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Sine-square deformation applied to classical Ising models
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Sine-square deformation (SSD) is a treatment proposed in quantum systems, which spatially modifies a
Hamiltonian, gradually decreasing the local energy scale from the center of the system toward the edges by
a sine-squared envelope function. It is known to serve as a good boundary condition as well as to provide
physical quantities reproducing those of the infinite-size systems. We apply the SSD to one- and two-dimensional
classical Ising models. Based on the analytical calculations and Monte Carlo simulations, we find that the
classical SSD system is regarded as an extended canonical ensemble of a local subsystem, each characterized
by its own effective temperature. This effective temperature is defined by normalizing the system temper-
ature by the deformed local energy scale. A single calculation for a given system temperature provides a
set of physical quantities of various temperatures that quantitatively reproduces well those of the uniform
system.
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I. INTRODUCTION

The Hamiltonian in condensed matter physics is spatially
uniform in most cases, and its symmetry determines the phys-
ical properties of the system. For this reason, deforming the
Hamiltonian may usually mean modifying the physical state
itself. However, this turned out not always to be the case for
a series of operation called sine-square deformation (SSD).
The deformed Hamiltonian HSSD is generated from the orig-
inal Hamiltonian H = ∫

drH(r) using an envelope function
fSSD(r) as

HSSD =
∫

dr fSSD(r)H(r), (1)

where r is a coordinate of the system with its origin at the
center and

fSSD(r) = 1

2

[
1 + cos

(
πr

R

)]
, (2)

with R half the system length. As shown in Fig. 1, the sine-
square function fSSD governs the whole system by a single
wavelength of 2R and fSSD(r)H(r) varies smoothly from the
maximum value at the center toward the edges. The SSD was
proposed as one of the smooth boundary conditions to re-
move boundary effects [1,2], e.g., Friedel oscillations from the
open boundaries, or artificial potentials that emerge for chosen
cluster sizes and shapes which may stabilize fictitious orders
[3]. The SSD Hamiltonian is empirically known to generate
the wave function that recovers the translational symmetry, in
perfect coincidence with the wave function under the periodic
boundary condition [2,4]. This coincidence is proved in an
XY model and a transverse-field Ising chain [5,6]. The SSD

ground state is also shown to serve as a restricted class of
conformal field theories with some applications to a wider
class of conformal mappings [7–12], and in that context the
quantum dynamics of the SSD system is tested [13–17].
When an external field is applied, the physical quantities as
a response function to the field are evaluated from the SSD
Hamiltonian, whose accuracy against the exact solution in the
thermodynamic limit is O(10−4) [18].

From these studies, it is found that the SSD Hamiltonian
loses its translational symmetry but could still or better re-
produce the physical properties of the original Hamiltonian.
A key to understanding this phenomenon is the idea of real-
space renormalization [19], which stems from Wilson’s poor
man’s scaling [20]. In a system with translational symmetry,
a quantum state is characterized by a wave number. When
the SSD is imposed, a wave number is no longer a quantum
number, and a scattering term generated by fSSD(r) mixes
these original eigenstates [21]. Such mixing generates a series
of localized wave packets that serve as another basis set of
the Hamiltonian. Since these states are localized, they are
no longer influenced by the system size or by the boundary.
Therefore, it allows us to obtain physical quantities that re-
produce those in the thermodynamic limit [22].

In the present paper we apply this SSD to classical Ising
models, as they provide a good platform to test approximate
methods based on their exactly solvable structures [23]. The
Hamiltonian of the uniform classical Ising model is

H =
∑
〈γ,γ ′〉

−Jσγσγ ′ , (3)
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FIG. 1. (a) Change in effective temperature kBTeff from the center
(r = 0) toward the edge (r/R = 1) and the corresponding fSSD(r).
(b) Two-dimensional square lattice with interactions J1,i j and J2,i j on
bonds running in the positive directions of the x and y axes from
site γ = (i, j). The transfer matrix V i is constructed in a unit of L
sites in the y direction. (c) SSD along rows [case (i)] and columns
[case (ii)].

with the uniform coupling constant J . The index γ represents a
lattice site and the summation is taken over all the neighboring
pairs of spins. The exact solutions are known for the one-
dimensional (1D) chain and 2D square lattice. A second-order
phase transition occurs in the 2D square lattice model at the
temperature kBTc = 2/ln(1 + √

2) ∼ 2.2692J .
In constructing the SSD Ising Hamiltonian, we replace

the uniform interaction J with fSSD(r)J , where the position
vector r is defined at the center of each bond. Suppose that the
temperature of this deformed system is kBT . Then the system
can be regarded as an assemblage of Ising spins with uniform
interactions at a renormalized effective temperature kBTeff ≡
kBT/ fSSD(r). Figure 1(a) shows an effective temperature as a
function of r; the minimum value kBTeff (r = 0) = kBT at the
center gradually increases toward infinity at the system edge.

The deformation in the 1D chain is straightforward. For the
site index i = 1, . . . , L in Fig. 1(c), the bond connecting the
ith and (i + 1)th sites is located at ri = i − L/2, and we set
R = L/2 to generate the value fSSD(ri) in Eq. (2).

For the 2D square lattice, we consider an L×L lattice
shown in Fig. 1(b) to keep the aspect ratio as unity [24]
and define a coupling along the row between sites (i, j) and
(i + 1, j) as J1,i j ; its location is defined by r1,i j . We take a
bond along the column between sites (i, j) and (i, j + 1) as
J2,i j located at r2,i j . Here the vectors r1,i j and r2,i j are not
the ordinary position vectors but are introduced to define the

deformation function along the axis r parallel to the rows
and columns for cases (i) and (ii), respectively, as shown in
Fig. 1(c). We consider two cases. Case (i) deforms the bond
interaction only along the row direction, keeping those along
the column uniform; we plug into Eq. (2) r1,i j = i − L/2
and r2,i j = i − (L − 1)/2 with R = L/2. Case (ii) deforms the
interaction along the column, while keeping the row direction
uniform; we take r1,i j = j − (L − 1)/2 and r2,i j = j − L/2
for this case. The two cases formally differ in the analytical
treatment as we show in Sec. III, where we construct the
column-to-column transfer matrix.

The aim of this paper is to clarify the role of SSD in a
classical Ising model. We show that the energy and related
quantities accurately reproduce those of kBTeff , which means
that one can obtain a set of data for a wide temperature range
in a single calculation. The physical implication is that the
SSD system is an assemblage of local subsystems with differ-
ent temperatures, which form a modified canonical ensemble.
The neighboring local subsystems have similar effective tem-
peratures and work with each other as a heat bath. In Sec. IV
we address the possibility of using other types of deformation.

The paper is organized as follows. In Sec. II we demon-
strate that the transfer-matrix method is exactly applied to the
SSD Ising model in one dimension. In Sec. III we analyze the
2D Ising model using a fermionic representation and obtain
an exact form of the partition function for a finite system size
for both case (i) and case (ii). Then we numerically evaluate
the bond energy using these formulations in Sec. IV. We
also perform a classical Monte Carlo simulation for the SSD
Hamiltonian in Sec. IV C to test the numerical applicability of
SSD. Section V gives a summary and discussion.

