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Mitigation of rare events in multistable systems driven by correlated noise
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We consider rare transitions induced by colored noise excitation in multistable systems. We show that
undesirable transitions can be mitigated by a simple time-delay feedback control if the control parameters are
judiciously chosen. We devise a parsimonious method for selecting the optimal control parameters, without
requiring any Monte Carlo simulations of the system. This method relies on a new nonlinear Fokker-Planck
equation whose stationary response distribution is approximated by a rapidly convergent iterative algorithm. In
addition, our framework allows us to accurately predict, and subsequently suppress, the modal drift and tail
inflation in the controlled stationary distribution. We demonstrate the efficacy of our method on two examples,
including an optical laser model perturbed by multiplicative colored noise.
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I. INTRODUCTION

Noise-induced transitions are observed in many areas of
science and engineering, such as climatology [1–3], laser
technology [4], ecosystems [5–7], oncology [8–11], neural
systems [12,13], material science [14,15], turbulence [16–22],
and thermoacoustics [23]. Although these transitions are of-
ten rare, their occurrence may have devastating consequences
[24]. Here we investigate the ability of time-delay feedback
control to mitigate such undesirable transitions.

We focus particularly on stochastically excited multistable
dynamical systems. In absence of noise, the equilibria of
these systems are stable fixed points. Stochastic excitations,
however, instigate rare transitions between these equilibria.
We assume that one of the equilibria is desirable and de-
sign a control strategy that mitigates transitions away from
it. Following Farazmand [25], we consider a class of time-
delay feedback controllers. The time delay, although small,
is nonzero in order to model the delay that occurs in ap-
plications between observing the system and actuating the
controller.

The crucial difference between the present study and
Ref. [25] is the nature of the noise. For mathematical
convenience, stochastic excitations are usually modeled by
delta-correlated white noise. However, environmental noises
in reality have a finite correlation time and therefore cannot be
modeled as white noise (see, e.g., Refs. [26, Sec. 8.1] and [27,
Sec. 5.4.1]). Here we consider this more realistic case where
the noise is colored and therefore has a finite correlation time.

As shown in Ref. [25], for the white noise excitation, the
time-delay feedback control has two competing effects. One
is the deepening of the effective potential well around the de-
sirable equilibrium and hence hindering transitions away from
it. At the same time, the control intensifies the effective noise,
facilitating large stochastic excursions. We show that the same

*Corresponding author: farazmand@ncsu.edu

competing factors are also operative in the case of colored
noise. As such, choosing the suitable control parameters is a
delicate balancing act.

Our main goal is to determine the optimal control parame-
ters that minimize the probability of transitions away from the
desirable equilibrium. In other words, the stationary probabil-
ity density function (PDF) of the controlled system should be
unimodal and concentrated around the desirable equilibrium.
In principle, the optimal control parameters can be determined
by direct Monte Carlo simulations of the controlled system.
However, these simulations are computationally expensive
and therefore impractical.

Here we propose a series of approximations that facilitates
a parsimonious estimation of the stationary response PDF of
the controlled system. This in turn allows us to sweep the
control parameter space and determine the optimal control
parameters in a computationally inexpensive manner.

Figure 1 summarizes the program of this paper, which we
now briefly outline.

(1) Time-delay feedback control: The uncontrolled system
is described by a stochastic differential equation (SDE) driven
by colored noise. To mitigate the rare transitions, we add
a time-delay feedback control to the SDE. As a result, the
controlled system is a stochastic delay differential equation
(SDDE).

(2) Small delay approximation: Assuming that the control
delay is relatively small, we use the Taylor expansion of the
control term to approximate this SDDE with an appropriate
SDE.

(3) Current-time approximation and nonlinear Fokker-
Planck: The approximating SDE is still driven by colored
noise, and therefore its PDF evolution is described by a
nonclosed, stochastic Liouville equation (see, e.g., Ref. [28,
Sec. III.D]). Our second approximation replaces the stochastic
Liouville equation with a nonlinear Fokker-Planck equation in
closed form.

(4) Fixed-point iterations for the stationary PDF: The
stationary solution of the nonlinear Fokker-Planck equation is
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FIG. 1. Summary of the program followed in this paper.

known for one-dimensional SDEs. However, this is an implicit
solution as it depends on the response moment of the system,
which itself depends on the stationary PDF. We devise a
rapidly converging iterative algorithm in order to estimate the
stationary PDF and the response moment simultaneously.

The above series of approximations allow for estimating
the stationary response PDF in an inexpensive manner which
in turn enables us to determine the optimal control param-
eters parsimoniously. As we show with detailed numerical
simulations, in spite of several approximations, the estimated
PDFs agree remarkably well with the true PDFs obtained from
Monte Carlo simulations.

One of the main contributions of the present work is the de-
velopment of a new one-dimensional nonlinear Fokker-Planck
equation whose stationary solution can be easily determined,
and constitutes a fairly accurate approximation of the sta-
tionary response PDF of a scalar SDE under colored noise
excitation. For additive noise excitation, a similar nonlinear
Fokker-Planck equation was derived by Mamis et al. [29];
here we generalize the equation to the case of multiplicative
stochastic excitations (Sec. IV A).

The remainder of this paper is organized as follows. In
Sec. II we describe the setup of the problem and review some
mathematical preliminaries. In Sec. III we introduce the time-
delay feedback control and discuss its effect on the system.
In Sec. IV we derive the nonlinear Fokker-Planck equation,
devise an iterative algorithm to approximate its stationary so-
lution, and discuss how it enables us to determine the optimal
control parameters. Section V contains our numerical results.
We discuss two examples: a stochastic system driven by ad-
ditive noise (Sec. V A) and an SDE arising in optical lasers
which is driven by multiplicative noise (Sec. V B). Finally, we
present our concluding remarks in Sec. VI.

II. PRELIMINARIES AND SETUP

A. Uncontrolled stochastic dynamical systems

Dynamical systems, driven by a potential and under ran-
dom noise excitations, can be described by multidimensional
stochastic differential equations (SDEs) of the form

dX (t )

dt
= −∇V (X (t )) + σ(X (t ))ξ(t ), X (t0) = x0, (1)

where X (t ) ∈ Rn is the stochastic process of the system’s state
at time t , V ,Rn → R is the potential function, ξ(t ) ∈ Rm is
the noise excitation, and σ(x) ∈ Rn×m is the noise intensity. If
the matrix σ is a constant, independent of x, the excitation is
called additive; whereas in the general case of state-dependent
function σ(x), the excitation is called multiplicative.

It is often assumed that the noise ξ(t ) is the standard mul-
tidimensional Gaussian white noise ξWN(t ), with independent
components, zero mean value and two-time autocorrelation
matrix

CWN
ξ (t1, t2) = E{ξWN(t1)[ξWN(t2)]T } = I δ(t1 − t2), (2)

where E[·] is the expected value, the T superscript denotes the
matrix transpose, I is the m × m identity matrix, and δ(t1 −
t2) is Dirac’s delta function. White noise ξWN(t ) is the formal
time derivative of the standard Wiener process [26,27].

Stochastic systems driven by white noise excitation have
been studied extensively, with the development of both Itō
calculus [30] for solving SDEs, and the formulation of
corresponding Fokker-Planck equation [31]. Fokker-Planck
equation governs the system’s response probability density
function p(x, t ), defined so that probability P (X (t ) ∈ S ) =∫
S p(x, t )dx for any Lebesgue-measurable set S ⊂ RN .

