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Max Jauregui,1,* Anna L. F. Lucchi ,2,3 Jean H. Y. Passos,2,3 and Renio S. Mendes2,3

1Departamento de Matemática, Universidade Estadual de Maringá, Av. Colombo, 5790 CEP 87020-900 - Maringá - PR - Brazil
2Departamento de Física, Universidade Estadual de Maringá, Av. Colombo, 5790 CEP 87020-900 - Maringá - PR - Brazil

3National Institute of Science and Technology for Complex Systems, Rua Xavier Sigaud 150, 22290-180 Rio de Janeiro, Brazil

(Received 6 May 2021; accepted 13 September 2021; published 23 September 2021)

We investigate a family of generalized Fokker-Planck equations that contains Richardson and porous media
equations as members. Considering a confining drift term that is related to an effective potential, we show
that each equation of this family has a stationary solution that depends on this potential. This stationary solution
encompasses several well-known probability distributions. Moreover, we verify an H theorem for the generalized
Fokker-Planck equations using free-energy-like functionals. We show that the energy-like part of each functional
is based on the effective potential and the entropy-like part is a generalized Tsallis entropic form, which has an
unusual dependence on the position and can be related to a generalization of the Kullback-Leibler divergence.
We also verify that the optimization of this entropic-like form subjected to convenient constraints recovers the
stationary solution. The analysis presented here includes several studies about H theorems for other generalized
Fokker-Planck equations as particular cases.
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I. INTRODUCTION

The Gaussian and exponential distributions frequently ap-
pear in the study of many physical systems. In fact, the
Gaussian distribution is in a privileged position, since it is the
limit distribution for the sum of independent random variables
with finite variance according to the central limit theorem [1].
On the other hand the exponential distribution is also of great
importance in statistical mechanics, since it is at the core of
the Boltzmann-Gibbs weight [2].

In addition to the Gaussian and the exponential dis-
tributions, others have been employed in the analysis of
many natural, social, and artificial systems. For instance, the
Laplace distribution appears in the analysis of virtual and
traditional currency exchange rates [3]; a generalization of this
distribution, sometimes called exponential power or Subbotin
distribution [density proportional to exp(−β|x|r )], occurs as
a generalized law of errors [4]. In medicine, a study about
the incidence of the most prevalent cancer types in relation to
the age of the patients employs the gamma distribution [5],
which contains the exponential one as a special case. Another
generalization of the exponential distribution, called Weibull
distribution, has several applications in physics and economy
[6].

All the distributions mentioned in the last paragraph in-
volve the exponential function in their definitions. In addition
to them, power-law distributions commonly appear in the
study of complex systems. In this direction, a few but
representative examples are listed in the following. The q-
exponential distribution [density proportional to [1 − (1 −
q)βx]1/(1−q)], which is a generalization of the exponential
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distribution related to the nonextensive statistical mechanics
[7], is used to describe the distribution of scientific citations
[8]. The distribution of price returns of the Standard & Poor’s
500 stock market [9] is well fit by a q-Gaussian distribution
[density proportional to [1 − (1 − q)βx2]1/(1−q)], which is a
generalization of the Gaussian one. The q-gamma distribu-
tion [density proportional to xα−1[1 − (1 − q)βx]1/(1−q)] is a
generalization of the gamma distribution that is applied to
characterize the volume distribution in diverse stock markets
in the high-frequency scale [10–13]. Finally, the number of
active cases in the first months of the COVID-19 pandemic has
been modeled by a generalization of the q-gamma distribution
[density proportional to xa[1 − (1 − q)βxr]1/(1−q)] [14].

In the study of diffusion processes, a well-known fact is
that the fundamental solution of the usual linear diffusion
equation is a Gaussian distribution. In addition, several works
have considered generalized diffusion equations which have
solutions related to non-Gaussian distributions; for instance,
Subbotin and q-Gaussian ones. These generalizations usually
involve the use of a variable diffusion coefficient [15,16], the
addition of nonlinear terms [16–19], or the employment of
fractional derivatives [20–22]. In the context of probability
distributions, the linear diffusion equation can be interpreted
as a Fokker-Planck equation [17,23]. If the drift term is con-
fining and proportional to x, this equation has a stationary
solution which is a Gaussian distribution [23]. If we consider
more general diffusion equations and, consequently, general-
ized Fokker-Planck equations, we could expect to obtain all
the well-known distributions mentioned before as stationary
solutions. Furthermore, the relaxation towards stationary so-
lutions has been investigated in several studies in connection
with H theorems using free-energy-like functionals [16,24–
29]. These functionals are constituted by an energy-like part
and an entropy-like part. An important result of this kind
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of study is the possible emergence of new types of internal
energies and of entropic forms. In particular, these new en-
tropic forms and related distributions may find applications,
for instance, in the study of complex systems.