II. EXACT SOLUTION OF THE ONE-DIMENSIONAL
SSD ISING MODEL

Let us first consider a partition function of a 1D periodic
lattice consisting of L sites,

Z =
∑
{σi}

exp

(
L∑

i=1

Kiσiσi+1

)

=
∑
{σi}

L∏
i=1

exp(Kiσiσi+1) = Tr

(
L∏

i=1

Vi

)
,

Vi =
(

eKi e−Ki

e−Ki eKi

)
, (4)

using the conventional notation Ki ≡ Ji/kBT with Ji ≡
J fSSD(ri). Here ri = i − L/2 is the location of a bond connect-
ing sites i and i + 1. The eigenvalues of the transfer matrix
Vi are λ±

i = eKi ± e−Ki , which explicitly depend on index
i, whereas the corresponding eigenvectors p±

i = (1,±1)/
√

2
are site independent. In this way, all the transfer matrices
are simultaneously diagonalized and the partition function is
exactly given as

Z =
L∏

i=1

λ+
i +

L∏
i=1

λ−
i . (5)
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Then the exact expectation value of the bond energy is ob-
tained as

〈σiσi+1〉 = (λ−
i /λ+

i )
∏L

l=1 λ+
l + (λ+

i /λ−
i )

∏L
l=1 λ−

l∏L
l=1 λ+

l + ∏L
l=1 λ−

l

. (6)

Taking the limit of an open boundary JL → 0, we find λ+
L → 2

and λ−
L → 0, and the bond energy 〈σiσi+1〉 converges to

λ−
i

λ+
i

= tanh

(
Ji

kBT

)
= tanh

(
J

kBTeff (ri )

)
. (7)

Recalling that the energy per bond in the uniform system
takes the form ebulk = − tanh(J/kBT ) in the thermodynamic
limit, one finds that the site-dependent bond energy of the
SSD Hamiltonian is ebulk at the local effective temperature
kBTeff (ri ). The partition function at L → ∞ is given as Z =∏

i λ
+
i , which matches exactly the partition function of a sys-

tem consisting of Ising bond degrees of freedom λ+
i with

interaction J and i-dependent effective temperature kBTeff (ri ).
For later convenience, we show that Eq. (4) is written using

the Pauli matrix τ ν , ν = x, y, z (we use τ instead of σ to avoid
confusion); unit matrix I; and the parameter K∗

i , which fulfills
tanh K∗

i = e−2Ki as

Vi = eKi (I + τ xe−2Ki ) = (tanh K∗
i )−1/2(I + τ x tanh K∗

i )

= (sinh K∗
i cosh K∗

i )−1/2(I cosh K∗
i + τ x sinh K∗

i )

= (2 sinh 2Ki )
1/2eK∗

i τ x
, (8)

where we use the relation sinh 2Ki sinh 2K∗
i = 1.

III. EXACT SOLUTION OF THE TWO-DIMENSIONAL
SSD ISING MODEL

In this section we expand an analytical formula to compute
the partition function Z of the SSD Ising model for a finite sys-
tem size in two dimensions. The results shown here are also
applied to deformations with functional forms other than fSSD.
Among several different approaches [23,25–32], we build our
work based on the analysis given by Schultz et al. [32]. It
provides a good description of the exact transfer matrix of the
2D Ising model by the 1D free fermionic degrees of freedom.
In Sec. III A we give a review of this work originally applied
to the uniform Hamiltonian and show that it can be applied
to our system where the interactions are site dependent. We
introduce the operators for the column-to-column transfer
matrix in the fermionic representation and the related trace
formula. Section III B is devoted to derivations of Z for cases
(i) and (ii) with the SSD Hamiltonian, which uses the formula
obtained in Sec. III A.

A. Preliminaries

1. Column-to-column transfer matrix

The explicit form of a transfer matrix V i from column i to
column i + 1 is given for a spatially nonuniform Hamiltonian
as follows. Let σ i ≡ {σi, j | j = 1, 2, . . . , L} be a complete
orthonormal basis of dimension 2L of the ith column, where
σi, j = ±1 is the Ising degrees of freedom on site (i, j) in
Fig. 1(b). The operators V̂1,i and V̂2,i include the interactions
along the ith column (J1,i j) and jth row (J2,i j), respectively,

and give a partition function Z as

Z = Tr

(
L∏

i=1

V 1,iV 2,i

)
,

V 1,i ≡ 〈σ i, σ i+1|V̂1,i|σ ′
i, σ

′
i+1〉

= δσ i,σ
′
i
δσ i+1,σ

′
i+1

exp

(
β

L∑
j′=1

J1,i j′σi, j′σi+1, j′

)
,

V 2,i ≡ 〈σ i|V̂2,i|σ ′
i〉 = δσ i,σ

′
i
exp

(
(kBT )−1

L∑
j′=1

J2,i j′σi, j′σi, j′+1

)
.

(9)

Generalization of Eq. (8) to L degrees of freedom along the
ith column immediately gives a description of V 1,i and V 2,i as

V 1,i =
L∏

j′=1

(2 sinh 2K1,i j′ )
1/2exp

(
L∑

j=1

K∗
1,i jτ

x
j

)
,

V 2,i = exp

(
L∑

j=1

K2,i jτ
z
jτ

z
j+1

)
, (10)

with K1;i, j = J1,i j/kBT and K2;i, j = J2,i j/kBT , where K∗
1,i j is

defined as tanh K1,i j = e−2K∗
1,i j . We use a 2L×2L matrix de-

fined as a direct product τν
j = I ⊗ I ⊗ · · · ⊗ τ ν ⊗ I ⊗ · · · ⊗ I ,

with τ ν operating on the jth Ising degrees of freedom on the
column. This form is further transformed first by rotating the
axis of the Pauli matrices as τ x

j → −τ z
j and τ z

j → τ x
j and then

by using a set of Pauli operators {τ̂ ν
j } operating on the jth site,

V̂1,i =
(

L∏
j′=1

(2 sinh 2K1,i j′ )
1/2

)
exp(Ĥ1,i ),

V̂2,i = exp(Ĥ2,i ),

Ĥ1,i =
L∑

j=1

−K∗
1,i j τ̂

z
j ,

Ĥ2,i =
L∑

j=1

K2,i j τ̂
x
j τ̂

x
j+1, (11)

where the trace of the operators over the 2N Hilbert space
gives Z = Tr(

∏L
i=1 V̂1,iV̂2,i+1).

By making use of the Jordan-Wigner transformation

τ̂+
j = 1

2

(
τ̂ x

j + iτ̂ y
j

) = exp

(
−iπ

j−1∑
l=1

c†
l cl

)
c†

j ,

τ̂−
j = 1

2

(
τ̂ x

j − iτ̂ y
j

) = exp

(
iπ

j−1∑
l=1

c†
l cl

)
c j, (12)

we obtain a fermionic representation of the operators as

Ĥ1,i = −
L∑

j=1

2K∗
1,i j

(
c†

j c j − 1

2

)
, (13)

Ĥ2,i =
L∑

j=1

K2,i j (c
†
j − c j )(c

†
j+1 + c j+1), (14)
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where c†
j (c j) is a creation (annihilation) operator of spinless

fermion. In the standard approach, the partition function is
given as Z = Tr(

∏L
i=1 V̂i ), with

V̂i = V̂ 1/2
2,i V̂1,iV̂

1/2
2,i+1 (15)

an operator representing the column i–to–column i + 1 trans-
fer matrix. If V̂i does not depend on i, one is able to diagonalize
the 2L×2L representation of V̂i, and the product of the largest
eigenvalues will give Z . However, in case (i), since the transfer
matrices depend on column i, they cannot be diagonalized
simultaneously, and this approach does not straightforwardly
apply. In the next subsection, we review the derivation of
the exact solution for the uniform Ising model. The formula
(16)–(20) will be adopted to calculate the partition function
of case (i) in a later section. The eigenvalue solution of the
transfer matrix of the uniform system is also to be compared
with those obtained for the SSD Hamiltonian.