B. Shaping filters

The description of environmental noises as white is not
realistic. This can be easily seen by calculating the Fourier
transform of its autocorrelation, which results in a constant,
diagonal power spectrum matrix with infinite bandwidth (see
Refs. [26, Sec. 3.2] and [32, Sec. 1.4.2]). A more realistic
noise can be obtained by using shaping filters [27,33]. Shaping
filters are SDEs with white noise input, whose response is a
colored noise, i.e., a smoothly correlated stochastic process
with a prescribed spectrum, or equivalently, a prescribed au-
tocorrelation function. Following Ref. [27, Sec. 5.4.2], we
express a shaping filter as the general nonlinear SDE,

dξ(t )

dt
= α(ξ(t )) + β(ξ(t ))ξWN(t ), (3)

where α:Rm → Rm and β:Rm → Rm×m are prescribed drift
and diffusion functions, respectively. The filters commonly
used in applications are linear in the sense that the drift and
diffusion are linear functions [34–37].

For instance, the Ornstein-Uhlenbeck (OU) process is ob-
tained when α(ξ(t )) = −Aξ(t ) and β(ξ(t )) = B, with A, B
being constant matrices. If all eigenvalues of drift matrix A
have positive real parts, the stationary two-time autocorrela-
tion function of OU process is the m × m matrix [32, Sec.
4.4.6]

COU
ξ (t1, t2) =

{
e−A(t1−t2 )�, t1 > t2,
�e−AT (t2−t1 ) t1 < t2,

(4)

where � is the stationary OU covariance matrix, given by the
algebraic Lyapunov equation

A�T + �A = BBT . (5)

An important special case is the multidimensional OU noise
with independent components, for which both drift and
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diffusion matrices A, B are equal to the diagonal matrix

A = B = diag
[
1/s(1)

cor, . . . , 1/s(m)
cor

]
, (6)

where s(�)
cor is the correlation time of the �th OU component.

It is easy to see that, under Eq. (6), OU autocorrelation (4)
simplifies to

COU
ξ (t1, t2) = diag

[
1

2s(1)
cor

exp

(
−|t1 − t2|

s(1)
cor

)
, . . . ,

1

2s(m)
cor

× exp

(
−|t1 − t2|

s(m)
cor

)]
. (7)

Henceforth, OU noise with autocorrelation (7) will be
called the standard multidimensional OU noise. Since
(1/ε) exp(−|t1 − t2|/ε) is a nascent delta function [38, Sec.
6.6], standard OU autocorrelation (7) tends to white noise au-
tocorrelation (2) for max{s(1)

cor, . . . , s(m)
cor } → 0. Thus, standard

OU colored noise tends to white noise when all its correlation
times go to zero.

Note that, by considering the system consisting of the
original SDE (1) and shaping filter SDE (3), we obtain a mul-
tidimensional augmented SDE. Therefore, the original SDE
excited by colored noise is replaced by a higher dimensional
SDE excited by white noise. However, unlike the original
SDE (1), the drift term [−∇V (X ),α(ξ)]T in the augmented
SDE cannot always be expressed as the gradient of a potential
function.

III. CONTROLLED STOCHASTIC DYNAMICAL SYSTEMS

In the absence of noise, the minima of the potential V are
stable equilibria of system (1). We assume that one of these
equilibria is desirable and denote its position with xa. All other
equilibria are undesirable or “bad” and are denoted by xb. Ide-
ally, we would like the system to evolve in the vicinity of the
desirable equilibrium xa. However, the presence of noise ξ (t )
enables rare transitions away from the desirable equilibrium
towards an undesirable equilibrium xb. Since these transitions
can have catastrophic consequences, we would like to design
a simple control strategy that mitigates transitions away from
the desirable equilibrium xa.

In order to be able to suppress rare transitions away
from xa, we add the linear, time-delay feedback control term
−a[X (t − τ ) − x̂] to the original SDE (1). This results in the
controlled stochastic delayed differential equation (SDDE)
[25]

dX (t )

dt
= −∇V (X (t )) − a[X (t − τ ) − x̂] + σ(X (t ))ξ(t ),

(8)
supplemented by the appropriate initial condition; X (t ) =
x0(t ), for t ∈ [−τ, 0]. In the linear control term, a is the
control gain, τ > 0 is the time delay, and x̂ is the shift cho-
sen in order to suppress transitions away from the desirable
equilibrium xa in the controlled system response.

We chose this linear delayed feedback as control term
because it is easy to implement and does not give rise to
additional nonlinearities in the dynamical system. This control
strategy has been widely employed in the stabilization of
deterministic systems (see, e.g., Refs. [39,40]). Also, there is
a practical reason why we use the delayed response X (t − τ )

in the control term, instead of X (t ); the delay τ models the
inevitable lag between state measurements and control actua-
tion.

In Ref. [25] where the control of SDEs under white noise
was studied, x̂ was chosen equal to the desirable equilibrium
xa. However, in the colored excitation case, the choice of x̂ is
not so straightforward. This is due to the appearnce of peak
drift phenomenon, which will be discussed at length in Secs.
V A and V B. This means that, in order to be able to suppress
the peak drift, we choose x̂ to be in the vicinity of xa, but not
exactly equal to xa. For this, in our analysis, we do not assume
that x̂ and xa coincide.

By confining ourselves to the small time delay regime,
0 < τ � 1, the delayed term X (t − τ ) in SDDE (8) can be
approximated by a linear Taylor expansion with respect to τ :

X (t − τ ) = X (t ) − τ Ẋ (t ) + O(τ 2). (9)

By neglecting O(τ 2) terms, this gives rise to the approximat-
ing SDE

(1 − aτ )
dX (t )

dt
= −∇Ṽ (X (t )) + σ(X (t ))ξ(t ), (10)

where Ṽ (x) is the effective potential, defined as

Ṽ (x) = V (x) + a

2
(x − x̂)2. (11)

Therefore, the control modifies the effective potential of the
system. The following theorem shows that the control also
effectively modifies the filter producing the colored noise
excitation.

Theorem 1 (The rescaled approximating SDE under gen-
eral colored noise). Consider the system consisting of the
approximating SDE (10) and noise filter SDE (3). Defining
the rescaled time s = t/(1 − aτ ), the SDE system can be
expressed equivalently as

dX (s)

ds
= −∇Ṽ (X (s)) + σ(X (s))ξ(s), (12)

dξ(s)

ds
= (1 − aτ )α(ξ(s)) + √

1 − aτβ(ξ(s))ξWN(s), (13)

where ξWN(s) is a standard white noise.
Proof. See Appendix A. �
The implications of this theorem become clear if we as-

sume ξ (t ) is the standard OU noise excitation as discussed
in Sec. II B. Therefore, in the following corollary, we use the
above general result in order to obtain the rescaled approxi-
mating SDE for the case of standard OU noise excitation.

Corollary 1 (The rescaled approximating SDE under stan-
dard OU noise). For the case of standard OU noise excitation
with autocorrelation (7), approximating SDE (10) is equiva-
lent to the rescaled SDE:

dX (s)

ds
= −∇Ṽ (X (s)) + σ̃(X (s))̃ξ

OU
(s), (14)

where effective noise intensity is given by

σ̃(x) = σ(x)√
1 − aτ

, (15)
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and ξ̃
OU

(s) is the rescaled standard OU noise with correlation
times

s̃(�)
cor = s(�)

cor

1 − aτ
, � = 1, . . . , m. (16)

Proof. This follows from a direct application of
Theorem 1; see Appendix B for details. �

Remark 1. Thus, the effects of control on an SDE excited
by standard OU noise are the following:

(1) The control term modifies the potential V (x) of the
original SDE to effective potential Ṽ (x), given by Eq. (11).
Since value x̂ is equal or in the vicinity of desirable equi-
librium xa, the term (a/2)(x − x̂)2 deepens the potential well
around xa, and therefore hinders escapes away from it.