Despite the recent advances in the study of nonlinear
Fokker-Planck equations and H theorems associated with
them [16,27,28,30–32], additional attention should be paid
to obtaining solutions, new entropic forms, and a connection
between them. In this direction, we will investigate here a
family of generalized Fokker-Planck equations (see Sec. II)
whose stationary solution (see Sec. III) contains all the dis-
tributions mentioned before as particular cases. We show that
an effective potential, depending on the diffusion coefficient,
could appear in the expression of the stationary solution.
Moreover, we verify an H theorem (see Sec. IV) considering
a free-energy-like functional composed by an internal energy,
which is a mean of the effective potential, and a generalized
Tsallis entropic form. We reveal that this entropic form, which
depends on the position, can be connected to a generaliza-
tion of the Kullback-Leibler divergence. In connection with a
maximum entropy principle, we consider the possibility of de-
composing the free-energy-like functional into other internal
energies and entropic forms. We show that the optimization of
the generalized Tsallis entropic form subjected to convenient
constraints recovers the stationary solution, which does not
happen, in general, for other entropic forms. Finally, conclud-
ing remarks are given in Sec. V.

II. A FAMILY OF GENERALIZED
FOKKER-PLANCK EQUATIONS

Motivated by the similitude between Fokker-Planck and
diffusion equations, we start our study of a generalized
Fokker-Planck equation reviewing some aspects of diffu-
sion equations related to well-known distributions. In this
direction, we first consider the time-dependent generalized
q-gamma distribution

ρ(x, t ) = N
|x|a

t (a+1)s/r

(
1 − A

|x|r
t s

)c

+
, (1)

where (x)+ = max{x, 0}, a and s are arbitrary real constants,
c �= 0, r �= 0, A �= 0, and N > 0 is a normalization constant
[obtained from

∫ +∞
−∞ ρ(x, t )dx = 1]. We note that this dis-

tribution encompasses the possibility of power-law behavior
for x → 0 and for x → ±∞. In addition, Eq. (1) contains a
function that involves the exponential function as a particular
case. Indeed, choosing A = β/c, β > 0, and taking the limit
c → +∞, we obtain

ρ̄(x, t ) = lim
c → +∞
A = β/c

ρ(x, t )

= |r|β�

2�(�)

|x|a
t (a+1)s/r

exp

(
−β

|x|r
t s

)
, (2)

where � = (a + 1)/r and �(·) stands for the gamma function.
Exceptionally, we note that, if r < 0, the function ρ̄(x, t ) does
not have a power-law asymptotic behavior near the origin.

The functions ρ(x, t ) and ρ̄(x, t ), defined by Eqs. (1) and
(2), yield time-dependent solutions of several diffusion equa-
tions after choosing appropriate values for their parameters.

For instance, considering a = 0, r = 2, s = 1, β = 1/4D,
D > 0 in Eq. (2), we have

ρ̄(x, t ) = 1√
4πDt

exp

(
− x2

4Dt

)
, (3)

which is the fundamental solution of the usual linear diffusion
equation

∂ρ̄

∂t
= D

∂2ρ̄

∂x2
. (4)

A generalization of Eq. (3) can also be obtained from Eq. (2)
by not fixing the value of the parameter r. In this case we
obtain

ρ̄(x, t ) = |r|β1/r

2�(1/r)t1/r
exp

(
−β

|x|r
t

)
, (5)

which is a solution of the diffusion equation

∂ρ̄

∂t
= D

∂

∂x

[
|x|2−r ∂ρ̄

∂x

]
, (6)

where D = 1/r2β. Equation (6) was originally proposed by
Richardson [15], who considered r = 2/3. We note that
Eqs. (6) and (5) recover respectively Eqs. (4) and (3) if r = 2.