2. Spatially uniform 2D Ising model

For the interaction parameters K1;i, j and K2;i, j , let us omit
the row index j while keeping the column index i to clar-
ify that it does not depend on j. Since the Hamiltonian is
uniform along the column, the transfer matrix on the ith col-
umn is block diagonalized by using the Fourier transform of
fermionic operators along the j direction,

c j = 1√
L

e−iπ/4
∑

q

eiq jηq, (16)

where we take q = (2l − 1)π/L and 2π l/L when the number
of fermions N = ∑

q η†
qηq is even and odd, respectively. The

even- and odd-N sectors originate from the constraint im-
posed on Eq. (12) due to antiperiodic and periodic boundary
conditions, respectively. The operators in Eqs. (13) and (14)
are rewritten as

Ĥ1,i =
∑

0�q<2π

Ĥ1,iq,

Ĥ2,i =
∑

0<q<π

Ĥ2,iq + (η†
0η0 + η†

πηπ ),

Ĥ1,iq = −2K∗
1,i

(
η†

qηq − 1

2

)
, (17)

Ĥ2,iq = 2K2,i
(

cos q(η†
qηq + η

†
−qη−q)

+ sin q(ηqη−q + η
†
−qη

†
q )

)
, (18)

where the last two terms of Ĥ2,i with wave vectors q = 0, π

are present only in the odd-N sector. As the ηq with different
|q| commute, one can decompose the exponentials of the
transfer matrix as

V̂i = (2 sinh 2K1,i )
L/2

∏
q

eĤ2,iq/2eĤ1,iq eĤ2,i+1q/2. (19)

We now prepare a matrix representation of Fock opera-
tors eĤ2,iq/2 and eĤ1,iq by one-body states |ηq〉 = η†

q|0〉, where

η†
q = (η†

q, η−q ):

H1,iq = 〈ηq|Ĥ1,iq|ηq〉 =
(−2K∗

1,i 0
0 2K∗

1,i

)
,

H2,iq = 〈ηq|Ĥ2,iq|ηq〉=2K2,i

(
cos q − sin q

− sin q − cos q

)
+ 2K2 cos q.

(20)

The formulation in the rest of this section holds only when
H2,iq does not depend on column index i; it is omitted
from the interaction parameters as K1 and K2. We mul-
tiply eH2,iq/2−K2 cos q = I cosh K2 + (cos qτ z − sin qτ x ) sinh K2

and eH1,iq = I cosh 2K∗
1 − τ z sinh 2K∗

1 using the Pauli matrices
τ ν and find a real symmetric matrix

eH2,iq/2eH1,iq eH2,i+1q/2 = e2K2 cos q

(
Aq Cq

Cq Bq

)

= e2K2 cos qP

(
e−2ε (u)

q 0
0 e2ε (u)

q

)
P−1, (21)

where in the final term we diagonalized the matrix by an or-
thogonal matrix P and ε (u)

q � 0 is obtained by the relationship

cosh 2ε (u)
q = cosh 2K2 cosh 2K∗

1 − sinh 2K2 sinh 2K∗
1 cos q.

(22)

By the same matrix P as in Eq. (21), the operator ηq undergoes
a Bogoliubov transformation

ξq =
(

ξq

ξ
†
−q

)
= Pηq, P =

(
cos φq sin φq

− sin φq cos φq

)
. (23)

Using this transformation, the product part of Eq. (19) is
rewritten as eĤi , where the Fock operator Ĥi representing the
transfer matrix is given as

V̂ = (2 sinh 2K1)N/2
L∏

i=1

eĤi ,

Ĥi =
∑

0<q<π

(−2ε (u)
q ξ †

q ξq + 2ε (u)
q ξ−qξ

†
−q

)

−2(K∗
1 − K2)

(
η

†
0η0 − 1

2

)
− 2(K∗

1 + K2)

(
η†

πηπ − 1

2

)

= −
∑

0�q<2π

2ε (u)
q

(
ξ †

q ξq − 1

2

)
. (24)

Here one can summarize all the q terms by reading off η0 = ξ0

and ηπ = ξπ , since we see from Eq. (22) that ε0 = K∗
1 − K2

and επ = K∗
1 + K2.

The partition function is obtained [for reference, see
Eq. (32) in the next subsection] as

Z = (2 sinh 2K1)N/2Tr

(
L∏

i=1

eĤi

)

= (2 sinh 2K1)N/2 exp

(
L

∑
q

ε (u)
q

)∏
q

(
1 + e−2Lε (u)

q
)

= (2 sinh 2K1)N/2
∏

0�q<2π

2 cosh
(
Lε (u)

q

)
. (25)
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FIG. 2. Dispersion of fermions of a uniform Hamiltonian εq in
Eq. (22) at several different temperatures.

The bond energy is written as

〈σi, jσi, j+1〉 =
∑

q

− tanh
(
L1ε

(u)
q

)
sinh 2ε

(u)
q

(sinh 2K2i cosh 2K∗
1i

− cosh 2K2i sinh 2K∗
1i cos q), (26)

〈σi, jσi+1, j〉 = − 1

tanh 2K1i
+

∑
q

tanh
(
L1ε

(u)
q

)
sinh 2ε

(u)
q sinh 2K1i

× (cosh 2K2i sinh 2K∗
1i

− sinh 2K2i cosh 2K∗
1i cos q). (27)

Considering only the contributions from the largest term in the
product of the second equation in Eq. (25), which is valid for
L → ∞, we find

Z → �0 ≡ (2 sinh 2K1)N/2 exp

(
L

∑
0�q<2π

εq

)
, (28)

which reproduces the result in Ref. [32]. This corresponds to
the vacuum state of the Bogoliubov quasiparticle, i.e., having
〈ξ †

q ξq〉 = 0 for all q. In this limit, Eqs. (26) and (27) are
modified to those for tanh(L1εq) → 1.

Figure 2 shows pairs of ±ε (u)
q at several different temper-

atures. Here, by introducing a hole creation operator as an
annihilation of particle ξ̄ †

q = ξq, Eq. (24) can be rewritten as

Ĥ i = −
∑

0�q<2π

ε (u)
q (ξ †

q ξq − ξ̄ †
q ξ̄q), (29)

where the lowest-energy eigenstate of Ĥ i is obtained by fully
occupying a hole band and by keeping particle bands empty.
This is a vacuum state of the Bogoliubov quasiparticle. Ex-
citing a Bogoliubov quasiparticle 〈ξ †

q ξq〉 �= 0 corresponds to
creating a particle-hole pair with the excitation energy 2ε (u)

q
at wave number q. The gap at q = 0 closes at the transition
temperature of the uniform 2D Ising model, Tc = 2.2692.