(2) The control also intensifies noise, since the noise in-
tensity is multiplied by the factor 1/

√
1 − aτ [see Eq. (15)].

This effect is antagonistic to the stabilization around xa, since
higher noise levels can result in transitions away from the
desirable equilibrium. This increase in effective noise inten-
sity was first reported by Guillouzic et al. [41] and later
rediscovered by Farazmand [25] using a different approach.

(3) Finally, the control increases correlation times of stan-
dard OU noise by a factor of 1/(1 − aτ ); see Eq. (16). This
increase in the noise correlation time renders the white noise
approximation even more inapplicable to the controlled SDE
case.

Remark 2 (The limiting case of white noise excitation). As
we have mentioned in Sec. II B, standard OU noise tends to
white noise when its correlation times go to zero. Thus, for
max{s(1)

cor, . . . , s(m)
cor } → 0, rescaled approximating SDE (14)

results in

dX (s)

ds
= −∇Ṽ (X (s)) + σ̃(X (s))̃ξ

WN
(s), (17)

which is the rescaled approximating SDE for the white noise
excitation case obtained in Ref. [25].

While the above results describe the effects of feedback
delay control on multidimensional stochastic dynamical sys-
tems, we shall focus, for the rest of the present work, on
the scalar case. The list of equations and parameters for the
control of the scalar SDE is summarized as follows.

Uncontrolled SDE:

dX (t )

dt
= −V ′(X (t )) + σ (X (t ))ξ (t ). (18)

Scalar OU noise excitation:

COU
ξ (t1, t2) = 1

2scor
exp

(
−|t1 − t2|

scor

)
. (19)

Controlled SDDE:

dX (t )

dt
= −V ′(X (t )) − a(X (t − τ ) − x̂) + σ (X (t ))ξOU(t ).

(20)
Approximating SDE:

(1 − aτ )
dX (t )

dt
= −Ṽ ′(X (t )) + σ (X (t ))ξOU(t ), (21)

with Ṽ (x) = V (x) + (a/2)(x − x̂)2.

Rescaled approximating SDE:

dX (s)

ds
= −Ṽ ′(X (s)) + σ̃ (X (s))̃ξOU(s), (22)

with s = t/(1 − aτ ), σ̃ (x) = σ (x)/
√

1 − aτ , and s̃cor =
scor/(1 − aτ ).

The reason for choosing a scalar SDE is that, in this case,
the stationary PDF is readily available from the solution of
either the classical or the nonlinear Fokker-Planck equations,
as we will see in Sec. IV. Thus, for scalar SDE (18), we can
present as well as show the validity of our methodology for
mitigating rare events, without the need for a numerical solver
of the nonlinear Fokker-Planck equation.

IV. DETERMINING THE CONTROL PARAMETERS

The optimal values of the control parameters (a, τ, x̂), can
be determined by direct Monte Carlo simulations. To avoid
such computationally expensive simulations, we determine
the optimal control parameters by studying the stationary
response PDF of the system. In Sec. IV A we first discuss
the nonlinear Fokker-Planck equations which approximate the
PDF evolution of an SDE excited by colored noise. Subse-
quently, in Sec. IV B we devise an iterative algorithm for
obtaining the stationary PDF of the nonlinear Fokker-Planck
equation.

A. Nonlinear Fokker-Planck equation

It is well established (see, e.g., Ref. [32, Chap. 5]) that the
evolution of response PDF p(x, t ) of SDE (18) under white
noise excitation, ξ (t ) = ξWN(t ), is governed by the classical
one-dimensional Fokker-Planck equation,

∂ p(x, t )

∂t
= ∂

∂x

{[
V ′(x) − 	

2
σ ′(x)σ (x)

]
p(x, t )

}

+ 1

2

∂2

∂x2
[σ 2(x)p(x, t )]. (23)

Remark 3 (The Wong-Zakai correction). In the Fokker-
Planck equation (23), the drift coefficient is augmented with
the term (1/2)σ ′(x)σ (x), which is the Wong-Zakai correc-
tion, modeling the difference between the Itō (	 = 0) and
Stratonovich (	 = 1) interpretations of SDEs under white
noise [42,43]. Since the Wong-Zakai correction depends on
σ ′(x), the Itō and Stratonovich Fokker-Planck equations coin-
cide in the case of additive white noise excitation, where σ is
constant.

This convenient description, via a single one-dimensional
partial differential equation of drift-diffusion type, is not read-
ily applicable to SDEs under colored noise excitation. As
discussed in Sec. II B, using shaping filters, one can still
express the SDE driven by colored noise as an equivalent
multidimensional augmented SDE driven by white noise.
However, the drift term in the augmented SDE is no longer
the gradient of a potential, and consequently, the closed-form
solution of the resulting Fokker-Planck equation is generally
unknown [44–46].

In the present work, we take an alternative path; we use
an approximate Fokker-Planck-like equation corresponding
to SDE (18) driven by colored noise, without resorting to
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shaping filters. This approximate Fokker-Planck equation is
easily solvable and allows us to determine the appropriate
control parameters without resorting to computationally ex-
pensive Monte Carlo simulations.

There exists an extensive body of work devoted to deriving
approximate Fokker-Planck equations for SDEs excited by
colored noise (see, e.g., Refs. [5,28,47–51], to mention a few
main references). An approximate Fokker-Planck equation
that is still used in applications is the one proposed by Hänggi
and his team [28,52]. Recently, Mamis et al. [29] generalized
Hänggi’s equation by incorporating higher-order corrections
and therefore obtaining more accurate response probability
densities. Here we generalize the derivation of Ref. [29] to
include the more general case of multiplicative excitation.

The approximate, Fokker-Planck-like, response PDF evo-
lution equations that correspond to SDE (18), with differen-
tiable and nonvanishing [σ (x) �= 0] noise intensity and twice
continuously differentiable potential V (x), and under Gaus-
sian colored noise excitation ξ (t ) with a general, nonsingular
autocorrelation function Cξ (t, s), read

∂ p(x, t )

∂t
= ∂

∂x
{[V ′(x) − σ ′(x)σ (x)AM (x, t ; p)]p(x, t )}

+ ∂2

∂x2
[σ 2(x)AM (x, t ; p)p(x, t )]. (24)

The coefficient AM is defined, for M = 0 or 2, as

AM (x, t ; p) =
M∑

m=0

Dm(t ; p)

m!
{ζ (x) − E[ζ (X (t ))]}m, (25)

where

ζ (x) = −σ (x)

(
V ′(x)

σ (x)

)′
(26)

and

Dm(t ; p) =
∫ t

t0

Cξ (t, t1) exp
∫ t

t1

E[ζ (X (u))]du(t − t1)mdt1.

(27)
The derivation of Eq. (24) from the stochastic Liouville equa-
tion [28, Sec. III.D] is performed in Appendix C. For M = 0,
Eq. (24) results in the usual Hänggi’s equation, while, for M =
2, an alternative evolution equation is obtained. As shown
in Sec. V, the case with M = 2 consistently renders more
accurate results than Hänggi’s M = 0 approximation.

The main difference between PDF evolution equations
given by (24) and the classical Fokker-Planck equation (23)
is that, in Eq. (24), coefficient AM depends not only on state
variable x and time t , but also on the unknown response PDF
p. More specifically, AM depends on the time history of the
response moment

E[ζ (X (t ))] =
∫
R

ζ (x)p(x, t ) dx, (28)

through Eqs. (25) and (27). Such equations are commonly
referred to as nonlinear Fokker-Planck equations [53].