Considering a = 0, c = 1/(1 − q), r = 2, s = 2/(3 − q),
and A = (1 − q)β in Eq. (1), where q < 2 and β > 0, we
obtain

ρ(x, t ) = N

t1/(3−q)

[
1 − (1 − q)β

x2

t2/(3−q)

]1/(1−q)

+
. (7)

We can verify that this function, which is a q-Gaussian distri-
bution [33], is a solution of the following nonlinear diffusion
equation [17]:

∂ρ

∂t
= D

∂2ρ2−q

∂x2
, (8)

where D = Nq−1/[2(2 − q)(3 − q)β]. Equation (8) is usually
called the porous media equation [34–36], which appears,
for instance, in the discussion of the percolation of gases
through porous media [34], thin saturated regions in porous
media [37], and thin liquid films spreading under gravity [38].
Straightforwardly, we can verify that Eqs. (7) and (8) recover
Eqs. (3) and (4) if q → 1.

Up to now, all the functions that we have shown as particu-
lar cases of Eqs. (1) and (2) have been obtained by considering
a = 0. A particular case with a �= 0 can be obtained restricting
Eq. (1) for x � 0 and choosing, for instance, r = s = 1, a =
a′ − 1, c = b′ − 1, and A = 1, where a′ > 0, b′ > 0. Thus,

ρ(x, t ) = xa′−1

B(a′, b′)t a′

(
1 − x

t

)b′−1
, x � 0, (9)

which is a beta distribution, where B(·, ·) stands for the beta
function. This function has been employed to model parlia-
mentary presence and is a solution of the following diffusion
equation [19]:

∂ρ

∂t
= D

∂

∂x

[
xa′

t a′/(b′−1) ∂

∂x

( ρ

xa′−1

)b′/(b′−1)
]
, (10)

where D = (b′)−1[B(a′, b′)]1/(b′−1).
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In a more general framework, a diffusion equation that has
the function ρ(x, t ), defined in Eq. (1), as a solution is given
by (see Appendix)

∂ρ

∂t
= D

∂

∂x

[
|x|a+θ t δ ∂

∂x

(
ρ

|x|a
)ν]

, (11)

where θ = 2 − r, ν = 1 + 1/c, δ = s − 1 + (a + 1)s/rc, and

D = s

AN1/c(c + 1)r2
. (12)

We note immediately that the diffusion equations (4), (6), (8),
and (10) are particular cases of Eq. (11).

A more general scenario, which encompasses Eq. (11),
occurs if we consider the family of diffusion equations

∂ρ

∂t
= ∂

∂x

{
D(x, t )

∂

∂x

[
ρ

C(x, t )

]ν}
, (13)

where D(x, t ) and C(x, t ) are non-negative functions. To in-
vestigate stationary solutions and H theorems related to this
family of equations, we focus our attention on the equation

∂ρ

∂t
= − ∂

∂x
[A(x)ρ] + ∂

∂x

{
D(x)

∂

∂x

[
ρ

C(x)

]ν}
, (14)

where A(x) is a drift coefficient and D(x) and C(x) are
non-negative functions. In addition, we consider Eq. (14) in
connection with probability distributions. Thus, Eq. (14) will
be interpreted as a generalized Fokker-Planck equation.

III. STATIONARY SOLUTIONS

A stationary solution ρs(x) of Eq. (14) must satisfy the
equation

d

dx

{
−A(x)ρs + D(x)

d

dx

[
ρs

C(x)

]ν}
= 0. (15)

Taking into account the reasonable assumption that ρs(x) and
its derivative converge to 0 as |x| → +∞, we have that ρs(x)
must be a solution of the equation

D(x)
d

dx

[
ρs

C(x)

]ν

= A(x)ρs. (16)

If ν �= 1, this equation can be written as

d

dx

[
ρs

C(x)

]ν−1

= ν − 1

ν

C(x)A(x)

D(x)
. (17)

Hence,

ρs(x) = C(x)

[
K − ν − 1

ν
V (x)

]1/(ν−1)

+
, (18)

where [x]+ = max{x, 0}, K is an integration constant that may
be determined using a normalization condition, and V (x) is a
function such that

dV

dx
= −C(x)A(x)

D(x)
, (19)

which can be interpreted as an effective potential. Equation
(18) can be rewritten as

ρs(x) = NC(x) exp2−ν

[
− V (x)

νNν−1

]
, (20)

where N is a normalization constant and

expq (x) = ex
q =

{
ex for q = 1
[1 + (1 − q)x]1/(1−q)

+ for q �= 1,
(21)

which is usually referred as the q-exponential function.
If ν = 1, Eq. (16) can be reduced to the equation

d

dx
ln

[
ρs

C(x)

]
= C(x)A(x)

D(x)
(22)

and, consequently,

ρs(x) = NC(x)e−V (x), (23)

where N is a normalization constant. Moreover, we note that
Eq. (23) follows immediately from Eq. (20) if we take the
limit ν → 1. Furthermore, Eqs. (20) and (23) give rise to the
possibility of interpreting the function C(x) as a density of
states.

