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Learning a reduced basis of dynamical systems using an autoencoder
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Machine learning models have emerged as powerful tools in physics and engineering. In this work, we use
an autoencoder with latent space penalization to discover approximate finite-dimensional manifolds of two
canonical partial differential equations. We test this method on the Kuramoto-Sivashinsky (K-S), Korteweg-de
Vries (KdV), and damped KdV equations. We show that the resulting optimal latent space of the K-S equation
is consistent with the dimension of the inertial manifold. We then uncover a nonlinear basis representing the
manifold of the latent space for the K-S equation. The results for the KdV equation show that it is more difficult
to recover a reduced latent space, which is consistent with the truly infinite-dimensional dynamics of the KdV
equation. In the case of the damped KdV equation, we find that the number of active dimensions decreases with
increasing damping coefficient.
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I. INTRODUCTION

Evolution of physical and engineering systems is gen-
erally expressed as nonlinear partial differential equations
(PDEs). These PDEs are able to capture a wide range of com-
plex phenomena and are therefore indispensable for making
predictions of scientific interest. However, most PDEs of prac-
tical interest are not analytically tractable. Highly efficient
numerical methods can obtain solutions to these PDEs but
are severely limited by the strong multiscale nature of the
underlying dynamics and limitations of hardware resources.
There is therefore considerable interest in the development
of reduced models that capture only the most important dy-
namics of the physical phenomenon of interest [1–3]. In
recent years, machine learning algorithms have been bor-
rowed from the computer vision community and adapted for
physical applications [4–12], offering an enticing approach
for blending data with physical principles. In fact, a key
goal in merging machine learning with physics problems is
to embed known physical laws into machine learning algo-
rithms [7]. In the present work we use a combination of
neural networks and techniques from data analysis to find
a dynamically relevant manifold of canonical PDEs using
autoencoders. Other recent work has applied autoencoders to
learning inertial manifolds of PDEs in a physically meaning-
ful manner [13–17]. In particular, Ref. [16] introduces the
Hybrid Neural Network (HNN), in which an autoencoder
is used to learn the difference between the data and a lin-
ear projection onto the principle component analysis basis.
The HNN embeds translation invariance and energy conser-
vation and learns the dynamics on the inertial manifold of
the Kuramoto-Sivashinsky equation. In the present work, the
traditional mean-squared error loss function between the input
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and reconstruction of the autoencoder is augmented with the
sparsity-promoting mean absolute error loss function, which
is applied to the latent space. Sparsity-promoting norms have
been studied extensively in statistics for sparse regression
[18,19] and mathematics via compressed sensing to recon-
struct signals from incomplete data [20–24]. Recent work has
also applied sparse regression and compressed sensing to dis-
cover equations from data [15,25]. In our approach, the latent
space of the trained autoencoder only contains the minimal
dimensions needed to reconstruct the solution. This approach
is tested on two equations with known reduced dynamics
[the Kuramoto-Sivashinsky (K-S) equation and the damped
Korteweg-de Vries (KdV) equation] and one equation whose
dynamics are truly infinite dimensional (the undamped KdV
equation). In the case of the Kuramoto-Sivashinsky equation,
the trained autoencoder and latent space is used to find a non-
linear reduced solution basis whose dimension is consistent
with that of the inertial manifold.

II. GOVERNING EQUATIONS AND DATASETS

The K-S equation is

ut + uux + uxx + uxxxx = 0, (1)

where u = u(x, t ) is the solution field, x ∈ [0, L], and t ∈ R+.
The final integration time is denoted by T . Equation (1)
is subject to periodic boundary conditions u(0, t ) = u(L, t )
and initial condition u0 = cos( 2π

L x)[1 + sin( 2π
L x)]. The K-S

equation has its roots in physics [26–29] and is a frequently
studied equation in mathematics [30–37]. The dynamics of the
K-S equation are confined to an inertial manifold [31]. That
is, despite the K-S equation being a nonintegrable equation
whose solutions exhibit spatiotemporal chaos, the underlying
dynamics are exponentially attracted to a finite-dimensional
manifold. The dimension of the inertial manifold increases
with the bifurcation parameter L.
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FIG. 1. Datasets from the K-S and KdV equations used in this work. (a) Contours of the K-S equation in space-time with three spatial
snapshots at different points in time and a snapshot in time at the center of the domain. The gray shaded area of the contour was not used in
the training. (b) Space-time contours of the KdV equation with spatial snapshots in time. The shading is the same as for the K-S equation.

