. 8. Speed gain for the different cases considered during the
characterization in terms of: (a) initial position of incident soliton,
(b) initial speed of incident soliton, (c) amplitude of incident soliton,
and (d) potential depth. Parameters used are the same of those in
(a) Fig. 5, (b) Fig. 3, (c) Fig. 6, and (d) Fig. 7.

the incident soliton amplitude above certain threshold results
in soliton ejection with considerably high radiation.

III. THEORETICAL MODEL FOR EJECTION
MECHANISM AND EJECTION SPEED

In order to develop a theoretical model that explains the
physics underlying the ejection mechanism and the ejection
speed, we invoke a specific case of integrable NLSE with
Pöschl-Teller potential. For the potential,

V (x) = −V0sech2(
√

2V0x), (7)

the NLSE, (1), admits the exact bright soliton solution,

ψtrap(x, t ) =
√

V0

g
sech(

√
2V0 x)eiV0t . (8)

We conjecture that this exact solution is the trapped mode left
after soliton ejection. The energy of this trapped mode is given
by the energy functional [49],

E =
∫ ∞

−∞

[
1

2

∣∣∣∣∂ψ (x, t )

∂x

∣∣∣∣
2

− g

2
|ψ (x, t )|4 + V (x)|ψ (x, t )|2

]
dx,

(9)
which upon using (8), takes the form

Etrap = −2
√

2

3g
V 3/2

0 . (10)

The profile of the ejected soliton is modeled by that of a
moving bright soliton, namely,

ψeject (x, t ) = ne
√

g

2
sech

[gne

2
(x − xe − vet )

]

× exp

(
i

{
ve(x − xe) + 1

8
[(gne)2 − 4v2

e ]t

})
,

(11)

where xe, ne, and ve are the ejected soliton position, norm,
and speed, respectively.

In Fig. 9, a snapshot of the profiles of the ejected and
trapped solitons obtained from the numerical solution of
Eq. (1) are plotted together with the analytical expressions
Eq. (8) and Eq. (11) for comparison. Comparison shows
that the analytical bright soliton profile, Eq. (11) provides
an excellent representation of the ejected soliton profile. The
analytical trapped soliton profile Eq. (8) is also in a good
agreement with the numerical profile, apart from a small de-
viation in the central peak. The energy of the ejected soliton
is given by inserting Eq. (11) in Eq. (9), and takes the form

Eeject = − n3
e

24
g2 + 1

2
nev

2
e , (12)

where the first term is the total of nonlinear interaction en-
ergy (IE) and the kinetic energy pressure resulting from the
curvature of the soliton profile. The second term, represents
the ejected soliton translational kinetic energy in terms of the
ejection speed ve, which can be calculated in terms of the
ejected energy as

ve =
√

2

ne

(
Eeject + n3

e

24
g2

)
. (13)
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FIG. 9. A snapshot of ejected and trapped soliton profiles at
t = 111.49. Solid red curve corresponds to the numerical solution of
Eq. (1). Dashed black curve corresponds to the analytical profile of a
bright soliton Eq. (11). Dotted-dashed green curve corresponds to the
exact analytical expression representing the trapped mode Eq. (8).
Dotted blue curve corresponds to the potential well divided by V0.
Parameters: x0 = −10, vi = 0.1, g = 1, V0 = 2, u0 = α = √

2V0.

The energy of the incident soliton is similarly given by

Eincident = − n3
i

24
g2 + 1

2
niv

2
i . (14)

Energy conservation relates these energies as

Eincident = Etrap + Eeject + Erad, (15)

where we have added the energy of radiation Erad since al-
though it is small, neglecting it does not lead to the correct
ejection speed. Substituting the incident and ejected energy
expressions, Eqs. (12) and (14) in Eq. (15), the ejection speed
will be given by

ve =
√

ni

ne
v2

i − 2
Etrap

ne
− g2

12ne

(
n3

i − n3
e

) − 2

ne
Erad. (16)

Unlike (13), this expression incorporates the radiation energy,
which allows for estimating its importance as we will show
next. The condition on conservation of norm is given by

ni = nt + ne + nr, (17)

where nr and nt are the norms associated with the radiation
part and the trapped mode, respectively. To estimate the effect
of radiation, we neglect the radiation energy Erad and radiation
norm nr in Eqs. (16) and (17), respectively, to get

ve =
√

12niv
2
i − g2nt

(
3n2

i − 3nint + n2
t

) − 24Etrap

12(ni − nt )
. (18)

