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Droplet condensation in the lattice gas with density functional theory
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A density functional for the lattice gas with next-neighbor attractions (Ising model) from fundamental measure
theory is applied to the problem of droplet states in three-dimensional, finite systems. The density functional
is constructed via an auxiliary model with hard lattice gas particles and lattice polymers to incorporate the
attractions. Similar to previous simulation studies, the sequence of droplets changing to cylinders and to planar
slabs is found upon increasing the average density ρ̄ in the system. Owing to the discreteness of the lattice,
additional effects in the state curve for the chemical potential μ(ρ̄ ) are seen upon lowering the temperature
away from the critical temperature [oscillations in μ(ρ̄ ) in the slab portion and spiky undulations in μ(ρ̄ ) in
the cylinder portion as well as an undulatory behavior of the radius of the surface of tension Rs in the droplet
region]. This behavior in the cylinder and droplet region is related to washed-out layering transitions at the
surface of liquid cylinders and droplets. The analysis of the large-radius behavior of the surface tension γ (Rs )
gave a dominant contribution ∝ 1/Rs

2, although the consistency of γ (Rs ) with the asymptotic behavior of the
radius-dependent Tolman length seems to suggest a weak logarithmic contribution ∝ ln Rs/Rs

2 in γ (Rs ). The
coefficient of this logarithmic term is smaller than a universal value derived with field-theoretic methods.
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I. INTRODUCTION

For the practical description of phase transitions in the
nucleation regime, the free energy of a critical nucleus of the
newly forming phase plays a prominent role. This is manifest
in classical nucleation theory for liquid drop nucleation in a
supersaturated gas where the formation free energy �F (Vd )
is simply described by a sum of a volume term (propor-
tional to the droplet volume Vd in a supersaturated bulk state)
and a surface term [1]. It is essential in kinetic approaches
where a formation rate of new droplets is proportional to
exp[−β�F (Vd )] and thus inverse exponentially dependent on
the formation free energy [here, β = 1/(kBT ) is the inverse
temperature]. However, a critical droplet is at best metastable
and it is problematic to associate a free energy with it since
the free energy is an equilibrium concept.

To avoid such complications, a thermodynamic method for
the estimation of �F (Vd ) has been developed some years
ago [2–5]. It is based on the analysis of equilibrium states
in a finite volume (box) (with periodic boundary conditions)
in the canonical ensemble. For a given box size in three
dimensions (3D), the variation of the particle number (den-
sity) from the coexistence vapor density to the coexistence
liquid density leads through a sequence of states described
by supersaturated vapor → droplets → liquid cylinders →
planar interfaces → vapor cylinders → bubbles → undersat-
urated liquid. The excess free energy over the supersaturated
state (formation free energy of droplets and cylinders) can be
unambiguously computed since it belongs to an equilibrium
state. In a box with fixed size, the range of droplet radii in
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the droplet state is limited, and one obtains results for a larger
range of droplet radii by combining the results for different
box sizes.

This thermodynamic method has been mainly advanced
with simulations. The extraction of a radius-dependent surface
tension for droplets has been shown to be influenced by strong
finite-size effects whose analysis leads to the conclusion that
an asymptotic expansion of the surface tension in the inverse
radius 1/Rd should not only contain powers of 1/Rd but also
terms logarithmic in Rd. In 3D, the leading term, however, is
the term ∝ 1/Rd containing the famous “Tolman length” but
the next term is of this logarithmic type and varies ∝ ln Rd/R2

d
[6]. The available results in the literature show that the ex-
traction from simulations of the Tolman length and other,
subleading terms in the expansion of the surface tension is
by no means an easy task [2,7,8].