3. Full counting statistics and the trace formula

To count the full statistics Z consisting of column-
dependent transfer matrices, we introduce another basic
formula proved by Klich in Ref. [33]. Consider a second

quantized single-particle operator acting on the Fock space as

�̂(Â) = c†Ac, c† = (c†
1, . . . , c†

M ), (30)

where A is the M×M matrix representation Alm = 〈l|Â|m〉
of operator Â on a single-particle Hilbert space of spinless
fermions {|l〉} = {c†

l |0〉}, with a creation operator c†
l (l =

1, . . . , M), applied on a vacuum |0〉. For two operators Â
and B̂, we find [�̂(Â), �̂(B̂)] = �̂([Â, B̂]). We know from the
Baker-Campbell-Hausdorff formula that for given matrices A
and B, there is a matrix C that fulfills eAeB = eC [34]. Then
the corresponding Fock operators are also given as

e�̂(Â)e�̂(B̂) = e�̂(Ĉ). (31)

As we will see shortly, this relationship guarantees that one
can rewrite Eq. (15) in a single exponential form eĤi as long as
the operators Ĥ1,i, Ĥ2,i, and Ĥ2,i+1 are written by the common
single-particle basis.

Any matrix C can be transformed to P−1CP =
diag(ξ1, ξ2, . . . , ξM ) + D, with D an upper triangular
matrix, where we are familiar with D = 0 for the symmetric
matrix C. Since �̂(Ĉ) = ∑

m ξmd†
mdm + ∑

i< j Di jd
†
i d j , with

di = ∑
l P−1

il cl , the trace of Eq. (31) is evaluated as

Tr(e�̂(Ĉ) ) = Tr

[
exp

(∑
m

ξmd†
mdm

)]

= det(I + ediag(ξm ) ) =
M∏

m=1

(1 + eξm )

= det(I + eAeB). (32)

This trace formula holds for more than two products of expo-
nentials of the operators. We apply this formula in obtaining
Z for case (i).

B. Exact solutions of the deformed 2D Ising models

1. Case (i): When the Hamiltonian is uniform along the column
and nonuniform along the row

In this subsection the parameters K1;i, j and K2;i, j depend
on i but not on j, where we omit index j for simplicity.
The formula (16)–(20) still holds. However, since the transfer
matrix V i depends on column index i and since V i is no longer
symmetric, we cannot straightforwardly prepare an orthogo-
nal matrix P that diagonalizes all V i simultaneously.

Instead of dividing Z into columns, we first take the whole
product over the columns for each q to obtain V̂q and then
combine all q sectors as

Z =
L∏

i=1

(2 sinh 2K1,i )
L/2Tr

(∏
q

V̂q

)
,

V̂q =
L∏

i=1

eĤ2,iq eĤ1,iq ≡ eĤq . (33)

We again find a final single exponential form of the Fock oper-
ator Ĥq since Ĥ1,iq and Ĥ2,iq fulfill the condition for �̂(Â) and
�̂(B̂) in Eq. (31). By multiplying the 2×2 matrix in Eq. (20),
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we obtain an explicit form

eĤq = η†
q

(
L∏

i=1

eH2,iq eH1,iq

)
ηq. (34)

This matrix is diagonalized to diag(e−2Eq , e2Eq ) by performing
a Bogoliubov transformation (η†

q, η−q ) → (ξ̃ †
q , ξ̃−q) similarly

to Eq. (23), and we find a final form

V̂q = exp

( ∑
0�q<2π

−2Eq

(
ξ̃ †

q ξ̃q − 1

2

))
. (35)

Here Eq � 0 is an order-L quantity, which is the energy
carried by the Bogoliubov quasiparticle ξ̃q. In obtaining Eq,
fermions ηq and η−q mix for 0 < q < π so that the operator
in Eq. (35) is represented by a 2×2 matrix, whereas for q = 0
and π , there is no mixing and we obtain E0 = ∑

i(K
∗
1,i − K2,i )

and Eπ = ∑
i(K

∗
1,i + K2,i ).

The partition function is obtained as

Z =
(

L∏
i=1

(2 sinh 2K1,i )
L/2

) ∏
0�q<2π

(eEq + e−Eq ). (36)

Among the contributions from Bogoliubov quasiparticles to
Z , namely, the last product term in the above equation, a
so-called largest eigenvalue is obtained solely from a vacuum
state of Bogoliubov quasiparticles as

�0 =
(

L∏
i=1

(2 sinh 2K1,i )
L/2

) ∏
q

eEq , (37)

and for L → ∞ we obtain Z = �0. Exciting a single Bo-
goliubov quasiparticle with a minimum excitation energy
2 min(Eq) yields the next-largest eigenvalue so that �1/�0 =
e−2 min(Eq ). The rest of the eigenvalues are determined by suc-
cessively exciting quasiparticles

∏
q∈{q}m

ξ †
q |0〉, where {q}m is

a set of indices of excited particles.
The energy densities per bond along the columns and rows

are formally given as

〈σi, jσi, j+1〉 = − 1

L

∂ ln Z

∂K2,i
= − 1

L

∑
0�q<2π

dEq

dK2,i
,

〈σi, jσi+1, j〉 = − 1

L

∂ ln Z

∂K1,i

= − 1

tanh 2K1,i
− 1

L

∑
0�q<2π

dEq

dK1,i
. (38)

In numerically evaluating these quantities, the derivatives are
much less accurate than those we obtain for case (ii) in the
next section.

2. Case (ii): When the Hamiltonian is nonuniform
along the column and uniform along the row

In this subsection we consider case (ii). We start from
Eqs. (13)–(15). From the discussion given in Sec. III A 3,
the transfer-matrix operator in Eq. (15) is rewritten as V̂i =
eĤ2,i/2eĤ1,i eĤ2,i/2 = eĤi , where Ĥi takes the quadratic form of a
set of one-body operators {ci}. Since the V̂i do not depend on a
column index i, their representations are separately diagonal-
ized simultaneously for all columns. This time, however, the

Hamiltonian is nonuniform along the columns. Then the L×L
matrix representation of Ĥi can no longer be block diagonal-
ized into the smallest pieces by the Fourier transformation,
nor can we apply the simple Pauli matrix representation we
used in obtaining Eq. (21). Instead, the form of Ĥi is obtained
through the following processes.

We first describe Ĥ1,i and Ĥ2,i/2 in a quadric form of
the one-body operators. Since the number of fermions is not
conserved, we need to prepare a set of L-independent cre-
ation and annihilation operators. We reduce the 2L operators
{c†

j , c j} ( j = 1, . . . , L) by half to avoid redundancy.1 For this
purpose, we use the reflection symmetry of fSSD about the
center of the system, K2,i j = K2,iL− j+1. The operators that
fulfill M−1a jM = −a j and M−1b jM = b j about the parity
operator M of the mirror reflection are

a†
j = 1√

2
(c†

j − c†
L− j+1),

b†
j = 1√

2
(c†

j + c†
L− j+1) (39)

for j = 1, . . . , L
2 . By using �† = (b†

1, . . . , b†
L/2, a1, . . . , aL/2),

we obtain the expressions

Ĥ1,i =
L/2∑
j=1

−2K∗
1,i j (b

†
jb j − a ja

†
j ), (40)

Ĥ2,i

2
= �†

(
A+ B−

−B+ −A−

)
� − Tr(A+) + Tr(A−),

A±
mn = K2,im

2
δm+1,n + K2,in

2
δm−1,n ± K2,i(L/2)

2
δm(L/2)δn(L/2),

B±
mn = K2,im

2
δm+1,n − K2,in

2
δm−1,n ± K2,i(L/2)

2
δm(L/2)δn(L/2),

(41)

where A± and B± are the L
4 × L

4 matrices.
Next we find a matrix Q to transform η for Ĥ2,i/2 as

η† = (η†
1, . . . , η

†
L ) = �†Q, (42)