Inspection showed that a minimum amount of radiation is
obtained at the resonance between the energy of the incident
soliton and the energy of the trapped mode. Specifically, min-
imum radiation occurs when the sum of the nonlinear energy
of the incident soliton and its kinetic energy pressure, namely,
the first term of Eq. (14) is equal to the energy of the trapped

2 4 6 8 10
0.5

1.0

1.5

2.0

2.5

V0

v e

FIG. 10. Ejection speed of the soliton as a function of the poten-
tial depth. Solid black curve corresponds to the numerical solution
of Eq. (1). Points correspond to the ejection speed calculated using:
Eq. (13) (red triangles), Eq. (16) (green squares), Eq. (18) (pur-
ple circles), and Eq. (22) (blue diamonds). Parameters: g = 1, vi =
0.1, x0 = −10, α = u0 = √

2V0.

mode,

− n3
i

24
g2 = −2

√
2

3g
V 3/2

0 , (19)

which gives

ni = 2
√

2V0

g
. (20)

The norm of the trapped soliton is given by

nt =
√

2V0

g
, (21)

which is half the incident norm. The ejected soliton norm can
be calculated from the norm conservation condition (17), and,
thus, we are left with only the radiation norm. An approximate
analytical formula for ve can, thus, be obtained by neglecting
the radiation norm and energy,

ve =
√

2v2
i + V0

6
. (22)

Equations (13), (16), (18), and (22) represent different levels
of approximate formulas for ve. In Eq. (13), we use only
the numerical values for the energy and norm of the ejected
soliton. As such, this formula represents the lowest level of
approximation, and we expect it to be the closest to the nu-
merical results. In Eq. (16), ejection speed is calculated from
the conservation of the total energy. However, the advantage
of this formula is that radiation energy appears explicitly
allowing for an estimate on its contribution to the value of
the ejection speed. This is the case of Eq. (18) where both
radiation norm and energy are neglected. For the same of
obtaining an analytical formula without any input from the
numerical quantities, we use the condition of minimum radi-
ation to calculate the incident norm in terms of V0 and then
neglect radiation norm and energy, which result in Eq. (22).
In Fig. 10, we plot all these approximate expressions together
with the exact numerical curve. The figure shows as expected
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FIG. 11. Time evolution of energy components for a bright soli-
ton scattered by the potential well. (a) Total energy and (b) trapped
mode energy. The curves correspond to kinetic energy (KE, KEtrap),
interaction energy (IE, IEtrap), potential energy (PE, PEtrap), ra-
diated energy (RE), and total energy (TE, Etrap). The point of
interaction is indicated by the vertical dotted gray line. Parameters:
g = 1, vi = 0.1, x0 = −10, V0 = 2, α = u0 = √

2V0.

the best agreement with the numerical curve is obtained with
the expression of Eq. (13). Similar agreement is obtained with
Eq. (16) where radiation is taken into account. Neglecting
radiation, which corresponds to Eq. (18), shifts the curve
slightly above the numerical one, indicating that radiation has
somewhat a small effect on the value of the ejection speed.
The approximate analytical formula Eq. (22) is clearly far
from the numerical, but it has a similar dependence on V0 as
that of the numerical result.

To qualitatively understand the physics underlying the
ejection effect, we calculate the different energy compo-
nents of the soliton during the whole evolution time interval.
Figure 11(a) shows the total kinetic energy, total interaction
energy, total potential energy (PE), total radiated energy, and
total energy. The same quantities for the trapped mode related
by Etrap = KEtrap + PEtrap + IEtrap are plotted in Fig. 11(b).
Clearly, after scattering the total kinetic energy is slightly
larger than that of the trapped mode. Since the trapped mode is
stationary, then its kinetic energy is only in the form of kinetic
energy pressure. Thus, the difference between the total kinetic
energy and the trapped mode kinetic energy after scattering is
translational kinetic energy which is distributed between the
ejected soliton and the radiation part. The total trapped mode

energy is less than that of the incident soliton. The increase
in kinetic energy compensates exactly to this difference such
that the total energy is conserved.