Considering the Gaussian colored excitation ξ (t ) of the
standard OU noise with autocorrelation (19), the coefficients

Dm read

DOU
m (t ; p) = 1

2scor

∫ t

t0

exp
(
− t − t1

scor

)

× exp

(∫ t

t1

E[ζ (X (u))]du

)
(t − t1)m dt1. (29)

From this point forward, ξ (t ) will denote OU noise, unless
explicitly stated otherwise.

Remark 4 (Compatibility with time rescaling of corollary
1). Straightforward algebraic manipulations show that, by
rescaling time s = t/(1 − aτ ) in the nonlinear Fokker-Planck
equation (24) corresponding to approximating controlled SDE
(21) under OU noise, the nonlinear Fokker-Planck equation
corresponding to rescaled SDE (22) is obtained.

Corollary 2 (Compatibility with classical Fokker-Planck
equation). In the limiting white noise case scor → 0,
the nonlinear Fokker-Planck equation (24) coincides with
Stratonovich’s Fokker-Planck equation (23) with 	 = 1.

Proof. Applying a change of variable, Eq. (29) is expressed
equivalently as

DOU
m (t ; p) = 1

2

∫ t−t0
scor

0
exp(−v)qm(vscor ) dv

≡ 1

2

∫ +∞

0
exp (−v)qm(vscor )I(

0,
t−t0
scor

)(v) dv,

(30)

with qm(s) := exp(
∫ s

0 E[ζ (X (u))]du)sm, and I(0,
t−t0
scor

)(v) being

the indicator function that takes the value 1 for v ∈ (0, t−t0
scor

),
and 0 otherwise. Applying the dominated convergence theo-
rem to (30), we obtain

lim
scor→0

DOU
m (t ; p) = qm(0)

2

∫ +∞

0
exp (−v)dv = qm(0)

2
.

(31)
Since q0 = 1 and q1 = q2 = 0, we obtain D0 = 1/2, D1(t ) =
D2(t ) = 0 after taking the limit scor → 0, resulting in AM =
1/2. �

Corollary 2 is compatible with previous results; that is, if
the white noise excitation is approximated by a colored noise
with a very short but nonzero correlation time, Stratonovich’s
interpretation of the SDE should be applied (see, e.g., Refs.
[54, p. 128] and [26, p. 216]).

B. Stationary distribution

In this section we discuss on the stationary response PDF
p0(x), which is invariant in time and describes the long-term
evolution of the SDE response process. This stationary PDF is
immensely helpful for determining the optimal control param-
eters, without resorting to computationally expensive Monte
Carlo simulations.

The following lemma determines the stationary form of the
nonlinear Fokker-Planck equation (24) for OU excitation.

Lemma 1. Assume that response moment R := E[ζ (X (t ))]
attains a finite time-independent value, satisfying the
condition

R <
1

scor
. (32)
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Then the stationary nonlinear Fokker-Planck equation (24) for
SDE (18) under OU excitation reads

d

dx
{[V ′(x) − σ ′(x)σ (x)AM (x, R)]p0(x)}

+ d2

dx2
[σ 2(x)AM (x, R)p0(x)] = 0, (33)

where the stationary coefficient AM (x, R) :=
limt→∞ AM (x, t ; p) is given by

AM (x, R) = 1

2

M∑
m=0

[scor (ζ (x) − R)]m

(1 − scorR)m+1
. (34)

Proof. It is easy to see that, under condition (32), DOU
m

stationary values are finite and can be calculated from their
definition (27) as t → ∞. By substituting this result into
Eq. (25), relation (34) is obtained. �

Remark 5 (Positivity of diffusion coefficient). For (33) to
be a valid stationary Fokker-Planck-like equation, its dif-
fusion coefficient σ 2(x)AM (x, R) should be positive. For
Hänggi’s stationary equation, M = 0, we have A0(R) =
1/[2(1 − scorR)] which is always positive under condition
(32). For M = 2, A2(x, R) can be written equivalently as

A2(x, R) = 1

2(1 − scorR)3

[
3s2

corR2 − 3scor (scorζ (x) + 1)R

+ s2
corζ

2(x) + scorζ (x) + 1
]
. (35)

On the right-hand side of Eq. (35), the fraction is always
positive under condition (32). The other factor is identified
as a quadratic polynomial with respect to R. By calculating its
discriminant, � = −3s2

cor[scorζ (x) − 1]2 � 0, we see that this
polynomial always has the sign of coefficient 3s2

cor . Therefore,
the diffusion coefficient is always positive. Note that posi-
tivity of the diffusion coefficient is not guaranteed in other
approximate stationary PDF equations (see, for example, the
Fokker-Planck-like equation derived under the small correla-
tion time approximation in Refs. [55] and [26, Sec. 8.6].)

Corollary 3 (Solution to stationary nonlinear Fokker-
Planck equations). The solution to the stationary Fokker-
Planck-like equation (33) is given by

p0(x, R) = C(R)

|σ (x)|AM (x, R)
exp

(
−

∫ x V ′(y)

σ 2(y)AM (y, R)
dy

)
,

(36)

where
∫ x dy denotes the antiderivative and C(R) is the nor-

malization factor, so that
∫
R p0(x, R) dx = 1.

Proof. See Refs. [32, Sec. 5.2.2] and [26, Sec. 6.1]. �
We note that Eq. (36) is an implicit closed-form solution

for the stationary nonlinear Fokker-Planck equation, since
p0(x, R) depends on the response moment R, which remains to
be determined. Determining R in turn requires the knowledge
of the stationary PDF p0. This is in contrast with the classical
Fokker-Planck equation, where AM = 1/2 is independent of
R, and therefore Eq. (36) constitutes its explicit closed-form
solution. Thus, the dependence of response PDF p0 on a
response moment R is a property arising from the colored
excitation.

Nonetheless, Definition 1 below establishes an iterative
scheme for calculating the response moment R and therefore
the stationary PDF P0.

Definition 1 (The self-consistency equation for R). Using
the definition of the response moment,

R =
∫
R

ζ (x)p0(x, R) dx, (37)

and the expression (36) for p0(x, R), we obtain the self-
consistency equation [53],

R = I (R), (38)

where

I (R) =
∫
R

ζ (x)
|σ (x)|AM (x,R) exp

( − ∫ x V ′(y)
σ 2(y)AM (y,R) dy

)
dx∫

R
1

|σ (x)|AM (x,R) exp
( − ∫ x V ′(y)

σ 2(y)AM (y,R) dy
)
dx

. (39)

Therefore, the correct value of the response moment R is
a fixed point of the map I : R → R. If the map I is a con-
traction, the moment R can be calculated through the iterative
scheme,

Rn+1 = I (Rn), n = 0, 1, 2, . . . , (40)

so that R = limn→∞ Rn. We calculate an initial estimation R0

from the explicit solution (36) for AM = 1/2 of the respec-
tive classical Fokker-Planck equation. Our iteration scheme
is summarized in Algorithm 1. As seen in the numerical
examples studied in Sec. V, this iteration scheme is rapidly
convergent. For instance, for an error tolerance εtol = 10−4,
the scheme converges within four iterations on average.