To put in evidence the role of the effective potential V (x),
let us suppose that A(x) comes from a potential function φ(x),
i.e., A(x) = −φ′(x). In this case, the effective potential V (x)
would not be proportional to the original one φ(x) (except
for an additive constant) unless the ratio C(x)/D(x) is a con-
stant. As an example, we can briefly discuss the particular
case of Eq. (14) with A(x) = −k|x|λ−1x, k > 0, λ ∈ R. If
λ = 1 and both C(x) and D(x) are constant functions, we
can immediately verify that Eq. (19) implies that V (x) is a
harmonic potential. However, Eq. (19) shows that V (x) can
be very different from the harmonic potential if C(x) and
D(x) are nonconstant functions. On the other hand, if λ �= 1,
there are infinite possibilities for choosing the functions C(x)
and D(x) such that the effective potential V (x) is a harmonic
one. For instance, if we consider D(x) = |x|α and C(x) = |x|β
with β − α = 1 − λ, then we can obtain from Eq. (19) that
V (x) = kx2/2, where we have omitted a possible additive
constant.

As we have remarked in Sec. II, Eq. (14) can be seen
as a large family of generalized Fokker-Planck equations
that contains a broad spectrum of solutions. In particular,
its stationary solution, given by Eq. (20), encompasses sev-
eral well-known distributions, specially, all the probability
distributions mentioned in the introduction. For instance, a
q-Gaussian distribution can be obtained from Eq. (20) by
considering C(x) = 1 and V (x) ∝ x2. Moreover, if we con-
sider x � 0, C(x) = xa and V (x) ∝ xr in Eq. (20), we obtain a
generalized q-gamma distribution

ρs(x) = Nxae−βxr

2−ν , (24)

where β is a constant proportional to ν−1N1−ν . This distribu-
tion includes Weibull (a = r − 1 and ν → 1), gamma (r = 1
and ν → 1), and q-gamma (r = 1) distributions as particular
cases.

We stress that the stationary solution of Eq. (14) is ex-
pressed in terms of the functions C(x) and V (x), and the
effective potential V (x) depends on the ratio of C(x)A(x) and
D(x) [see Eq. (19)]. Hence, if the function C(x) is fixed, V (x)
can in principle be any function since we can conveniently
choose the ratio A(x)/D(x) in order to obtain the desired
expression for the effective potential V (x). As a consequence,
different members of the family of equations (14) can have
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the same stationary solution. Curiously, we note that Eq. (14)
may have a stationary solution even if we consider a null drift
term. In fact, A(x) = 0 leads to a constant effective potential
V (x) and Eq. (20) reduces to ρs(x) = NC(x). In this case, C(x)
must be a normalizable function, which can be interpreted as
a probability distribution. We can understand the peculiarity
related to A(x) = 0 in Eq. (14) noting that the solely presence
of the function C(x) in this equation yields an unusual drift
term. Indeed, Eq. (14) can be written as

∂ρ

∂t
= − ∂

∂x

[
Ã(x, ρ)ρ

] + ∂

∂x

[
D̃(x)

∂ρν

∂x

]
, (25)

where

Ã(x, ρ) = A(x) + ν
D̃(x)

C(x)

dC(x)

dx
ρν−1, (26)

and

D̃(x) = D(x)

[C(x)]ν
. (27)

Thus, we identify the second term on the right-hand side of
Eq. (26) as the referred unusual drift term, which depends on
ρ(x, t ) if ν �= 1. On the other hand, D̃(x) can be viewed as an
effective diffusion coefficient.