The damped KdV equation, also considered in this
work, is

ut + uux + uxxx − ηuxx = 0, (2)

where x ∈ [−π, π ] and η � 0 is a damping coeffi-
cient. The KdV equation is subject to periodic boundary
conditions u(−π, t ) = u(π, t ) and initial condition u0 =
3A2sech2[A(x + 2)/2] + 3B2sech2[B(x + 1)/2] with A = 16
and B = 25. The classical KdV equation is recovered for
η = 0. Similarly to the K-S equation, the KdV equation is a
paradigmatic equation in mathematical physics [38,39], lead-
ing to the discovery of solitons, which are a direct bridge
between observed coherent structures in PDEs and nature. The
dynamics of the undamped KdV equation are truly infinite
dimensional while those of the damped KdV equation are
finite dimensional [39].

The datasets for this work were generated by solving
(1) and (2) using an exponential time-differencing fourth-
order Runge-Kutta method [40] and a pseudospectral Fourier
method in space. Spatial snapshots of these solution fields are
used as input to the autoencoder. Figure 1 shows examples of
the K-S dataset [Fig. 1(a)] and the KdV dataset [Fig. 1(b)].
The numerical parameters used for the cases in this work are
presented in Table I.

III. METHODOLOGY

Autoencoders are a self-supervised neural network archi-
tecture that can be used to find a low-dimensional manifold
that represents the data [41,42]. The input to the encoder is
mapped to a lower-dimensional space called the latent space.
The latent space is then expanded through the decoder to
reproduce the input to the encoder. An autoencoder with linear
activation functions can be shown to be equivalent to the sin-
gular value decomposition [43]. In the present work, the input
is a snapshot of the solution field obtained from a high-fidelity
numerical simulation that used N points in space and Nt points
in time. A snapshot in space is denoted by un = u(tn) for n =
1, . . . , Nt and u ∈ RN is a vector representing the solution at
N discrete points in space. This snapshot is mapped to a latent
space of dimension Nz with z j (tn) the jth component of the
latent space corresponding to snapshot n. The reconstructed

output of the autoencoder is denoted by ûn. The weights and
biases associated with each node of the autoencoder are tuned
to minimize the total loss,

L = Lu + λLz, (3)

where

Lu(u, û) = 1

Nt N

Nt∑
n=1

N∑
i=1

[u(xi, tn) − û(xi, tn)2] (4)

is the mean-squared error (MSE) reconstruction loss and

Lz = 1

Nt Nz

Nt∑
n=1

Nz∑
j=1

|z j (tn)| (5)

is the mean absolute error (MAE) penalization loss on the
latent dimensions. The sparsity of the latent space is con-
trolled by the regularization parameter λ � 0. A classical
autoencoder corresponds to λ = 0. The dimension of the la-
tent space, Nz, is not known a priori, but the MAE penalization
promotes sparsity in the latent dimensions while the MSE loss
boosts the reconstruction performance. The appropriate value
of λ will therefore restrict the latent space to the dimension
necessary for a good reconstruction. Figure 2 depicts the au-
toencoder and loss functions used in this work. All networks
used in the current work used fully connected networks with
sinusoidal activation functions. For conciseness, we denote
the encoder architecture by N → H1 → H2 · · · → HD → Nz,

FIG. 2. The autoencoder architecture with latent space penaliza-
tion. The reconstruction loss Lu (4) is combined with a mean absolute
error loss Lz (5). The result is a solution reconstruction that uses only
relevant latent dimensions.
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TABLE I. Details of the numerical simulations that were used to generate the datasets. The damping coefficient η only applies to the
damped KdV equation. N represents the number of discrete points in the physical domain. The final integration time is T and the constant time
step is given by �t .