For a given set of control parameters (a, τ, x̂), the sta-
tionary PDF of the approximating controlled SDE (22) can
be readily computed through Algorithm 1. Examining the re-
sponse PDF p0 determines whether the control has sufficiently
suppressed transitions away from the desirable equilibrium xa.
The optimal control parameters should result in a controlled
response PDF that is unimodal and concentrated around xa.
Since, as opposed to Monte Carlo simulations, computing the
response PDF by Algorithm 1 is computationally inexpensive,

Algorithm 1 Iteration scheme for R

1. Choose a small tolerance εtol.
2. Calculate initial R by substituting solution (36) with AM = 1

2 in
response moment definition (37)

3. Determine AM (x) by substituting initial R in Eq. (34)
4. Calculate the update Rupd = I(R) using self-consistency

equation (38)

while |R − Rupd| > εtol

5. Set R = Rupd

6. Update AM (x) by substituting R in Eq. (34)
7. Calculate the next update Rupd = I(R) using self-consistency

equation (38)

end while
8. Determine stationary PDF p0(x) using solution (36) and

R = Rupd.
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FIG. 2. Control of SDE (42) with σ = 1.2, scor = 0.25, x̂ = 1, a = 1, and increasing values of delay τ . The uncontrolled bistable response
is shown in (a). The controlled response is shown in (b) for τ = 0.1 (σ̃ = 1.26, s̃cor = 0.28), in (c) for τ = 0.2 (σ̃ = 1.34, s̃cor = 0.31), and in
(d) for τ = 0.4 (σ̃ = 1.55, s̃cor = 0.42).

the control parameter space can be swept to determine the
optimal control parameters.

V. NUMERICAL RESULTS

In this section, we present two numerical examples demon-
strating the efficacy of the proposed time-delay feedback
control. In Sec. V A we present the results for a benchmark
double-well potential driven by additive colored noise. Sec-
tion V B deals with a reduced-order model of an optical laser
which is driven by a multiplicative colored noise.

In this section, approximate stationary PDFs given by (36),
for M = 0 (Hänggi’s approximation) and for M = 2 (our
approximation), are compared to PDFs obtained from direct
Monte Carlo (MC) simulations. To obtain the Monte Carlo re-
sults, the uncontrolled SDE and the corresponding controlled
SDDE are augmented with the filter SDE for scalar OU noise,
resulting in a two-dimensional SDE or SDDE driven by white
noise (see the discussion on augmented systems in Sec. II B).
Trajectories of the resulting augmented systems are generated
using the predictor-corrector scheme proposed by Cao et al.
[56]. For the construction of each PDF from Monte Carlo sim-
ulations, 106 realizations of the respective stochastic equation
are used.

A. An additively excited bistable system

As a first example, we consider the SDE with the symmet-
ric bistable potential

V (x) = x4

4
− x2

2
, (41)

whose wells are located at x = ±1. The resulting SDE, driven
by additive OU excitation ξ (t ) reads

dX (t )

dt
= −X 3(t ) + X (t ) + σξ (t ). (42)

We designate the equilibrium located at xa = +1 as the desir-
able equilibrium, and xb = −1 as the undesirable one. In this
case, the controlled SDDE (20) is given by

dX (t )

dt
= −X 3(t ) + X (t ) − a[X (t − τ ) − x̂] + σξ (t ). (43)

The effective potential Ṽ (x) is given for this case by

Ṽ (x) = V (x) + a

2
(x − x̂)2. (44)

By calculating its derivative, we see that the wells of effective
potential are the roots of

Ṽ ′(x) = x3 − (1 − a)x − ax̂ = 0. (45)
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For the control gain a = 1 and shift x̂ = xa = 1, the effective
potential Ṽ (x) has a single well at x = 1. Figure 2 shows the
corresponding stationary PDF for the control parameters {a =
1, x̂ = 1} and several values of the delay time τ .

The correlation time scor of the OU noise and the time
delay τ of the control are theoretically arbitrary. However,
in applications, these timescales are often shorter than the
internal timescale of the system. We derive a characteristic
timescale for system (42) based on its Lyapunov time. To
this end, we linearize (42) for σ = 0 around the desirable
equilibrium xa = 1, to obtain the equation of variations,

dδX (t )

dt
= −V ′′(1)δX (t ) = −2δX (t ), δX (t0) = δX0,

(46)
for the perturbation δX , which admits the exact solution
δX (t ) = δX0e−2(t−t0 ). Therefore, the Lyapunov exponent is
λ = 2, leading to the characteristic Lyapunov time η = λ−1 =
0.5. The timescale η denotes the typical time it takes for a
small perturbation to the equilibrium xa to decay. We allow
the correlation time of the OU noise to be at most equal
to the Lyapunov timescale η. More specifically, we present
our results for several values of the correlation time in the
interval scor ∈ [0.1, 0.5]. Similarly, the control delay time τ

is assumed to be strictly smaller than the characteristic time η.
However, we have to note that, while restricting scor to be

smaller that η is a plausible physical argument, this does not
imply that our response PDF approximation fails for larger
values of correlation time. For the validity range of the ap-
proximation, see also the discussion in Ref. [29, Sec. 4].

In the following subsections, we investigate various aspects
of the controlled system and compare our approximate sta-
tionary PDF approach to the direct Monte Carlo simulations.
Some of the discussed phenomena, such as peak drift, are
unique to systems driven by colored noise and are not present
in the white noise case.

1. Peak drift phenomenon

In Fig. 2 the PDFs obtained by Monte Carlo simulations of
both the uncontrolled SDE and the controlled SDDE, exhibit
the so-called peak drift phenomenon, which had also been
reported in, e.g., Refs. [28, p. 294] and [29, Remark 4.1].
Peak drift refers to the fact that the response PDF maxima are
not observed at the wells of the potential V (x), but they are
slightly shifted. This phenomenon is only possible under col-
ored noise excitation and is not present in the case of additive
white noise excitation. For white noise, we have AM = 1/2
in the PDF (36), and therefore we can easily establish the
equivalence,

extrema of Ṽ (x) ⇔ extrema of p0(x). (47)

Furthermore, since coefficient A0, defined by Eq. (34), is
x-independent, we can easily see that equivalence (47) is
also true for Hänggi’s stationary PDF (36) for M = 0. Thus,
Hänggi’s approximation of the stationary PDF p0 fails to
capture the observed peak drift phenomenon. This finding is
also corroborated in Fig. 2.

On the other hand, the critical points of our approximating
stationary PDF (36) for M = 2 are calculated as the roots of

equation

Ṽ ′(x) + σ̃ 2Ã′
2(x, R) = 0, (48)

where ÃM (x, R) is defined by (34) for the effective quantities
Ṽ (x), σ̃ , and s̃cor . Since A′

2 is generally nonzero, the peak
of the stationary PDF does not necessarily coincide with the
minima of the potential. Equation (48) is the first analytic ev-
idence of equivalence (47) not being true for additive colored
excitations.

In the case of bistable potential (41), Eq. (48) gives the
depressed cubic equation,

c3(R)x3 − c1(R)x − ax̂ = 0, (49)

where

c1(R) = (1 − a) + 3σ̃ 2̃scor

(1 − s̃corR)2

[
1 + 2̃scor (1 − a − R)

1 − s̃corR

]
,

(50a)

c3(R) = 1 + 18σ̃ 2̃s2
cor

(1 − s̃corR)3
. (50b)

Note that Eq. (49) also holds for the uncontrolled case, a =
0, in which the tilded quantities are substituted by the untilded
ones. Thus, a first straightforward consequence of (49) is that,
for the uncontrolled case, the extrema of the bimodal response
PDF are easily determined by the local minimum x0 = 0, and
the maxima

x1,2 = ±
√√√√1 + 3σ 2scor

(1−scor R)2

[
1 + 2scor (1−R)

1−scor R

]
1 + 18σ 2s2

cor
(1−scor R)3

. (51)

As expected, in the white noise limit, scor = 0, Eq. (51) results
in x1,2 = ±1, and so no peak drift is observed. Therefore,
our approximating PDF, given by (36) with M = 2, allows
for a systematic study of the peak drift phenomenon, without
restoring to computationally expensive Monte Carlo simula-
tions.