IV. H THEOREM

As it has been done for other generalized Fokker-Planck
equations [16,27,28], an H theorem can be verified consider-
ing a free-energy-like functional F = U − S. In our case, we
can verify this theorem for Eq. (14) using

U =
∫ +∞

−∞
V (x)ρdx, (28)

and

S =
∫ +∞

−∞

[C(x)]1−νρν − ρ

1 − ν
dx. (29)

The functional U would play the role of an internal energy
unless by a multiplicative constant, possibly related to a gen-
eralized temperature. On the other hand, the functional S can
be viewed as an entropic-like form.

The time derivative of F is given by

dF

dt
=

∫ +∞

−∞

{
V (x) − [C(x)]1−ννρν−1 − 1

1 − ν

}
∂ρ

∂t
dx. (30)

Using Eq. (14), we have

dF

dt
=

∫ +∞

−∞

{
V (x) − [C(x)]1−ννρν−1 − 1

1 − ν

}

× ∂

∂x

{
−A(x)ρ + D(x)

∂

∂x

[
ρ

C(x)

]ν}
dx. (31)

Then, integrating by parts and assuming that ρ(x, t ) ap-
proaches 0 rapidly enough as |x| increases beyond all bounds,
we have

dF

dt
= −

∫ +∞

−∞

{
−C(x)A(x)

D(x)
+ ν

ν − 1

∂

∂x

[
ρ

C(x)

]ν−1}

×
{
−A(x)ρ + D(x)

∂

∂x

[
ρ

C(x)

]ν}
dx

= −
∫ +∞

−∞

D(x)ρ

C(x)

{
−C(x)A(x)

D(x)

+ ν

ν − 1

∂

∂x

[
ρ

C(x)

]ν−1}2

dx. (32)

Therefore, since ρ(x, t ), D(x), and C(x) are assumed to be
non-negative functions, we have

dF

dt
� 0, (33)

which can be seen as an H theorem associated with Eq. (14).
In addition to the last result, by virtue of Eq. (18), the ef-

fective potential V (x) can be written in terms of the stationary
solution ρs(x) as

V (x) = ν

ν − 1

{
K −

[
ρs

C(x)

]ν−1}
. (34)

Using this in Eq. (28), we obtain that the free-energy-like
functional F is given by

F (ρ) = νK − 1

ν − 1

+
∫ +∞

−∞

1

[C(x)]ν−1

(
ρν

ν − 1
− νρν−1

s ρ

ν − 1

)
dx,

(35)

where we have used the normalization condition
∫ +∞
−∞ ρdx =

1. Hence,

F (ρ) − F (ρs) =
∫ +∞

−∞

ρν
s

[C(x)]ν−1
g

(
ρ

ρs

)
dx, (36)

where

g(z) = zν − νz

ν − 1
+ 1, z � 0. (37)

Considering ν > 0, we note that the function g(z) has a global
minimum at the point 1 and, consequently, g(z) � g(1) = 0
for all z � 0. Using this fact in Eq. (36), we obtain

F (ρ) � F (ρs). (38)

The essence of the H theorem associated with Eq. (14) is
that, if we assume that ρs(x) is the only stationary solution of
Eq. (14) for ν > 0, by virtue of the inequalities (33) and (38),
every solution of Eq. (14) tends to ρs(x) as t increases without
bound, i.e., ρs(x) is the equilibrium solution.

The entropic-like form S given in Eq. (29), which has an
unusual dependence on the position, can be seen as a general-
ization of the Tsallis entropic form [33],

Sν =
∫ +∞

−∞

ρν − ρ

1 − ν
dx, (39)

since Eq. (39) can be obtained from Eq. (29) by taking C(x) =
1. In particular, if C(x) = 1 and ν → 1 we recover the Shan-
non entropic form. These entropic forms can be compactly
written employing the q-logarithmic function

lnq x =
{

ln x for q = 1
x1−q−1

1−q for q �= 1.
(40)
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Indeed, using this function, we have

S = −
∫ +∞

−∞
ρ ln2−ν

[
ρ

C(x)

]
dx. (41)

In statistical mechanics, a well-known procedure to obtain
equilibrium distributions consist in optimizing the entropy
taking into account some constraints. This procedure can
also be implemented considering other entropic forms; for
instance, in the study of complex systems. To illustrate this
approach, we consider here the optimization of the entropic
form given in Eq. (41) subjected to the constraints∫ +∞

−∞
ρdx = 1 and

∫ +∞

−∞
ρṼ (x)dx = U . (42)

In this direction, we consider the functional

L =
∫ +∞

−∞
ρ ln2−ν

[
ρ

C(x)