Case Equation Domain η N T �t

1 K-S [0, 22] — 512 4 × 104 0.125
2 K-S [0, 22] — 1024 4 × 104 0.125
3 K-S [0, 26] — 1024 4 × 104 0.125
4 K-S [0, 30] — 1024 4 × 104 0.125
5 K-S [0, 35] — 1024 4 × 104 0.125
6 K-S [0, 43] — 1024 4 × 104 0.125
7 K-S [0, 45] — 1024 4 × 104 0.125
8 K-S [0, 50] — 1024 4 × 104 0.125
9 KdV [−π, π ] 0 512 5 × 10−3 0.125
10 KdV [−π, π ] 0.01 512 10−2 10−7

11 KdV [−π, π ] 0.05 512 10−2 10−7

12 KdV [−π, π ] 0.1 512 10−2 10−7

13 KdV [−π, π ] 0.25 512 10−2 10−7

14 KdV [−π, π ] 0.63 512 10−2 10−7

15 KdV [−π, π ] 1.0 512 10−2 10−7

16 KdV [−π, π ] 1.5 512 10−2 10−7

17 KdV [−π, π ] 1.58 512 10−2 10−7

18 KdV [−π, π ] 2.0 512 10−2 10−7

19 KdV [−π, π ] 2.5 512 10−2 10−7

20 KdV [−π, π ] 3.0 512 10−2 10−7

21 KdV [−π, π ] 3.5 512 10−2 10−7

22 KdV [−π, π ] 3.98 512 10−2 10−7

23 KdV [−π, π ] 4.0 512 10−2 10−7

24 KdV [−π, π ] 5.7 512 10−2 10−7

25 KdV [−π, π ] 10.0 512 10−2 10−7

26 KdV [−π, π ] 15.0 512 10−2 10−7

27 KdV [−π, π ] 20.0 512 10−2 10−7

28 KdV [−π, π ] 30.0 512 10−2 10−7

29 KdV [−π, π ] 50.0 512 10−2 10−7

30 KdV [−π, π ] 100.0 512 10−2 10−7

where Hk represents the number of nodes in layer k and D
is the number of hidden layers. The decoder uses the reverse
form of the encoder portion. The autoencoders were trained
used gradient descent with gradient clipping [44] to limit
the maximum gradient to 10. The Adamax optimizer [45]
was used in all experiments. The transient portion of the
dataset was excluded from both the training and validation
sets. In general, 80% of the remaining dataset was retained for
training and 20% was used for validation. Table II contains
specific details on all autoencoder architectures used in this
work including their hyperparameters.

IV. RESULTS

Autoencoders were trained on datasets generated from
the K-S equation (1) and the KdV equation (2). The cases
considered in this work are summarized in Tables I and II,
respectively. Each case was run for a range of regulariza-
tion parameter values. For each value of λ, the dataset was
split into a training and validation set and the MSE (4) was
monitored on the validation set during training. Two models
were saved for each experiment. One model was saved at the
minimum of the training loss curve while the other model was
saved at the minimum of the MSE loss on the validation set.

The model with the lowest MSE loss on the validation set at
each value of λ, L∗

u(uvalid, ûvalid), was taken to represent the
optimal regularization parameter for that case and was used
for analysis.

A. Kuramoto-Sivashinsky equation

Using the K-S dataset with L = 22, the autoencoder was
trained to find û(x, t ) with the total loss (3) for λ ∈ [10−4, 2].
The architecture of the encoder was 512 → 256 → 128 →
64 → 32, corresponding to Nz = 32. Figure 3(a) presents
L∗

u(uvalid, ûvalid) for different values of λ and shows a mini-
mum at λ = 0.398. Figure 3(b) shows the reconstruction by
the trained autoencoder using λ = 0.398 on a snapshot from
the validation set. More insight can be obtained by passing
each snapshot through the trained network and extracting
the latent dimensions corresponding to each snapshot. This
process results in Nt vectors (one for each snapshot), each of
size Nz. Figure 4 shows that of the 32 latent dimensions, only
10 are consistently active. This is consistent with, but slightly
larger than, the known dimension of the inertial manifold for
the K-S equation [37,46]. The interquartile range (IQR) can
be used as an indicator of the variability of the latent dimen-
sions. When normalized by the largest IQR (the most active
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TABLE II. Parameters used for the trained autoencoders. The cases correspond to those in Table I. The Start Index column represents the
snapshot index from which the training and validation sets were taken. Data before this index were not used.