The presence of impulsive potential energy adds to the
effect of the focusing nonlinear interaction. This leads to that
the norm of original soliton is too large to sustain since the
impulsive forces become larger than that of the expulsive
kinetic energy pressure. Equilibrium is retained by ejecting
some of the incident soliton norm. The nonlinear interac-
tion in the ejected intensity is responsible for forming the
ejected soliton profile. The difference between the energy of
the trapped mode and the incident soliton is transferred to the
ejected soliton and radiation. Since that difference is negative,
the ejected soliton energy will be positive, i.e., translational
kinetic energy.

Further insight is obtained by observing the dynamics of
soliton profile immediately after it enters the potential region.
We observe that the whole soliton profile is first confined by
the potential with a compressed width and increased intensity.
This results in increasing the kinetic energy pressure as is
clearly shown by the spike in the kinetic energy curve in
Fig. 11. Associated with this positive spike, there is a negative
spike in the potential energy occurring at the same time such
that the total energy is conserved. The interaction energy is
changed only slightly at this moment. Although the energy is
conserved for the highly compressed state, it is not a stable
equilibrium, and the kinetic energy pressure starts expanding
the soliton. This expansion accelerates part of the soliton,
which should be its outer shell, giving it translational kinetic
energy to leave the original soliton as an ejection. The di-
rection of the ejection is towards the part that had the first
encounter with the potential since this part is exposed to the
compression for a longer period than the opposite part.

IV. MULTINODE TRAPPED MODES
AND TWO-SOLITON EJECTION

In this section, we consider first soliton ejection associated
with the formation of multinode trapped modes. We investi-
gate the relation between the ejection speed and the trapped
energy of the mode. We then investigate the ejection stimu-
lated by two solitons launched simultaneously from both sides
of the potential.

Based on the qualitative understanding of the mechanism
of soliton ejection which we reached in the previous section,
we conclude that when the magnitude of trapped mode energy
is large, the ejection speed should be large. Multinode trapped
modes do indeed have binding energy magnitudes larger than
the nodeless mode considered in the previous section. To real-
ize a situation where soliton ejection results from the trapping
of a multinode trapped mode, we increase the width of the
potential in order to accommodate the multinodes trapped
modes. In Fig. 12, we show such a case of four-node trapped
mode. The ejection speed in this case equals ve = 1.49. In Ta-
ble I, we list the trapped energy and its three components, the
kinetic KEtrap, the potential PEtrap, and the interaction IEtrap

energies related by Etrap = KEtrap + PEtrap + IEtrap. The list is
recalculated for a range of nodes and shows the corresponding
ejection speed in each case. As shown in the table, larger
magnitude of binding energy Etrap is always associated with
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FIG. 12. (a) Spatiotemporal plot showing the four-node trapped
mode and (b) pulse profile of the ejected soliton at t = 63. Solid red
curve corresponds to the numerical solution of Eq. (1) and dotted
blue curve corresponds to the potential well divided by V0. Inset in
(a) shows a zoom-in of the scattering near the potential region. Pa-
rameters: u0 = 2, V0 = 22, α = √

V0/5, x0 = −10, vi = 0.1, g = 1.

larger trapped kinetic energy KEtrap. In the previous section,
we have concluded that the difference between the total in-
cident energy and the trapped kinetic energy KEtrap turns to
the translational kinetic energy of the ejected soliton plus the
small radiation part. This is verified here, by confirming a
linear relationship between Etrap and v2

e .
Another interesting situation is the two-soliton ejection

stimulated by simultaneous scattering of two solitons with
the potential from both of its sides. The incident two-soliton

TABLE I. Ejection speed for multinode trapped modes. Parame-
ters: u0 = 2, V0 = 22, x0 = −10, vi = 0.1, g = 1.

√
V0/α No. of nodes Etrap KEtrap PEtrap IEtrap ve

3 2 −2.39 4.47 −6.53 −0.33 0.538
4 3 −4.25 6.26 −10.21 −0.292 1.220
5 4 −5.10 8.55 −13.17 −0.488 1.490
6 5 −5.82 10.17 −15.61 −0.37 1.690
7 6 −6.38 12.14 −18.24 −0.24 1.817
8 7 −6.91 13.61 −20.01 −0.51 1.940
9 8 −7.33 16.48 −23.51 −0.31 2.060
10 9 −8.00 21.66 −29.30 −0.36 2.160

profile considered here, is given by

ψ (x, t ) = ψ+(x, t ) + ψ−(x, t )ei �φ, (23)

ψ±(x, t ) = u0√
g

sech[u0(±vit − x ± x0)]

× e(i/2){u2
0t−[vi (vit∓2x+2x0 )]}, (24)

where ψ+(x, t ) is the soliton launched from the left and is
moving to the right and ψ−(x, t ) is the soliton launched from
the right and moving to the left. For both cases, we assume
x0 < 0 and vi > 0. The relative phase difference between the
two incoming solitons is �φ ∈ [0, 2π ].