Ĥ2,i

2
=

L∑
l=1

γlη
†
l ηl . (43)

Here γl , with l = 1, . . . , L
2 , are non-negative and the other half

with L
2 + 1, . . . , L are nonpositive. Since eĤ2,i/2 = ∑

l eγl η
†
l ηl ,

one can put this back into the original representation as

eĤ2,i/2 = η†ediag(γl )η = �†Qediag(γl )Q−1�. (44)

We thus obtain the Fock operator

eĤi ≡ �†T �,

T = Qediag(γl )Q−1eH1,i Qediag(γl )Q−1, (45)

1One could also describe it using the Majorana fermions, while
in that case the representation of the transfer matrix is given by an
antisymmetric matrix which may be numerically rather bothersome
to treat.
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where from Eq. (40) we have (eH1,i )lm = δlme−2K∗
1,i j for l � L

2

and δlme2K∗
1,i j for L

2 + 1 � l .
As a third step, we diagonalize Eq. (45) as

P−1T P = diag(ζl ), by a Bogoliubov transformation
ξ† = (ξ †

1 , . . . , ξ
†
L/2, ξ̄1, . . . , ξ̄L/2) = �P. Here the distribution

of eigenvalues is such that half of the ln ζl are nonpositive
and the other half are non-negative. Therefore, by setting ζl

in ascending order and by putting it back into the exponential
form with 2εl = |ln ζl |, we find

V̂i =
(

L∏
j=1

(2 sinh 2K1,i j )
1/2

)
eĤi ,

Ĥi =
L/2∑
l=1

−2εlξ
†
l ξl + 2εmξ̄mξ̄ †

m

=
L∑

l=1

−2εl

(
ξ

†
l ξl − 1

2

)
, (46)

where for m = l + L
2 we have ln ζm � 0. We also apply a

particle-hole transformation ξ̄mξ̄ †
m = 1 − ξ †

mξm. From Eq. (32)
we find

Tr

(
L∏

i=1

eĤi

)
= exp

(
L

∑
l

εl

)
det[I + (ediag(−2εl ) )L]

=
L∏

l=1

(eεl L + e−εl L ). (47)

The partition function is obtained as

Z =
L∏

j=1

(2 sinh 2K1,i j )
L/2

L∏
l=1

(eεl L + e−εl L )

=
2L−1∑
m=0

�m, (48)

with �0 = ∏L
j=1(2 sinh 2K1,i j )L/2 ∏L

l=1 eεl L a partition func-
tion at L → ∞. The bond energies along the columns and
rows are given as

〈σi, jσi, j+1〉 = −
L∑

l=1

tanh(Lεl )
dεl

dK2,i j
, (49)

〈σi, jσi+1, j〉 = − 1

tanh 2K1,i j
−

L∑
l=1

tanh(Lεl )
dεl

dK1,i j
. (50)

Both dεl/dK1,i j and dεl/dK2,i j are evaluated using the ele-
ments of P and Q without taking the numerical derivative.

IV. NUMERICAL EXAMINATION

In this section we numerically demonstrate how SSD
works on the Ising model by using the formula in the pre-
ceding section. We also compare these results with those of
classical Monte Carlo simulations.

A. 1D systems

In Sec. II we found that the maximum eigenvalue of the
transfer matrix on the bond at position ri connecting sites i
and i + 1 serves as a local partition function on that bond,

λ+
i = e−J/kBTeff (ri ) + eJ/kBTeff (ri ), (51)

at its effective temperature kBTeff (ri ) = kBT/ fSSD(ri ). In the
thermodynamic limit, the second largest eigenvalue λ−

i is
neglected and the total partition function becomes a product
of λ+

i . This means that the system is an ensemble of L − 1
different noninteracting bond degrees of freedom and unlike a
uniform system, each is exposed to its own temperature kBTeff

that depends on its location. The form of Eq. (51) indicates
that one can obtain a set of equilibrium states with different
temperatures kBTeff ranging from kBT to ∞, simultaneously,
in a single system.

To examine how accurate the above-mentioned descrip-
tion would be at finite L, we numerically evaluate the bond
energy of the SSD Hamiltonian in Eq. (6) as a function of
kBTeff for several choices of L = 4, . . . , 100, which is shown
in Fig. 3(a). The bond energy even at L = 4 shows rela-
tively good agreement with the exact bond energy ebulk =
− tan(J/kBT ) of the L = ∞ uniform Ising model. The inset
of Fig. 3(a) shows

∏
i(λ

−
i /λ+

i ), which is a rapidly decreasing
function of both kBT and L. When this quantity is sufficiently
small, Z = ∏

i λ
+
i holds, and λ+

i given in Eq. (51) serves as a
local partition function for the corresponding local effective
temperature, which is fulfilled for most of the temperature
range kBT � O(0.1J ). Therefore, one can realize a canonical
ensemble of systems with a variety of temperatures in a single
system by properly setting kBT .

Figure 3(b) shows the deviation of bond energy against
ebulk, which we call an SSD error. For L � 40, it is less
than 10−5. Here a single partition function for a fixed kBT
generates L/2-independent data points with different kBTeff .
Therefore, various L/2 sets of data are obtained by varying
kBT = 0.1n with n = 1, 2, . . .. The inset shows the SSD error
of these series for L = 10; the data obtained near the system
center are more accurate than those near the edges. We also
found that the accuracy is improved for higher kBT . We may
explain this tendency by a slope of the effective temperature.
The slope is gentle at the center and becomes steeper when
approaching the edge of the system as shown in Fig. 1(a).
The location that gives a certain fixed value of the effective
temperature becomes closer to the system center if the system
temperature kBT is higher. The local thermal equilibrium is
better attained if an additional energy flow caused by the slope
of the temperature can be neglected.

The results presented above are in good agreement with the
tendency observed in the quantum many-body systems under
the SSD. In the quantum cases [18], the physical quantities at
T = 0 measured at the system center reproduce the values in
the infinitely large system even when the system is as small
as L � 20. At finite temperature, they work quite well even
at L = 4 in the 1D system [35]. In the same context, the
measurements of −〈σiσ j〉 in the present classical system are
accurately performed near the system center by varying kBT
even at small L. Generally, it is easy to increase L by one or-
der of magnitude in classical systems, and the measurements
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FIG. 3. Results of (a) and (b) the SSD Ising model in one dimension and (c) and (d) the uniform Ising model to be compared with (a) and (b).
(a) Location (index-i)-dependent bond energy −〈σiσi+1〉, given in Eq. (6), plotted against the effective temperature kBTeff for L = 4, . . . , 100.
The solid line is the exact energy of a uniform Ising model ebulk at L = ∞ as a function of temperature. (b) Deviations of bond energy in
(a) from ebulk. Calculations are done for several choices of kBT = 0.1n (n is an integer), where each single choice of kBT generates L/2 data
points. The inset shows how the results vary with n for L = 10 magnified from the main panel; better accuracy is observed for the bonds closer
to the system center. (c) Exact bond energy for L = 4, . . . , 100 in the uniform 1D Ising model and (d) finite-size correction against ebulk. The
insets of (a) and (c) show (λ−/λ+)L as a function of temperature.

over a wide range of system become accurate enough [see
Fig. 3(b)]. This fact will be of great advantage in utilizing the
SSD for Monte Carlo simulations.