Figure 3 shows the location of the peak of the stationary
PDF for various parameter values. We first observe that the
peak drift phenomenon is more pronounced in the bimodal
response PDF of the uncontrolled SDE than the unimodal PDF
of the controlled case. Also, increasing the noise intensity σ ,
as well as the time delay τ for the controlled case, increase
the peak drift. On the other hand, the dependence of peak
drift on the noise correlation time scor is not monotone. For
every pair of σ and τ , there is a value scor for which the peak
drift is maximized. For larger values of σ and τ , the value scor

resulting in maximum peak drift is lowered. We note that the
dependence of peak drift on the correlation time scor is also
briefly discussed in Ref. [28, Sec. VI.B].

2. Canceling the peak drift in the controlled system

The above discussion shows that if the control shift x̂ is
chosen to be equal to the desirable equilibrium, i.e., x̂ = xa,
the resulting controlled PDF does not peak at xa. Therefore,
the natural question is whether the control shift x̂ can be
chosen such that the peak drift is suppressed and the con-
trolled response PDF attains its maximum at the desirable
equilibrium xa. The answer is yes.
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FIG. 3. Contour plots of the peak x-coordinate for the uncontrolled and the controlled (a = 1, x̂ = 1) SDE (42), as predicted by (36) for
M = 2. The uncontrolled case is shown in (a), while the controlled one is shown in (b) for τ = 0.1, in (c) for τ = 0.2, and in (d) for τ = 0.4.
For the uncontrolled SDE, the response PDF is bimodal and symmetric around zero; therefore panel (a) shows the absolute value of the
x-coordinates of the two peaks.

Straightforward algebraic manipulations show that, in or-
der for the depressed cubic equation (49) to have xa as one of
its roots, we must have

x̂(R) = xa

a

[
c3(R)x2

a − c1(R)
]
, (52)

with coefficients c1(R) and c3(R) defined in (50). This control
shift depends on the response moment R; and consequently,
the effective potential also depend on R,

Ṽ (x, R) = V (x) + a

2
[x − x̂(R)]2. (53)

As a result, in the case of no peak drift control, the value x̂ is
a priori unknown, since it depends on the unknown response
moment R. Nonetheless, we can substitute effective potential
(53) into the function I (R) (39) of the right-hand side of
self-consistency equation (38). Thus, for the present case, we
specify I (R) into

I (R) = −
∫
R

Ṽ ′′(x,R)
ÃM (x,R)

exp
( − ∫ x 1

σ̃

Ṽ ′(y,R)
ÃM (y,R)

dy
)
dx∫

R
1

ÃM (x,R)
exp

( − ∫ x 1
σ̃

Ṽ ′(y,R)
ÃM (y,R)

dy
)
dx

. (54)

By substituting I (R) (54) in self-consistency equation (38),
and following the iterative Algorithm 1, we can calculate the
response moment R, and also the stationary response PDF.

For the first step of Algorithm 1, the initial estimation of
R is calculated for AM = 1/2 and x̂ = 1. Once the response
moment is found, we are also able to calculate the value of
appropriate control shift x̂(R) by (52).

Figure 4 shows the effectiveness of this procedure, re-
sulting in controlled stationary PDFs with their peaks at the
desirable equilibrium xa = 1. Note that the values of the con-
trol shifts x̂(R), required for canceling the peak drift, can be
significantly smaller than xa = 1.

3. Inflated tail in the controlled system

In Figs. 2 and 4(b), we observe another feature of the
controlled PDFs for systems excited by colored noise: the
appearance of an inflation in the negative tail of the stationary
PDF p0 for certain combinations of noise σ , scor , and control
parameters a, τ . Our approximate PDF with M = 2 accurately
captures the inflated tail, whereas Hänggi’s approximation
completely misses these features. The formation of the in-
flated tail is due to the emergence of two additional inflection
points in the negative tail of the unimodal controlled PDF. A
shown in Fig. 5, tail inflation can be suppressed by increasing
the control gain a. Recall that the gain a and the delay time
τ must satisfy aτ < 1. As a result, the control gain cannot be
arbitrarily large. Therefore, there is a delicate balance between
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FIG. 4. Control of SDE (42) with a = 1, scor = 0.2, τ = 0.1, σ = 0.8 in (a), and σ = 1.4 in (b), with x̂ = 1 (blue curves), and with peak
drift cancel (red curves). The x̂(R) in order to achieve peak drift canceling is calculated to 0.83 for (a), and 0.48 for (b). Stationary PDF
approximation (36) for M = 2 is plotted against the PDF obtained by Monte Carlo simulations of the respective SDDE, shown in plots by
circles.

canceling the peak drift and suppressing rare transitions. In
other words, given a control delay time τ , the gain a and the
shift x̂ should be chosen accordingly. Since our approximate
PDF approach quantifies the peak drift and the inflated tail,
without requiring any computationally expensive simulations,
the optimal control parameters can be readily identified by
sweeping the parameter space.

Such parameter investigation results are shown in Fig. 6,
for the case of σ = 1. These results can be reproduced easily
for any other value of noise intensity. In Fig. 6 we see that
for fixed values of scor and τ the response PDF is bimodal
for small control gain a values; this is the control failing to
suppress transitions to the undesirable equilibrium. By in-
creasing the value of a we first obtain a unimodal PDF with
inflated tail, and by further increase, a unimodal PDF with no

FIG. 5. Control of SDE (42) with σ = 1.4, scor = 0.2, τ = 0.1,
no peak drift control, and increasing gain a. Stationary PDF ap-
proximation (36) for M = 2 (solid curves) is plotted against the
PDF obtained by Monte Carlo simulations of SDDE (43), shown by
circles.

tail inflation. Also, for larger values of time delay τ , larger
values of a are required in order to obtain unimodal PDFs
or suppression of the inflated tails. Last, as in the peak drift
phenomenon (see Fig. 3), the dependence of PDF form on scor

is not monotone. We also observe that, for the case of control
with peak drift canceling, shown in Fig. 6(b), the values of a
needed for unimodal PDF or for no tail inflation, are larger.
Also, the dependence of separating surfaces on τ is more
pronounced.

B. An optical laser excited by multiplicative noise

A bistable SDE, arising in laser applications, is the model
associated with the electromagnetically induced transparency
in a three-level atomic system inside an optical cavity. Follow-
ing Ref. [57], the amplitude X (t ) of the transmitted intracavity
light intensity is governed by

dX (t )

dt
= Y − c1X (t ) + c2X 2(t ) − c3X 3(t ) + σX (t )ξ (t ),

(55)
where Y is the incident light intensity amplitude. The reduced
model (55) is derived from the wave equation for the complex
light intensity of the intracavity field, assuming rotating wave
and slowly varying approximations. The two mechanisms in
the wave equation that lead to the optical bistability are the
nonlinear absorption, and the nonlinear refraction due to Kerr
nonlinearity.