This gives a motivation to use theoretical tools in applying
the thermodynamic method, notably density functional theory
(DFT). For most systems of interest which show liquid-vapor
phase transitions the free-energy functional (as the necessary
prerequisite) is known only approximately but in contrast to
simulations the extrapolation of droplet surface tensions to
large radii is easier. A previously studied example was the
Lennard-Jones fluid where the simulation results indicate a
convergence of the asymptotic Tolman length to the DFT
result [3]. However, the next, subleading term did not agree
at all. Most likely this was due to the neglect of translational
entropy of the droplet in the analysis of the simulation results
(such a term is absent in DFT calculations where the droplet
is always in the center of the numerical box).

From a computational point of view lattice models are
easier, both for the elucidation of phase transition and wetting
phenomena with DFT [9,10] and for simulations.
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The comparable ease of simulations has triggered many
studies of droplets in the lattice gas or Ising model.
Among these are studies focusing on establishing the droplet
condensation-evaporation transition; see, e.g., Refs. [11,12]
and others looking more in detail on the actual nucleation
process [13–15]. Owing to the computational advantage, the
problem of the leading and subleading contributions to
the expansion of the surface tension (including the problem
of the translational entropy) was revisited in Ref. [7] in the
context of lattice models, the Ising model (lattice gas) in 2D
and an Ising-type model with three-spin interactions in 3D.
Therefore it appears to be a worthwhile exercise to apply
DFT methods to the droplet problem in lattice models for
complementary results on the expansion of the surface ten-
sion, using also the same type of finite boxes (note that in
DFT studies of continuum models usually spherical boxes are
employed [3,16,17]). In the present study we use a recently
developed density functional for the lattice gas [18] (much
improved compared to the standard mean-field functional) for
the description of droplet states in finite cubic boxes. We find
the sequence of states as described above but we also find
certain effects of the lattice discreteness in these states which
had not been reported so far. These include the existence
of equilibrium, planar interfaces under tension at chemical
potentials off coexistence (described in detail in Ref. [18])
and certain layering effects for the droplet and cylinder states.
The symmetry of the lattice gas shows that the expansion of
the surface tension must involve a zero Tolman length, so the
leading coefficients in 3D show a dependence ∝ ln Rd/R2

d and
∝ 1/R2

d.
The paper is structured as follows. In Sec. II we reca-

pitulate the essence of the lattice gas functional derived in
Ref. [18] as well as the phenomenological theory of droplet
states. Section III shows results for the possible states in-
side the gas-liquid binodal at three selected temperatures and
discusses the asymptotic expansions of the droplet surface
tension and a radius-dependent Tolman length. In Sec. IV we
summarize and conclude our work.

II. THEORY

A. Density functional theory for the lattice gas

The lattice gas model on a simple cubic lattice is defined
in terms of hard particles with mutual exclusion on the same
lattice site and which have nearest-neighbor attractions of
strength −ε. It is equivalent to the Ising model on the respec-
tive lattices. In the following, the lattice constant is set to 1.

We define an ensemble-averaged density ρc(s) for lattice
gas particles (where the index “c” stands for colloid) on
discrete lattice sites s of the lattice. In DFT, one defines a
functional for the grand potential [19].

�[ρc] = F id[ρc] + F ex[ρc] −
∑

s

[μ − Vext(s)]ρc(s), (1)

which is split into an ideal gas free-energy functional F id,
an excess free-energy functional F ex, and a remaining part
containing the chemical potential μ and the contribution of a
one-body external potential Vext(s). The ideal gas free-energy

functional is given by

βF id[ρc] =
∑

s

ρc(s)[ln ρc(s) − 1] (2)

(where β = 1/(kBT ) is the inverse temperature), and the ex-
cess functional is generally unknown.