In Figs. 3(c) and 3(d) we show the results of a uniform
Ising model at finite L to compare with Figs. 3(a) and 3(b),
respectively. When λ−/λ+ (shown in the inset) becomes small
enough, the bond energy approaches ebulk. In contrast to the
case of SSD, the bond energy at L = 4 disagrees with ebulk

by about 10−2. An advantage of the SSD system over the uni-
form system is particularly significant at around kBTeff ∼ 1.
The finite-size correction of the uniform system remains of
order 10−2 even when increasing L up to 100, where we find
λ−/λ+ ∼ 1 accordingly.

B. 2D systems

We apply the SSD along the rows in case (i) and along the
columns in case (ii) [see Fig. 1(c)]. The fermionic dispersions
along the columns, Eq/L in case (i) and εl in case (ii), are
presented. For the SSD Hamiltonian, these two cases give
different energy dispersions, since for case (i) q is a good
quantum number along the columns but for case (ii) it is not.
We checked that when Ji j is uniform, cases (i) and (ii), whose
Hamiltonians are the same but the formulations differ, give the
same results.

1. Fermionic dispersions

Let us first compare the energy dispersions of fermions
as functions of q in the SSD and the uniform systems. The
purpose here is to examine whether the partition function
Z → �0 at L → ∞ for the SSD in case (i) given in Eq. (37) is
equivalent to the product of the local partition function of each
column with different i-dependent kBTeff (ri ). The latter is for-
mally obtained by replacing the uniform temperature kBT of
�0 with the i-dependent kBTeff (ri ) in Eq. (28) in Sec. III A 2.
This replacement is equivalent to having the relation

L∑
i=1

ε (u)
q = Eq, (52)

where ε (u)
q of the uniform system calculated for each kBTeff (ri )

is summed over different columns on the left-hand side and Eq

on the right-hand side is obtained in Eq. (37). If this equation
exactly holds, the classical SSD system in two dimensions is
an extended canonical ensemble of local subsystems, each in
an equilibrium of different temperature. Since Eq cannot be
obtained analytically, we show numerically that this relation-
ship holds almost exactly except for the small deviation at
around q ∼ 0.

Figure 4(a) shows Eq/L in Eq. (35) for case (i) with
L = 50 for several choices of kBT . Since Eq is the order-L
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FIG. 4. Dispersions of fermions of a transfer matrix along the columns ( j direction) with L = 50 in case (i): (a) Eq/L in Eq. (35) for case
(i) with L = 50 (symbols) at kBT = 0.5, 1, 2.2692(= kBTc ), and 3; (b) ε (u)

q obtained using Eq. (22) with the temperature kBTeff that depends on
the location of bond i, i = 1, . . . , 25; and (c) i-dependent kBTeff used to evaluate the dispersions in (b). The solid lines in (a) are the summation
of ε (u)

q throughout the system, i = 1, . . . , 50, to be compared with Eq for the same system temperature kBT . The right panel in (c) is the density
plot of kBTeff , together with the profile of fSSD along the rows.

quantity obtained after multiplying the transfer matrices of all
columns, we expect that it can be approximately divided into
contributions from different columns if these columns can be
regarded as independent subsystems, which is the implication
of Eq. (52). In Fig. 4(b) we plot a set of L/2-independent
dispersions of fermions representing a single transfer matrix
of a uniform system ε (u)

q , each obtained for column (bond
i)-dependent kBTeff using Eq. (22). A set of effective tem-
peratures kBTeff for kBT = 0.5 adopted in this calculation is
shown in Fig. 4(c). At i = 1, . . . , 7 where kBTeff � kBTc in
the left panel, the dispersion is a descending function of i,
and then for i � 8 in the right panel it ascends with i. By
averaging all the dispersions over i = 1, . . . , L, the data points
in Fig. 4(b) (brown symbols in the left-hand-side panel) are
obtained, which are the same data as those plotted as a solid
line in Fig. 4(a) marked by arrows. We find that, except for
the vicinity q/π ∼ 0, the average

∑
i ε

(u)
q /L and Eq/L are

in almost perfect agreement. The same comparison holds for
other kBT .

In this way, the contributions to Eq from each column
are well approximated by ε (u)

q under locally defined effective

temperature kBTeff . The result indicates that a picture we
proved in one dimension also holds in two dimensions,
namely, the system can be regarded as an assemblage of small
subsystems having a different canonical temperature kBTeff .

2. Bond energy

Since we found that the 2D SSD system can simultane-
ously host L/2 different subsystems with different effective
temperature, we can use this fact to evaluate the local physical
quantities in each subsystem. Figure 5(a) shows the bond
energy −〈σγ σγ ′ 〉 as a function of kBTeff obtained for case
(ii) using Eqs. (49) and (50), where we set kBT = 0.5 and
plot the results for L = 10, . . . , 500. The solid line ebulk is an
exact solution of the L = ∞ uniform Ising model. The data at
L = 10 still deviate from ebulk, but when L � 50 they almost
perfectly overlap with ebulk. The SSD error |ebulk + 〈σγ σγ ′ 〉|
for the same data set is shown in Fig. 5(b). There are two series
of data points following different curves for the same value of
L. One is the bond energy evaluated along the columns and
the other one is along the rows. The error is suppressed to less
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FIG. 5. (a) Bond energy −〈σγ σγ ′ 〉 evaluated for the 2D SSD Ising model plotted against kBTeff using Eqs. (49) and (50) for case (ii) with
L = 10, . . . , 500 and kBT = 0.5. The solid line is the exact bulk energy εbulk. (b) SSD error |ebulk + 〈σγ σγ ′ 〉| for the data in (a) with kBT = 0.5.
(c) SSD error for a set of bond energies evaluated for kBT = 2.2692 = kBTc. (d) Finite-size corrections of the bond energy evaluated for the
uniform 2D system using Eqs. (49) and (50) as a function of kBT .
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FIG. 6. (a) Dispersions εl of fermions of a transfer matrix along
the columns ( j direction) with L = 50 in Eq. (46) for case (ii) with
kBT = 0.5, 1, 2.2692(= kBTc ), and 3. (b) Spatial amplitude of the
one-body eigenstate of index l calculated at L = 50 and kBT = 0.5
in (a). The bottom panel for the l = 25 state is the zero-energy state.

than 10−3 in a wide range of kBTeff when L � 100. Setting
kBT to kBTc further suppresses the SSD error as shown in
Fig. 5(c). This is because the spatial slope of the effective tem-
perature becomes gentle at the critical temperature kBTc where
the finite-size effect is very strong. The local subsystem can
more easily attain the thermodynamic equilibrium at the target
effective temperature when the differences of kBTeff with its
neighbors are smaller. For comparison, we also calculate the
bond energy of a uniform system and plot a finite-size error
in Fig. 5(d). They are calculated using Eqs. (26) and (27).
Near Tc ∼ 2.2692J , the correlation length diverges and the
finite-size effect becomes large. This fact is consistent with
the peak of SSD error near kBTeff .

3. Eigenstates of fermions

We now examine the spatial distribution of wave functions
of fermions when case (ii) SSD is applied. Figure 6(a) shows
the energy levels εl of fermions obtained using Eq. (46). We
plot the data for several choices of kBT . Since the column
direction is no longer uniform, the label l is not a wave number
but an index in descending order of εl for l = 1, . . . , 25. The
latter half, l = 26, . . . , 50, takes the same values as the former
half due to the reflection symmetry.