]
dx − α̃

(∫ +∞

−∞
ρdx − 1

)

− β̃

(∫ +∞

−∞
ρṼ (x)dx − U

)
,

(43)

where α̃ and β̃ are Lagrange multipliers. The solution of
the equation δL/δρ = 0 leads to the generalized Boltzmann-
Gibbs distribution

ρ(x) = NC(x) exp2−ν[−βṼ (x)], (44)

where N is a normalization constant and β is a parameter
related to the Lagrange multipliers. We note that this distribu-
tion coincides with the stationary solution given in Eq. (20)
if Ṽ (x) is equal to the effective potential V (x). Moreover,
if we only consider the normalization constraint, we obtain
ρ(x) = NC(x), provided that C(x) can be normalized. This
result recovers the case of equiprobability when C(x) is a
constant function on a compact interval.

As a final remark about the representation of the entropic
form S given in Eq. (41), we note that −S can be formally
seen as a generalized relative entropy [39]. In fact, if ν → 1,
−S reduces to the usual form of the relative entropy, which
is also known as the Kullback-Leibler divergence. In this
context, C(x) should be thought as a probability distribution,
which could be also seen as a normalized density of states in
connection with Eq. (20).

The terms in the free-energy-like functional F can be ar-
ranged in a different manner considering other definitions for
its internal energy and entropic form parts. In this direction,
we can write F = U − Sν , where Sν is the Tsallis entropic
form given in Eq. (39) and

U =
∫ +∞

−∞
[ρV (x) − ρν lnν C(x)]dx. (45)

We note that if C(x) = 1 for every x, the two forms of writing
the functional F , namely, as U − S or U − Sν become identi-
cal. For other definitions of the function C(x), the functionals
U and U differ by the term − ∫ +∞

−∞ ρν lnν C(x)dx, which seems
like a mean of the “potential” − lnν C(x) weighted by ρν . This
kind of mean has been employed in several works related to
the nonextensive statistical mechanics [7,33].

The two ways of decomposing the functional F discussed
here indicates the necessity of the introduction of unusual

terms. If we retain a conventional internal energy part, the
remaining terms in F compose an unusual entropic form,
depending on the position. On the other hand, if we consider
a Tsallis entropic form in the functional F , we are led to
an unconventional internal energy, involving a pseudomean
which does not return 1 when it is applied to 1. Nevertheless,
the optimization of the Tsallis entropic form subjected to the
constraints

∫ +∞
−∞ ρdx = 1 and U = constant leads to a distri-

bution which is different from the stationary solution given in
Eq. (20). In fact, in this case we obtain

ρ(x) = Neβ̃ lnν C(x)
ν e−βV (x)

2−ν , (46)

where β is a constant related to the Lagrange multiplier β̃ and
N is a normalization constant. This indicates that the manner
of decomposing the functional F as composed by an internal
energy and an entropic form should be carefully thought out.
In particular, our options of decomposition are restricted if we
desire to have an agreement between the stationary solution
and the distribution that optimizes the entropic form. In this
direction, the decomposition F = U − S seems to be a better
choice than F = U − Sν .

V. CONCLUSIONS

We have investigated a broad family of generalized Fokker-
Planck equations that contains Richardson [15] and porous
media equations [16,17] as particular members [see Eq. (14)].
We have found for each equation of this family a stationary
solution considering that the drift term A(x) is confining.
Moreover, this stationary solution only depends on the func-
tions C(x) and an effective potential V (x) [see Eq. (20)]. Since
V (x) depends on the ratio of C(x)A(x) and D(x), different
members of the family of equations (14) can have the same
stationary solution. Curiously, if V (x) is a constant func-
tion, Eq. (14) may still have a stationary solution, which is
proportional to C(x). Another characteristic of the stationary
solutions is that a large set of well-known distributions can
be obtained as particular cases; for instance, Weibull, gamma,
and q-gamma distributions.