In this section, we use the same set of parameters consid-
ered in Ref. [57], i.e.,

Y = 292, c1 = 59.79, c2 = 3.19, c3 = 0.046. (56)

The corresponding potential is given by

V (x) = c3

4
x4 − c2

3
x3 + c1

2
x2 − Y x, (57)

which has two minima at xa = 42 (global) and xb = 7.69
(local), and a local maximum at x0 = 19.66 (see Fig. 7).
In SDE (55), the multiplicative excitation ξ (t ) models the
noisy detuning of the cavity. Although in Ref. [57] the white
noise excitation is used for convenience, the authors mention
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FIG. 6. Three regimes of the controlled stationary PDF as a function of control parameters and correlation time of the noise. The figure
corresponds to SDE (42) with σ = 1. In (a) x̂ = 1, and in (b) x̂ is chosen such that the controlled PDF peak is located at x = 1. In both figures,
the region below the blue surface contains the parameter combinations that result in a bimodal PDF, the region between the two surfaces
corresponds to unimodal PDFs with inflated tail, while the region above the green surface to unimodal PDFs with no inflated tail.

that colored OU noise should be used in order to have a
more realistic model. A similar emphasis on the relevance
of colored noise is raised in the supplemental material of
Ref. [58]. Therefore, here we consider the colored noise ξ (t )
obtained from the OU process. Our numerical results are
reported for the noise intensity σ = 2, which is close to the
noise intensities considered in Ref. [57]. Furthermore, we use
the correlation time scor = 0.02, determined from the lower
value of modulation frequency mentioned in the supplemental
material of Ref. [58].

For the control of SDE (55), we choose the high-intensity
equilibrium xa = 42 as the desirable one, so that the control
SDDE reads

dX (t )

dt
= Y − c1X (t ) + c2X 2(t ) − c3X 3(t )

+ a[X (t − τ ) − x̂] + σX (t )ξ (t ), (58)

with the effective potential defined as

Ṽ (x) = c3

4
x4 − c2

3
x3 + (c1 + a)

2
x2 − (Y + ax̂)x + a

2
x̂2.

(59)

FIG. 7. Bistable potential (57) for the set of parameters (56).

Remark 6 (Peak drift phenomenon in the multiplicative
case). As in the additive case, the critical points of p0 are
easily determined as the roots of the equation

Ṽ ′(x) + [σ̃ (x)ÃM (x, R)]′σ̃ (x) = 0. (60)

This implies that, for a multiplicatively excited SDE, equiv-
alence (47) between the wells of effective potential and
response PDF maxima does not hold even in the white noise
excitation case. More precisely, for the classical Fokker-
Planck case, AM = 1/2, Eq. (60) reads

c3x3 − c2x2 +
[

c1 + a + σ 2

2(1 − aτ )

]
x − (Y + ax̂) = 0.

(61)
Thus, in the multiplicatively excited case, the peak drift
phenomenon is observed for both white and colored noise
excitations.

For σ = 2 and x̂ = xa = 42, we choose a = 4 as the con-
trol gain. For these values, Eq. (61) has a single root, and thus
the controlled stationary PDF for white noise excitation is uni-
modal. Figure 8 shows that the control effectively eliminates
transitions to the undesirable equilibrium.

First, in Fig. 8(a), the bistable, uncontrolled response PDF
is shown. We observe that its highest peak is around the
local minimum (xb = 7.69) and not the global minimum (xa =
42) of the potential. This seemingly paradoxical observation
is due to the multiplicative nature of the excitation; the x-
dependent factor |σ (x)|−1 in the right-hand side of PDF form
(36) lowers the peak height around xa.

In Figs. 8(b), 8(c), and 8(d), several control delay times
τ are chosen. In each case, our approximating PDF (36)
with M = 2 closely resembles the stationary response PDF
obtained by direct Monte Carlo simulations. Furthermore, as
in the additive case (see Sec. V A), the inflated tail appears in
the controlled PDFs, which our approximating PDF captures
satisfactorily. On the other hand, Hänggi’s approximation
departs significantly from the Monte Carlo simulations and
completely misses the inflated tails.
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FIG. 8. Control of SDE (55) with x̂ = 42, a = 4, σ = 2, scor = 0.02, and increasing values of delay τ . The uncontrolled bistable response
is shown in (a). The controlled response is shown in (b) for τ = 0.02 (σ̃ = 2.09, s̃cor = 0.022), in (c) for τ = 0.05 (σ̃ = 2.24, s̃cor = 0.025),
and in (d) for τ = 0.08 (σ̃ = 2.43, s̃cor = 0.029).

Finally, we observe that, for the relatively large time delay
τ = 0.08 in Fig. 8(d), a second undesirable peak begins to
emerge around x � 10. As shown in Fig. 9, the tail inflation
disappears by further increasing the control gain to a = 10.

FIG. 9. Control of SDE (55) with σ = 2, scor = 0.02, for τ =
0.05 and increasing control gain a. Stationary PDF approximation
(36) for M = 2 (solid curves) is plotted against the PDF obtained by
Monte Carlo simulations of SDDE (58), shown by circles.

VI. CONCLUSIONS

We studied the mitigation of undesirable rare transitions in
multistable SDEs excited by colored noise. The mitigation is
achieved by a time-delay feedback control that turns the orig-
inal SDE into a SDDE. For small control delay τ , the SDDE
is approximated by an SDE. The approximating SDE reveals
two competing effects of the controller: (i) a stabilizing effect
by deepening of the potential near the desirable equilibrium
and (ii) a destabilizing effect by effectively increasing the
noise intensity.

In particular, for a scalar SDE excited by a colored OU
process, the controller effectively increases both noise inten-
sity σ (x) and correlation time scor by a factor of 1/

√
1 − aτ

and 1/(1 − aτ ), respectively. Here a is the control gain which
cannot be arbitrary large since as a approaches 1/τ , the effec-
tive noise intensity grows indefinitely. As a result, the control
parameters are not arbitrary and need to be chosen judiciously.

We proposed a parsimonious method for choosing the
optimal control parameters that guarantee the mitigation of
undesirable rare transitions. Our method relies on a nonlinear
Fokker-Planck equation that was recently derived by Mamis
et al. [29] for SDEs with additive noise. Here we generalized
this equation to the case of multiplicative noise. This nonlinear
Fokker-Planck equation governs the evolution of the response
PDF of a stochastic equation, and its stationary solution can
be estimated by a rapidly convergent iterative algorithm. As a
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result, we are able to sweep the control parameter space and
select the optimal control parameters, without requiring any
expensive Monte Carlo simulations.

We demonstrated the efficacy of our method on two ex-
amples: a bistable additively excited SDE, which serves as
a classical benchmark problem [5,28], and a multiplicatively
excited SDE modeling optical bistabilities in lasers [57,59]. In
each case, our approximate PDFs are in excellent agreement
with the true PDF of the controlled SDDE constructed by
direct Monte Carlo simulations. In particular, our method cap-
tures two features of the PDF that the widely used Hänggi’s
approximation [28] fails to predict. These are the peak drift
and the inflated tail of the stationary PDFs, as discussed in
Secs. V A 1 and V A 3.

There are two important directions for future work. The
first one is controlling multidimensional stochastic dynamical
systems excited by colored noise. This is in principle achiev-
able since the multidimensional analog of the scalar nonlinear
Fokker-Planck equations used here can be formulated; see,
e.g., Refs. [60,61]. The main difficulty in this direction is the
fact that analytical stationary solutions for multidimensional
nonlinear Fokker-Planck equations are often unavailable, even
for relatively simple systems such as stochastic oscillators
[43,62–64]. Thus, in the multidimensional case, an efficient
numerical solver has to be employed to approximate the
solution of the nonlinear Fokker-Planck equation. Whether
obtaining this numerical solution is less computationally ex-
pensive than the direct Monte Carlo simulations will be the
main question regarding the efficacy of our method in the mul-
tidimensional case. In any case, however, the formulation and
validation of accurate nonlinear Fokker-Planck equations will
be a useful semianalytic tool for the study of multidimensional
systems under colored noise excitation.