Here, we are specifically interested in investigating the
effect of the relative phase difference between the two incom-
ing solitons on the ejected solitons. We find that symmetric
two-soliton ejection occurs always when �φ is between the
two special cases of in-phase and out-of-phase values. Dis-
tinguished behaviors take place when the solitons are exactly
in phase or out of phase. In the following, we consider in
particular three cases of the relative phase difference �φ =
0, 0.9π, π . The results turn out to be as follows: (i) when
the two solitons are exactly out of phase, namely, �φ = π ,
no soliton ejection takes place. The two solitons interfere de-
structively at the potential region which results in an effective
repulsive force as it is known for two-soliton scattering [50].
Consequently, no trapped mode forms, and the two solitons
are fully reflected with the same but opposite speeds since
all energy carried by the two incoming solitons will be trans-
ferred completely to the two reflected solitons. This case is
shown in Fig. 13(a), (ii) when the two solitons are exactly
in phase, namely, �φ = 0, they will interfere constructively
and a trapped mode forms. Figure 13(b) shows this situation.
Since the resulting trapped mode energy and its norm are
mainly set by the parameters of the potential, the energy
difference between the trapped mode and the incident wave
will be transferred to the ejected solitons. A symmetric soli-
ton ejection forms such that each ejected soliton will have
the same norm neject

l
= neject

r
= 7.74 and carry equal ejected

energies Eeject
l
= Eeject

r
= −18.5. Ejection speed in this case

ve = 1.51 is almost half that of a single-soliton ejection ve =
3.40, attained by the same parameters shown in Fig. 13(c).
(iii) When the relative phase difference is any value other than
the out-of-phase or in-phase cases, for example, �φ = 0.9 π ,
an asymmetric soliton ejection occurs as shown in Fig. 13(d).
Due to a partially destructive interference, only one soliton
will eject with a considerably higher speed, namely, ve = 3.9.
The energy distributed over two ejected solitons for the in-
phase case is now transferred to one ejected soliton which
has almost twice the norm as one of the two ejected soli-
tons, and its kinetic energy will be almost doubled leading
to an increased ejection speed. This can be induced from the
trapped energy in the two cases shown in Table II where we
have summarized the norms and energies of the two cases
associated with �φ = 0, 0.9π . To verify this understanding,
we list in Table III the energy components of the trapped
energy of the two cases. The trapped kinetic energy in the
case of �φ = 0.9π equals KEtrap = 57.4 which is higher than
that for the case of two in-phase solitons KEtrap = 57.4. This
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TABLE II. The norms, energies, and ejection speeds associated with the dynamics of two-soliton ejection by two in-phase solitons �φ = 0
and two solitons with a phase difference �φ = 0.9π . The last two columns correspond to the numerical value of ejection speed venum , and the
calculated one from the theoretical model ve theo

. Parameters: u0 = √
2V0, V0 = 16, α = √

2V0, x0 = −3, vi = 0.1, g = 1.

�φ ntot ntrap neject
l

neject r
nrad TE Etrap Eeject

l
neject r

Erad venum ve theo

0 22.8 7.1 7.74 7.74 0.1 −120.835 −84 −18.5 −18.5 0.97 0.43 0.46
0.9π 22.8 8.4 14.1 0 0.25 −120.835 −110 −12.3 0.35 0.56 3.9 3.85

conclusion is consistent with the situation of single-soliton
ejection with multinode modes discussed at the begging of
this section.

To affirm the solitonic nature of the ejected pulse, we
calculate the ejection speed using the energy expression of
the ejected soliton, which we denote by ve theo

, namely, Eeject =
− n3

e
24 + 1

2 neve
2
theo

for g = 1 with the numerical values of Eeject

and ne. As shown in the last column of Table II, the calculated
value agrees well with the numerical value venum

.
In addition to the above findings, changing the depth and

width of the potential allows for other interesting two-soliton
ejection phenomena. As an example, we show in Fig. 14 two
out-of-phase solitons form a multinode trapped mode and
eject symmetrically with ejection speed is ve = 1.12.