In addition to finding stationary solutions for the pro-
posed family of generalized Fokker-Planck equations, given
in Eq. (14), we have verified an H theorem for each member of
this family. The H theorem allows us to say that, if a general-
ized Fokker-Planck equation has a unique stationary solution
ρs(x), then any (well-behaved) solution of this equation tends
to ρs(x) as time increases without bound. Thus, ρs(x) turns
out to be the equilibrium solution. To verify the H theorem,
we have considered a free-energy-like functional F = U − S,
as done in several articles on this subject [16,27,28]. In our
study, U is the average of the effective potential V (x) and
S is an entropic-like form that generalizes the Tsallis one
[7,33]. The optimization of this entropic-like form taking into
account a normalization condition and a constant value for U
also yields the stationary solution ρs(x). A further fact about
this entropic-like form S [see Eq. (29)] is that it can depend
explicitly on the position since it contains the function C(x)
in its definition. Remarkably, −S has the form of a gener-
alized Kullback-Leibler divergence, indicating the possibility
of further investigations or applications out of the context of
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H theorem and Fokker-Planck equations; for instance, in the
study of complex systems.

We have also shown that the free-energy-like functional F
is consistent with different definitions of internal energy and
entropic form. In particular, we have exhibited two ways of
decomposing the functional F , which reveal the necessity of
considering unusual terms. In fact, we need to consider an
unusual entropic form, depending on the position, or an un-
conventional internal energy, involving a pseudomean which
does not return 1 when it is applied to 1. However, the use of
the latter in the optimization of the Tsallis entropic form leads
to a distribution which is not consistent with the stationary so-
lution ρs(x). Thus, the manner of decomposing the functional
F as composed by an internal energy and an entropic form can
induce undesirable results.

More general situations than the one discussed in this work
can be conducted considering, for instance, that the functions
D and C depend explicitly on the distribution ρ in addition
to the position. In this case we can expect that other effective
potentials and other relative entropic forms may emerge. A
more ambitious study of these two aspects could be based
on generalizations of the Fokker-Planck equation additionally
involving fractional derivatives. Furthermore, in principle, all
these possible investigations could be also extended for more
than one dimension.
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APPENDIX: AN ELEMENTARY DEDUCTION OF EQ. (11)

We will briefly describe how to obtain a diffusion equa-
tion that has the distribution ρ(x, t ), defined in Eq. (1), as a
solution. As a starting point, we consider the equation

∂ρ̃

∂τ
= D̃

∂

∂x

(
|x|θ ∂ρ̃ν

∂x

)
(ν �= 1). (A1)

A solution for this equation is the function [18]

ρ̃(x, τ ) = N

τ c/(rc+1)

(
1 − A

|x|r
τ rc/(rc+1)

)c

+
, (A2)

where r = 2 − θ , c = 1/(ν − 1), and A and N are constants
satisfying the relation

D̃ = rc

AN1/c(c + 1)(rc + 1)r2
. (A3)

If τ = tγ+1 and ρ̃(x, τ ) = ρ0(x, t ), then Eq. (A1) reads

∂ρ0

∂t
= D

∂

∂x

(
|x|θ tγ ∂ρν

0

∂x

)
, (A4)

where D = (γ + 1)D̃. In addition, Eq. (A2) assumes the form

ρ0(x, t ) = N

ts/r

(
1 − A

|x|r
t s

)c

+
, (A5)

where r = 2 − θ , c = 1/(ν − 1), s = (γ + 1)rc/(rc + 1),
and A and N are constants connected with D by Eq. (12). The
function ρ(x, t ), defined by Eq. (1), is related to the function
ρ0(x, t ) by the equation

ρ(x, t ) = |x|a
tas/r

ρ0(x, t ). (A6)

Then, using Eq. (A4), the following differential equation is
certainly satisfied:

∂

∂t

(
t as/r

|x|a ρ

)
= D

∂

∂x

[
|x|θ tγ ∂

∂x

(
t as/r

|x|a ρ

)ν]
. (A7)

Employing the product rule of differentiation on the time
derivative and on the outer spatial derivative, we obtain

as

rt
ρ + ∂ρ

∂t
= Dt δ|x|a ∂

∂x

[
|x|θ ∂

∂x

(
ρ

|x|a
)ν]

, (A8)

where δ = γ + (ν − 1)as/r. Then,

as

rt
ρ + ∂ρ

∂t
= −aDt δ|x|a+θ−1 ∂

∂x

(
ρ

|x|a
)ν

+ Dt δ ∂

∂x

[
|x|a+θ ∂

∂x

(
ρ

|x|a
)ν]

.

(A9)

Using Eq. (1), we can verify that the first terms on both
sides of Eq. (A9) are identical. Therefore, the function ρ(x, t ),
defined by Eq. (1), is a solution of Eq. (11).
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