Following Refs. [18,21], we first explain how the SSD
term reorganizes the eigenstates of fermions. By introducing

fSSD( j) = 1 − g( j), which fulfills g( j) = g(L + 1 − j),

g( j) = cos

[
2π

L

(
j − 1

2

)]
= g1eiδ j + g−1e−iδ j,

g1 = g∗
−1 = eiδ/2

2
, (53)

where δ = 2π/L, one could separate the exponent of Eq. (14)
into two parts as

Ĥ2,i =
∑

q

Ĥ2,iq −
∑
±

Ĥd±, (54)

Ĥd± = g±1

[∑
q

2 cos

(
q ∓ δ

2

)
η†

qηq∓δ

+
∑

0�q�π

2 sin

(
q ∓ δ

2

)
(η†

qη
†
−q±δ + η−qηq∓δ )

]
.

(55)

The first term of Eq. (54) is a q component of Eq. (18).
In the uniform system, the eigenstate is characterized by a
wave number q. By introducing the SSD, one-body states of
different values of q mix as in Eq. (55). The particular form
of fSSD allows this mixing only between neighboring q which
are discretized in units of δ = 2π/L. The amplitude of mixing
also depends on q. It takes the largest values at q = 0 and π

for the first term and at q = ±π/2 for the second term. These
three are the top or bottom and the middle of the energy band
in Fig. 6(a), respectively. Such moderate mixing generates a
wave packet as an eigenstate of Ĥi,2. Strictly speaking, the
final eigenstates are those of Eq. (45) and not of Ĥ2,i, but once
we already have a wave-packet state localized in real space, it
does not change much by the operation of eH1,i , as it has only
a diagonal form in the real-space representation.

In Fig. 6(b) the weight of the one-body state (ξ̄ †
l |0〉) at a

site j, |(Qi ) jl |, for the dispersion of the fermions at kBT = 0.5
in Fig. 6(a) is shown for several energy levels l . Those labeled
by l = 1, 2 are the ones providing the two largest εl and are
almost completely localized at the edge sites. This is because
the coefficients in Eq. (55) is the largest and it efficiently
mixes the states over the wide range of wavenumbers so that
the wave packets become a δ function. In all energy levels
in Fig. 6(b), the wave packet typically spans at most three to
four lattice spacings and carries a bulk energy εl , which gives
a rough characteristic energy scale of kBTeff . In the uniform
and finite systems, the size effect in the quantum state occurs
because they are plane waves with discretized wave number.
However, for SSD, the wave-packet state is localized and does
not feel the size of the system. Their local physical quan-
tities behave nearly scale-free [22]. This wave-packet-type
distribution of fermions in real space supports the picture that
the system is an assemblage of local subsystems at different
effective temperatures.

C. Monte Carlo simulation

We solved the classical Ising model in a finite system size
exactly using the fermionic representation. However, even
in the classical systems, the cases with exact solutions are
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FIG. 7. Results obtained by the classical Monte Carlo simulations in the 2D Ising model with the SSD in one direction. The simulation
temperature is denoted by kBT , which corresponds to the lowest effective temperature. After discarding the initial 5000 steps, we measured
the bond energy for 50 000 steps unless specified otherwise. The insets show enlarged views near the critical temperature. (a) Bond energy
plotted against the effective temperature of each column. We compare our results of different lattice sizes with the exact bulk energy ebulk and
the result of Gaussian kernel regression (GKR). (b) The SSD error. The MC results of L = 150 are consistent with the transfer-matrix (TM)
results shown by the solid line for case (ii) with SSD of the same size. We also plotted the result of L = 15 000 measured for 500 MCSs to
check the MCS dependences. (c) and (d) Results of the specific heat compared with the exact bulk value cbulk and the GKR results.

limited. A Monte Carlo (MC) simulation usually serves as a
good approximate solver. Applying the SSD to an MC simula-
tion raises the question of whether an SSD system converges
to a proper equilibrium state even though the effective temper-
ature of each spin depends on the location. We thus carried out
the standard single-spin-flip MC simulations to the 2D Ising
model deformed in one direction. The effective temperature
differs for each column as shown in Fig. 1(c). We collected
the bond energy for each column separately and plotted it
against the effective temperature. We discarded the first 5000
MC steps (MCSs) and measured the bond energy for 50 000
MCSs after that. We also performed ten independent MC runs
and took an average of the data. The initial spin configuration
is the ferromagnetic state with σγ = 1.

Figure 7 shows the MC data obtained for different sys-
tem sizes. We checked that the MC result of L = 150 is
consistent with that of the transfer-matrix method shown in
Fig. 5. As shown in Fig. 7(a), the temperature dependence
of the bond energy agrees well with the exact results for the
whole temperature region. We find a small discrepancy only
in the vicinity of the critical temperature, which decreases as
the system size increases. The trend is clearly observed in
the plot of the SSD error in Fig. 7(b). Both a peak value at
Teff = Tc and the width are found to scale with 1/

√
L. We

also plot in this figure a result of L = 15 000 measured only
for 500 MCSs after discarding 5000 steps. The peak shape
at Tc is the same as the original measurement with 50 000

MCSs, but the base of the peak is shifted upward roughly
by one order of magnitude (∼10 times), which is the ratio
of a square root of two MCSs. Therefore, the SSD error in
this off-critical region is controlled by the standard MC sta-
tistical error (1/

√
MCS)×(1/

√
L). This suggests that the MC

approximation would become exact in the limit of an infinite
number of steps in this off-critical region of the SSD system.
On the other hand, the SSD error in the critical region near
T = Tc is due to the systematic one that solely depends on L.

We confirm the validity of the present SSD simulation by
examining how precisely we can reproduce the specific heat
from our data. The specific heat is usually evaluated as a
fluctuation of energy based on the two-point correlation of the
bond energy over the whole system. However, the correlations
between different bonds no longer makes sense when the
SSD is applied. Instead, we evaluate it from the derivatives
of −〈σγ σγ ′ 〉 against kBTeff . It is easily performed by the dif-
ference between the neighboring effective-temperature data.
As shown in Fig. 7(c), the specific heat C is also consistent
with the exact result for the off-critical temperature region.
The SSD error of the specific heat is consistent with that of
the bond energy shown in Fig. 7(b).

Recall that a massive number of temperature data are gen-
erated in the SSD simulation only by a small numerical effort.
Taking full advantage of this, we apply the Gaussian kernel
regression (GKR) coupled with the Bayesian inference [36].
The GKR is a machine-learning-based statistical data analysis
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and with this we can estimate the critical temperature and can
also obtain bond energy as a continuous function of temper-
ature without assuming any analytical function form. Since a
larger number of data sets gives a better performance of GKR,
our SSD MC simulation provides a suitable playground for it.
In our case, the specific heat is obtained continuously without
taking the numerical derivatives. We only need to take an
analytic derivative of the Gaussian distribution function used
there. The regression was already proved to reproduce the
critical temperature of the classical 2D Ising model within an
accuracy of 10−6 and the state-of-art temperature-dependent
critical exponent that converges to β = 1