Another interesting direction is to derive the appropriate
nonlinear Fokker-Planck equations that correspond to the con-
trolled SDDE, without the small time-delay limitation. The
derivation of such equations is laborious yet feasible, with the
preparatory work concerning the relevant functional analysis
questions having already been performed [61].
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APPENDIX A: PROOF OF THEOREM 1

Assuming that aτ < 1, consider t as a function of rescaled
time s, so that t (s) = (1 − aτ )s. First, we define the stochastic
processes X (s) := X (t (s)) and ξ(s) := ξ(t (s)). Since dt =
(1 − aτ ) ds, approximating SDE (10) is expressed equiva-
lently as

dX (s)

ds
= dX (t )

dt
(1 − aτ ) = −∇Ṽ (X (s)) + σ(X (s))ξ(s),

(A1)
which is the desired rescaled approximating SDE (12). The
SDE for rescaled noise ξ(s) is derived from filter SDE (3)

as

dξ(s)

ds
= dξ(t )

dt
(1 − aτ )

= (1 − aτ )α(ξ(s))

+ (1 − aτ )β(ξ(s))ξWN(t ). (A2)

In Eq. (A2), the white noise ξWN(t ) should also be trans-

formed to the rescaled time s. Thus, we introduce ξ̃
WN

(s) =√
1 − aτξWN(t ) and show that it is a standard Gaussian white

noise. By its definition, ξ̃
WN

(s) is a Gaussian, zero-mean pro-
cess, and its autocorrelation is calculated to

E[̃ξ
WN

(s1){̃ξWN
(s2)}T ]

= (1 − aτ )E[ξWN(t1){ξWN(t2)}T ] = I(1 − aτ )δ(t1 − t2)

= I(1 − aτ )δ[(1 − aτ )(s1 − s2)] = Iδ(s1 − s2),

with the last step employing the delta function scale property.

This proves that ξ̃
WN

(s) is a standard white noise, and its
substitution in rescaled filter SDE (A2) reads

dξ(s)

ds
= (1 − aτ )α(ξ(s)) + √

1 − aτβ(ξ(s))̃ξ
WN

(s). (A3)

By omitting the tilde from rescaled white noise, we obtain the
desired rescaled filter SDE (13).

APPENDIX B: PROOF OF COROLLARY 1

By applying Theorem 1, the system consisting of approx-
imating SDE (10) and SDE filter producing the standard OU
noise with autocorrelation (7), is rescaled to

dX (s)

ds
= −∇Ṽ (X (s)) + σ(X (s))X (s),

dξ(s)

ds
= −(1 − aτ )Aξ(s) + √

1 − aτAξWN(s), (B1)

where A = diag[{1/s(�)
cor}m

�=1]; see Eq. (6). By introducing
ξ̃(s) = √

1 − aτξ(s), rescaled SDE (B1) is expressed equiv-
alently as

dX (s)

ds
= −∇Ṽ (X (s)) + σ(X (s))√

1 − aτ
ξ̃ (s), (B2a)

d ξ̃(s)

ds
= −(1 − aτ )Ãξ(s) + (1 − aτ )AξWN(s). (B2b)

By SDE (B2b), ξ̃(s) is identified as a standard OU noise
with drift matrix Ã = (1 − aτ )A = diag[{(1 − aτ )/s(�)

cor}m
�=1].

By introducing the tilded noise intensity (15) and correlation
times (16), we obtain the desired rescaled approximating SDE
(14) under standard OU noise.

APPENDIX C: DERIVATION OF NONLINEAR
FOKKER-PLANCK EQUATIONS

The derivation of nonlinear Fokker-Planck equations be-
gins with the stochastic Liouville equation (also called the
colored noise master equation) corresponding to stochas-
tic dynamical systems under colored noise. In Ref. [28,
Sec. III.D], stochastic Liouville equation for SDE (18) is
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formulated to

∂ p(x, t )

∂t
− ∂

∂x
[V ′(x)p(x, t )]

= ∂

∂x
σ (x)

∂

∂x
σ (x)

∫ t

t0

Cξ (t, s)E

[
δ(X (t ) − x)

× exp
∫ t

s
ζ (X (u)) du

]
ds, (C1)

with ζ (x) defined by Eq. (26). For the derivation of SLE (C1),
we employ what Hänggi [50] calls the Fox’s trick [65]. Fox’s
trick is essentially the substitution of noise excitation ξ (t ) via
SDE (18). In order for this substitution to be legitimate, noise
intensity σ (x) has to be nonvanishing, hence the assumption
σ (x) �= 0 at the end of Sec. III.

Stochastic Liouville equation (C1) is an exact evolution
equation for PDF p(x, t ), but it is not closed, due to the
presence of the average in its right-hand side. In it, the random
delta function δ(X (t ) − x) appears, whose defining property
reads

E[δ(X (t ) − x)] =
∫
R

δ(y − x)p(y, t ) dy = p(x, t ). (C2)

Following Ref. [29], and in order to obtain a nonlinear
Fokker-Planck equation in closed form from Eq. (C1), we
apply a current-time approximation to the exponential in the
right-hand side of (C1). First, we decompose the integrand
into its mean value E[ζ (X (u))] and the fluctuation around it
φ(x, u) = ζ (x) − E[ζ (X (u))]:

exp
∫ t

s
ζ (X (u)) du

= exp
∫ t

s
E[ζ (X (u))]du exp

∫ t

s
φ(X (u), u) du. (C3)

Then, by assuming that φ(X (u), u) is small, we approximate
the fluctuations exponential by a quadratic Taylor expansion
with respect to s around current time t . The first and second
temporal derivatives of fluctuations exponential are easily cal-

culated as

∂

∂s
exp

∫ t

s
φ(X (u), u) du

= −φ(X (s), s) exp
∫ t

s
φ(X (u), u) du,

∂2

∂s2
exp

∫ t

s
φ(X (u), u) du

=
[
φ2(X (s), s) − ∂φ(X (s), s)

∂s

]
exp

∫ t

s
φ(X (u), u) du.

By further assuming that the first temporal derivative of the
fluctuations is also small, we obtain the following current-time
approximation for the whole exponential term in Eq. (C1):

exp
∫ t

s
ζ (X (u)) du

≈ exp
∫ t

s
E[ζ (X (u))]du

2∑
m=0

φm(X (t ), t )(t − s)m

m!
. (C4)

By substituting the above current-time approximation into the
stochastic Liouville equation, we obtain the nonlinear Fokker-
Planck equation:

∂ p(x, t )

∂t
− ∂

∂x
[V ′(x)p(x, t )]

= ∂

∂x
σ (x)

∂

∂x
σ (x)A2(x, t )p(x, t ), (C5)

with

A2(x, t ) =
2∑

m=0

Dm(t )

m!
{ζ (x) − E[ζ (X (t ))]}m (C6)

and

Dm(t ) =
∫ t

t0

Cξ (t, s) exp
∫ t

s
E[ζ (X (u))]du (t − s)m ds.

(C7)

By easy algebraic manipulations on the right-hand side of
(C5), Eq. (24) for M = 2 is obtained. If, in the approximation
scheme (C4), only the zeroth-order term in Taylor series is
employed, the usual Hänggi’s equation (24) for M = 0 is
retrieved.
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