In view of the above, it is possible to design a nonlinear
soliton interferometry which can be used as a detector of the
phase difference between solitons.

FIG. 13. Two solitons scattered by the potential from both
of its sides. (a) Two out-of-phase solitons �φ = π . (b) Two
in-phase solitons �φ = 0 with a symmetric soliton ejection. Ejec-
tion speed is ve = 0.43. (c) Single-soliton ejection with ejection
speed ve = 3.40. (d) Asymmetric soliton ejection for �φ = 0.9 π .
Ejection speed is ve = 3.9. Parameters: u0 = √

2V0, V0 = 16, α =√
2V0, x0 = −3, vi = 0.1, g = 1.

V. CONCLUSIONS AND OUTLOOK

We have shown that soliton ejection may be obtained as
an outcome of the bright soliton scattering by a modulated
reflectionless potential well. It was found that with a perfect
reflectionless potential well, no soliton ejection occurs for the
whole range of potential and incident soliton parameters. For
soliton ejection to occur, the width of the potential well had to
be increased whereas keeping its depth fixed which represents
a modulated potential well that deviates from the reflection-
less form. As a result of this deviation, an amount of radiation
is always emitted together with soliton ejection. It was found,
though, that minimum radiation is produced when the energy
of the incoming soliton is resonant with the energy of trapped
modes of the potential well. Within this general setup, detailed
investigations have characterized the soliton ejection in terms
of all parameters involved, such as the incident soliton’s initial
speed, initial position, and initial amplitude, in addition to the
effect of the potential depth. The investigation has identified
the potential depth and input soliton amplitude as the most
effective parameters that can be used to generate high-speed
soliton ejection.

A theoretical model was established in order to understand
the physics underlying the ejection mechanism and to predict
the ejection speed. The model is based on energy exchange
between the incident soliton and a trapped mode. We have
used a known localized trapped mode for an integrable version
of the NLSE with the Pöschl-Teller potential. This enabled us
to calculate the ejection speed essentially in terms of the depth
of the potential well. However, it turned out that although
radiation is typically small, it needs to be taken into account in
order to have an accurate estimate of the ejection speed. The
resonant case of minimum radiation is an exception where we
have seen that radiation has a marginal effect on the calculated
ejection speed. Although our theory accounts accurately for
the trapped mode and the ejected soliton, it does not account
for the emitted radiation. We believe a future revisit of this
problem may result in such an account. Based on this model,
the following simple picture for the mechanism is developed.
An incident bright soliton with the norm that is almost equal

TABLE III. Trapped energy components of the two-soliton ejec-
tion stimulated by two in-phase solitons �φ = 0 and two solitons
with phase difference �φ = 0.9 π . Parameters: u0 = √

2V0, V0 =
16, α = √

2V0 x0 = −3, vi = 0.1, g = 1.

�φ Etrap KEtrap PEtrap IEtrap

0 −84.5 44.1 −78.0 −50.6
0.9π −110.1 57.4 −93.9 −73.6
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FIG. 14. Symmetric two-soliton ejection resulting from two
out-of-phase input solitons, �φ = π . Ejection speed is ve = 1.12.
Parameters: u0 = 2, V0 = 22, α = √

V0/6, x0 = −10, vi = 0.1,

g = 1.

to twice the norm of the trapped mode and energy almost
equal to the energy of the trapped mode undergoes a transition
from its initial state to that of the trapped mode. Although
the energy of the incident soliton is almost adequate to form
the trapped mode, there will be an excess of norm (matter
in the case of BEC) which is a leftover from this transition.

Due to the focusing nonlinearity, a bright soliton will be
formed from the leftover norm together with some radiation.
The newlyformed soliton will acquire a translational kinetic
energy to balance the negative nonlinear interaction energy
used to form it and, hence, gets ejected.

To verify this understanding, we have considered more
complicated setups where the trapped mode is a multinode
state. Higher ejection speeds were obtained in this case since
the magnitude of the binding energy increases with the num-
ber of nodes. Another interesting setup that we investigated
results in a simultaneous ejection of two solitons from both
sides of the potential. The sensitivity of the outcome and
ejection speed dependence on the relative phase between the
two incident solitons was investigated and suggests a tool for
soliton phase interferometry.

In conclusion, our paper has identified the necessary con-
ditions to achieve soliton ejection, provided controllability on
the ejection speed value in terms of the potential and incident
soliton parameters, and unveiled the underlying physics of
ejection.
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