8 at T = Tc [37].
We randomly choose 500 data in a range of 1.2 � T � 4.0

and apply the GKR by setting the regression variables (xi, yi )
as xi = −〈σγ σγ ′ 〉 − Ec and yi = kBTeff − kBTc, where Tc and
Ec (the bond energy at the critical temperature) are param-
eters to be estimated by the Bayesian inference. Here we
exchange xi and yi from the conventional definition because
the bond energy exhibits a singular behavior at T = Tc. It
is much easier for the regression to model a function with
a gentle slope than to model a function with a steep slope.
We also know that the specific heat is symmetric and the
bond energy is antisymmetric by a mirror reflection of the
temperature at the critical temperature in the critical region. To
take this prior information into account, we introduce a set of
mirror data [38] with respect to the critical point as x′

i = −xi

and y′
i = −yi. We mix the data below and above the critical

temperature only in the critical temperature region |yi| < �T ,
where �T , which is the width of the critical region, is another
parameter to be estimated by the Bayesian inference. The
GKR results of L = 1500 and 15 000 are plotted with lines in
Figs. 7(a) and 7(c). The estimated critical temperature and the
bond energy values are (Tc, Ec) = (2.2702(3),−0.7072(2))
for L = 1500 and (Tc, Ec) = (2.2699(2),−0.7065(2)) for
L = 15 000, whereas the exact bulk values are (Tc, Ec) =
(2.2692 . . . ,−0.707 10 . . .). The width of the critical region is
estimated as �T = 0.150(7) for L = 1500 and �T = 0.11(1)
for L = 15 000. The critical temperature and the bond energy
deviate from the exact results only by an order of 10−4. Our
data in the vicinity of the critical temperature include the SSD
error by an order of 10−3 to 10−2 as shown in Fig. 7(b). The
difference between the neighboring effective temperatures at
Tc is more than 10−3 even in the system of L = 15 000. The
Bayesian inference realizes an accuracy almost ten times bet-
ter than these SSD errors.

Since the SSD approximation is generally good at the cen-
ter of the system, we can reduce the SSD error in the critical
region by setting the simulation temperature to the critical
temperature [in the same context as shown in Figs. 5(b) and
5(c)]. Figure 7(d) shows the result of the specific heat. The
error bars near Tc are much larger than the result of kBT =
0.5. The present number of MCSs may not be sufficient be-
cause a real simulation temperature is a critical temperature
and a critical slowing down may occur. In this model, the
specific heat diverges at Tc. The exact solution shows that
the specific heat reaches C ∼ 2 when the temperature ap-
proaches |T − Tc| = 4×10−4. This exact value is reproduced
by the Monte Carlo simulation data for L = 15 000 within the
error bar.
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FIG. 8. (a) Functional form of Eq. (58) and SSD, and the
corresponding effective temperature kBTeff as functions of r/R.
(b) Deformation error |ebulk + 〈σγ σγ ′ 〉| calculated using case (ii) by
replacing the SSD functions with the three other functions given
in Eq. (58). The bond energies for different kBTeff are obtained at
different locations of the system of L = 200 along the rows.

D. Other deformation functions

So far we have studied the effect of SSD on classical Ising
models. However, unlike for the quantum models, our results
may suggest that the SSD is not the special deformation for
classical models. To clarify this point, we perform the same
calculation as case (ii) for other envelope functions. We adopt
three functions

fsin(r) = sin

[
π

2

(
1 − r

R

)]
, (56)

flinear (r) = 1 − r

R
, (57)

fpw(r) =
(

1 − r

R

)2

(58)

whose spatial dependence and corresponding kBTeff as func-
tions of r/R are shown in Fig. 8(a). We find that the slopes of
fsin(r) and fpw(r) are decreasing and increasing functions of
r/R, while the slope of flinear (r) is a constant; the slope of SSD
is first a decreasing function and then becomes an increasing
function. Figure 8(b) shows two panels with different system
temperatures kBT = 0.5 and 2.2692(= kBTc) calculating the
deformation error (SSD error) of the bond energy along the
rows as a function of kBTeff . For kBT = 0.5, fpw gives a
smaller deformation error than the other three, but for kBT =
2.2692 the same fpw gives the largest deformation error. The
ones for fsin and flinear also have different tendencies depend-
ing on kBT . This is because the deformation error overall
tends to increase as the slope d (kBTeff )/dr becomes larger, as
we discussed previously. The temperature slope at each kBTeff

varies depending on the system temperature and the choice of
envelope functions. However, since the slope of SSD varies
with a moderate tendency compared to the other three cases
and we have the optimal zero slope d (kBTeff )/dr = 0 at both
r/R = 0 and 1, it is sustained as a moderately stable function,
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not depending much on the system parameters. Therefore,
although one may choose other functions for their purposes,
the SSD may be regarded as an optimal function in the sense
that it does not require tuning of parameters.

V. SUMMARY AND DISCUSSION

We analyzed the 1D and 2D ferromagnetic Ising models
with spatially deformed interactions in the sine-square func-
tional form. We found that this interaction-deformed system
is equivalent to the uniform-interaction system with spatially
deformed temperature. To be more precise, we showed by
analytical and numerical analyses that this deformed classical
system is an assemblage of small subsystems. Each subsystem
locally realizes the equilibrium of a uniform system at its own
effective temperature. We proposed that this classical SSD at
finite temperature gives an approximate extended canonical
ensemble with its state indices spanning real space.

In the analytical calculation, we first extended the formu-
lation of the conventional transfer-matrix method to that of
the nonuniform system. We showed that the partition function
is exactly obtained even though the interaction is deformed in
one direction; this fact is rather trivial in one dimension, as the
eigenstate of the transfer matrix defined on each bond does not
depend on the strength of the interactions. In two dimensions
the transfer matrices are defined in a unit of a column of
the lattice of length L, describing the contributions from 2L

different configurations of the Ising variables. Referring to
the previously established approach, the Ising variables are
transformed to the noninteracting 1D fermionic operators, and
2L ensemble averages of the Ising variables are mapped to the
summation of 2L different many-body states constructed from
the noninteracting one-body states of Bogoliubov fermions.
For demonstration, these formulas were numerically evalu-
ated in 1D and 2D Ising models with SSD for system size
L = 10–500. Note that it is practically possible to extend
it to L � 10 000 if needed, as it is a one-body problem of
fermions on a chain of length L. In the uniform 2D system,
the above-mentioned Bogoliubov quasiparticles are itinerant

plane waves characterized by wave numbers, but once the
SSD turns on, they mix via scattering of the SSD potential
and form a set of spatially localized wave-packet states. At the
same time, according to our picture, a system with spatially
nonuniform interaction bonds Ji at the temperature kBT could
be interpreted as a spatially uniform system with interaction
bonds J exposed to the spatially varying effective temperature
kBTeff/J = kBT/Ji. Then the quasiparticle localized on a cer-
tain bond feels the effective temperature and carries an energy
corresponding to that of the bulk system at kBTeff . The trace of
the product of the exponentials of these quasiparticle energy
gives the partition function. The constituent of this product in
a unit of the localized wave packet gives the local partition
function, carrying an energy typical of that location. The sys-
tem thus becomes a canonical ensemble of wave-packet states
representing the thermal equilibrium at temperature kBTeff . We
showed that this picture is valid by numerically evaluating the
bond energy exactly for a finite-size L. Its deviation from the
exact value in the thermodynamic limit is suppressed to less
than 10−3.

A practical advantage of using the SSD is that it generates
a massive number (L/2) of data points with different kBTeff by
a single calculation at fixed kBT . Therefore, we can perform
Monte Carlo simulations on a large system and obtain a wide
profile of the energy and the specific heat within sufficient
accuracy with a low numerical cost. The SSD error is found to
scale roughly with 1/

√
L. When combined with the Gaussian

kernel regression, the accuracy improves beyond the SSD
error. The applications of the SSD to the MC simulations are
very promising.
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