Case Architecture Learning rate Batch size Epochs Start Index

(E): 512 → 256 → 128 → 64 → 32
1 10−3 40 3 × 104 5 × 104

(D): 32 → 64 → 128 → 256 → 512
(E): 1024 → 256 → 64

2 10−3 40 3 × 104 5 × 104

(D): 64 → 256 → 1024
(E): 1024 → 256 → 64

3 10−3 40 3 × 104 5 × 104

(D): 64 → 256 → 1024
(E): 1024 → 256 → 64

4 10−3 40 3 × 104 5 × 104

(D): 64 → 256 → 1024
5 10−3 40 3 × 104 5 × 104

(E): 1024 → 256 → 64
(D): 64 → 256 → 1024
(E): 1024 → 256 → 64

6 10−3 40 3 × 104 5 × 104

(D): 64 → 256 → 1024
(E): 1024 → 256 → 64

7 10−3 40 3 × 104 5 × 104

(D): 64 → 256 → 1024
(E): 1024 → 256 → 64

8 10−3 40 3 × 104 5 × 104

(D): 64 → 256 → 1024
(E): 512 → 256 → 128 → 64 → 32

9 (λ = 0) 5 × 10−3 100 105 104

(D): 32 → 64 → 128 → 256 → 512
(E): 512 → 256 → 128 → 64 → 32

9 (λ > 0) 5 × 10−3 100 105 104

(D): 32 → 64 → 128 → 256 → 512
10 10−3 60 5 × 104 104

(D): 32 → 64 → 128 → 256 → 512
11–30 10−3 60 7.5 × 104 104

(D): 32 → 64 → 128 → 256 → 512

latent dimension) a very clear separation between “active” and
“nonactive” dimensions emerges as shown in the bottom of
Figure 4. The largest IQR of the remaining 22 dimensions is
0.238 of the most active dimension.

The trained autoencoder model also provides a way to
develop a nonlinear basis for the learned manifold using the
technique of activation maximization. The idea behind this
technique is to determine the input that maximizes the output
of a specific node in the neural network. In the present work,
we were interested in the inputs that would maximize each
latent dimension. The input that maximized a given latent
dimension was interpreted as a component of the basis of the
low-dimensional manifold. The input that maximizes latent
dimension z j is determined from

b j = arg maxvS j (v), j = 1, . . . , Nz, (6)

where

S j = z j (v) − βRTV(v) (7)

and

RTV(v) = 1

N − 1

N−1∑
i=1

[v(xi+1) − v(xi )]
2 (8)

is a regularization used to smooth the resulting field with
the regularization parameter β � 0. The function evaluation
z j (v) corresponds to an evaluation of the encoder portion of
the trained autoencoder with input v. Note that v is not a
temporal snapshot of the dataset but instead represents an
arbitrary input to the autoencoder. Gradient ascent was used to
solve (6),

v
(l+1)
j = v

(l )
j + γ

∂S j

∂v j
. (9)

The step size γ was set to 1 and the regularization strength
β was set to 3. The maximization of each latent dimension
was initialized from a random distribution in space where
each point was drawn uniformly in [0, 1]. The result is a
basis for the reduced manifold. As an alternative to activation
maximization, one could consider the prediction from a single
latent component propagated through the trained decoder. If
the decoder was perfect, then the result may be very similar to

FIG. 3. (a) Reconstruction loss on the validation set for the K-S equation with L = 22 across different values of penalization parameter λ. In
each case the network architecture was 512 → 256 → 128 → 64 → 32. The minimum value occurs at λ = 0.398. (b) Solution reconstruction
and input solution for the K-S equation. (c) Solution reconstruction and input solution for the KdV equation.
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FIG. 4. Active latent dimensions for the model with the lowest
total loss (3) (λ = 0.398). Top: Box plots of each dimension of the
latent space generated by passing all snapshots through the autoen-
coder and extracting the latent space. Bottom: Normalized IQR for
each dimension showing a gap between the 10 active and remaining
nonactive dimensions.

activation maximization. In the present work, we only present
results from activation maximization. Figures 5(a) and 5(c)
show the components of the basis and their power spectra,
respectively. The power spectra clearly show that the compo-
nents of the discovered basis consist of a handful of distinct
modes. In contrast to the active dimensions, Figures 5(b) and

5(d) show that the inputs that maximize the nonactive dimen-
sions are constants near zero.

Finally, we compute the optimal number of latent di-
mensions for L = [22, 26, 30, 35, 43, 45, 50] and repeat the
experiment 10 times for each value of L. Each experiment
was run under the exact same conditions and using the same
data. The number of input points for each snapshot was
1024, which was selected so that the dimension of the inertial
manifold is captured for all values of L considered. The net-
work architecture was the same across cases (see Table II) and
used 64 dimensions for the latent space. Given that stochastic
gradient descent and a finite data set was used to train the
network, we expect some variability in the final model and the
corresponding optimal number of latent dimensions. Figure 6
depicts the scaling of the number of latent dimensions with
L, along with uncertainty bounds, and shows a nearly linear
scaling, consistent with the scaling of the number of active
modes [47].

B. Undamped and damped KdV equations

In contrast to the K-S equation, the undamped KdV
equation does not possess an inertial manifold and, more-
over, the dynamics are truly infinite dimensional [39]. The
undamped KdV equation therefore provides a test for the
method in which the dimension of the optimal latent space
is expected to be full. One may expect that this corresponds
to an optimal latent space penalization of zero. However, as

FIG. 5. (a) The nonlinear basis for the 10-dimensional manifold found for the K-S equation with L = 22. (b) Examples of the nonactive
dimensions. (c) Power spectrum of the basis for the active dimensions. (d) Power spectrum of two nonactive dimensions. Wave numbers in the
power spectra have been truncated to highlight the peaks in the power spectra. There are no peaks for |κ| > 5.
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FIG. 6. Scaling of the optimal number of latent dimensions with
domain size L for the K-S equation. The black circles indicate the
median value over 10 runs and the region between the maximum and
minimum values is shaded.

will be shown, this is not necessarily correct. The autoencoder
attempts to learn the correct dimensionality of the underlying
manifold regardless of the regularization used. Figure 3(c)
presents a snapshot of a solution from the validation set of
the undamped KdV equation and the corresponding prediction
from the autoencoder at λ = 2.37 × 10−4 and shows excellent
reconstruction. On the other hand, the damped KdV equation
does have finite-dimensional dynamics and therefore provides
a fertile test ground for understanding the behavior of the
latent space as the damping coefficient is varied. We con-
sider the damped KdV equation over a range of damping
coefficients, η ∈ [0, 100] (see Table I). Before training the
autoencoder, the input was normalized by its maximum value.
For each damping coefficient, including the undamped case,
the autoencoder with latent space penalization was trained
across a number of regularization parameters to determine
the optimal value. It is expected to be easier to learn the
underlying manifold for problems with larger damping coeffi-
cients because the dimensionality of the underlying manifold
is smaller for these types of problems. Following this line of
reasoning, the optimal regularization parameter will be larger
for smaller damping coefficients. Because of the stochastic
nature of the optimization, the procedure to determine the
optimal regularization parameter was repeated five times at
each value of the damping coefficient in order to demonstrate
the robustness of the results. Figure 7 shows the optimal
regularization parameter for each damping coefficient. The

FIG. 7. Optimal regularization parameters for each value of
damping coefficient. The black circles indicate the median value over
five runs at each damping coefficient and the region between the
maximum and minimum values for each run is shaded.

FIG. 8. Interquartile ranges of each component of the optimal
latent space for the undamped (top) and strongly damped (η = 100,
bottom) KdV equations. There is no clear clustering into “active” and
“nonactive” dimensions in either case.

undamped and weakly damped cases have similar optimal
regularization parameters just less than λ = 10−3, but as the
damping increases the optimal regularization parameter de-
creases until it reaches very small values for large damping
coefficients. This indicates that for very large damping coef-
ficients the autoencoder is able to estimate the dimensionality
of the manifold nearly unaided. We observe that a larger
optimal λ is required to find an acceptable latent space to
capture the dynamics for cases with smaller damping. This
does not imply that the dimensionality of the learned latent
space is smaller for smaller damping coefficients. Once again,
inspecting the latent space directly sheds light on this detail.
Figure 8 shows the IQR normalized by its maximum value
for two extremes in damping coefficient (no damping on the
top and strong damping on the bottom). Unlike in the K-S
problem, there is no obvious clustering into “active” and “non-
active” dimensions for the KdV equations and an additional
step must be performed to determine the dimensionality of the
underlying manifold. For each damping coefficient, we pass
all snapshots through the trained autoencoder with the optimal
regularization parameter and extract the resulting latent space,
which leads to matrix of size nz × Nt . An SVD on the learned
latent space is performed to explain how the autoencoder is
learning the dimension of the underlying manifold. Figure 9
shows the explained variance extracted from the SVD of the
latent space for each damping coefficient, which is given by

wi =
i∑

j=1

σ j

/ nz∑
j=1

σ j, (10)

where σ j is the jth singular value. A clear trend is present
in which smaller values of η are closer to the diagonal and
large values of η exhibit a fuller profile. This implies that
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FIG. 9. The explained variance for various damping coefficients
in the KdV equation. The dashed line shows the situation where
all dimensions contribute equally. As the damping coefficient is
increased, the explained variance profile becomes fuller indicating
that fewer latent dimensions contribute.

smaller values of η have more “active” latent dimensions than
large values of η, as expected. Although the trend is very clear
for larger values of η, it is less obvious for small η for which
some profiles are less full than that of η = 0. To disentangle
this, we consider the area under the curve of each profile.
If all modes were equally important, then the area under the
curve (AUC) would be (nz − 1)/2, which here is 15.5. At the
other extreme, if only one mode was necessary, then the area
under the curve would be nz − 1. Considering Z = nz − AUC
provides information on how many modes are required to
represent the latent space. Considering the extremes again,
if all modes were equally important, then Z = (nz − 1)/2,
whereas if only one mode was necessary then Z = 1. Fig-
ure 10 presents Z as a function of damping coefficient. We
observe that the number of latent parameters is close to (but
not quite) 15.5 for small values of η. For moderate values
of η, the number of latent parameters drops quickly before
plateauing at nearly two at large values of η. We note that for
very large values of η the damped KdV equation is dominated
by diffusion and for periodic boundary conditions the damped
KdV equation tends to a constant for very large damping
coefficients.

V. CONCLUSIONS

An autoencoder with latent space penalization was used to
find approximate low-dimensional manifolds for two differ-
ential equations in physics. In the case of the K-S equation,

FIG. 10. The area under the explained variance curve as a func-
tion of damping coefficient. The undamped and weakly damped KdV
cases show almost equal contributions from all latent dimensions.
The strongly damped KdV cases begin to plateau at 1 to 2 latent
dimensions.

the optimal latent space dimension was consistent with the
known dimensionality of the inertial manifold for bifurcation
parameter L = 22. We then determined a nonlinear basis for
this manifold, which could in principle be used in a reduced
order model. In the case of the KdV equation, which has
truly infinite-dimensional dynamics, we found optimal results
with a somewhat larger regularization parameter. This can be
understood by recognizing that the autoencoder attempts to
learn a reduced manifold regardless of the damping of the
problem and that for small (or zero) damping coefficient, the
autoencoder requires more regularization to find the correct
manifold. Finally, when applying this technique to the damped
KdV equation, which once again has finite-dimensional dy-
namics we found the beginnings of a power-law scaling
for the number of active dimensions for sufficiently large
damping coefficient. At very large damping coefficients the
number of active dimensions for the KdV equation began to
plateau at nearly 2. This is consistent with the behavior of
the strongly damped KdV equation with periodic boundary
conditions.

Several avenues exist for extensions of this work. It would
be interesting to rigorously connect the latent space with
known mathematical objects such as the inertial manifold
(when it is known to exist) and attractors [17]. In the present
work, we empirically show that the dimensionality of the
latent space is consistent with that of the inertial mani-
fold for the K-S equation. However, it would be interesting
to attempt to connect the two in a rigorous manner. An-
other route to take is to use the new basis for the K-S
equation developed in this work to simulate dynamics with
the reduced model. These simulations could be performed
using a recurrent neural network [13] or traditional numer-
ical solvers. Of particular interest is extending this work to
more realistic problems in science and engineering includ-
ing Rayleigh-Bénard convection. These problems will require
different network architectures including convolutional neural
networks.

ACKNOWLEDGMENTS

The authors thank Michael Jolly and Robert Moser for
insightful discussions. The computations in this paper were
run on the FASRC Cannon cluster supported by the FAS
Division of Science Research Computing Group at Harvard
University.

APPENDIX: NUMERICAL SIMULATIONS

The one-dimensional K-S and KdV equations were solved
using a pseudospectral Fourier discretization in space and an
exponential fourth-order Runge-Kutta method [40] in time.
The spatial domain was discretized using N points in physical
space. The nonlinear terms were computed in physical space
using the 2/3 dealiasing rule. Table I presents the runs that
were used to generate the figures in the paper.
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