In Ref. [18], we have derived an approximate excess func-
tional through the following procedure. First, the attractions
between the particles are viewed as effective depletion inter-
actions between the particles and lattice polymers of length 2
with which the particles interact hard. In 3D, there are three
species of such polymers and correspond to the orientation
α ∈ {x, y, z} of the polymer particle on the cubic lattice. The
lattice polymers do not interact with each other and hence
form a three-component ideal gas. [In spirit, this is a lattice
Asakura-Oosawa (AO) model.] Second, the partition function
of the lattice polymers is reformulated in terms of a partition
function for a mixture of polymer clusters, distinguished by
their orientation α and the number n of polymers they contain.
Two clusters of polymers with the same α but different n
cannot occupy the same lattice site, since the simultaneous
presence of two clusters with size n and m corresponds to a
cluster of size n + m. Therefore, one can represent the free-
energy functional of the polymers in terms of the functional
for a multicomponent hard lattice gas of clusters. Third, the
excess free-energy functional of the interacting system of lat-
tice gas particles and polymer clusters is approximated using
lattice fundamental measure theory (FMT).

The results of Ref. [18] are summarized best by first intro-
ducing an auxiliary functional ϒ̃ for the lattice AO system,
i.e., the system of lattice gas particles with density ρc(s)
coupled grand-canonically to the polymer clusters with orien-
tation α and with a total density ρpc,α (s) = ∑

n ρpcn,α (s) where
ρpcn,α (s) is the density of clusters of size n and orientation α.
The polymer cluster chemical potential β−1 ln ζα is the same
for all orientations, which defines an orientation-independent
activity ζα = ζ :

βϒ̃[ρc; {ρpc,α}] = βF id[ρc] +
∑

α

βF id[ρpc,α]

+βF̃ ex
AO[ρc, {ρpc,α}]

− ln ζ
∑

s

∑
α

ρpc,α (s). (3)

The activity of the polymer clusters is related to the attraction
strength ε by

ζ = exp(βε) − 1. (4)

The lattice FMT expression for the excess free energy
F̃ ex

AO[ρc, {ρpc,α}] of lattice gas particles and polymer clusters
is given in Appendix A.

Minimization of this lattice AO auxiliary functional with
respect to ρpc,α (s) gives an effective AO functional, depending
only on the lattice gas particle density profile ρc(s) and the
attraction strength through ζ :

F̃ eff
AO[ρc(s); ε(ζ )] = minρpc,α (s)ϒ̃[ρc; {ρpc,α}]. (5)

Finally, the full lattice gas functional is obtained by perform-
ing a necessary subtraction of a constant and one-body term
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in ρc(s) and is given by

Flg[ρc(s); ε(ζ )] = F̃ eff
AO

[
ρc(s); ρres

p

]
+ ρres

p

∑
s

∑
α

[
1 −

∑
s′∈{s,s+êα}

ρc(s′)

]
. (6)

Here, êα is a unit vector on the lattice in α direction and
ρres

p = βε = ln(ζ + 1) is the reservoir density of polymers
(which is the same for all polymer species). We name this
functional the “Highlander functional,” following the nomen-
clature in Ref. [20] where the idea of using polymer clusters
in the treatment of lattice AO models was introduced first.

Note that this functional is superior to the standard mean-
field functional, defined by

Fmf
lg [ρc] = β−1

∑
s

{ρc(s) ln ρc(s) + [1 − ρc(s)] ln[1−ρc(s)]}

− ε

2

∑
s

∑
s′∈n.n.(s)

ρc(s)ρc(s′). (7)

Here, the first sum is the exact functional for the hard lattice
gas and the last term gives the contribution from attractions
in random phase approximation [19]. The summation over
lattice points s′ is restricted to nearest neighbors of s [n.n.(s)].

For bulk fluids, the standard mean-field functional gives a
phase diagram like the Bragg-Williams approximation and
the Highlander functional results in the more precise Bethe-
Peierls approximation for that. Planar surface tensions in 3D
evaluated with the Highlander functional are close to simula-
tion results [18].

B. Numerical minimization of the Highlander functional

To obtain density profile solutions for droplets in finite
boxes, one needs to perform the numerical minimization in
3D of � = Flg − ∑

s ρc(μ − Vext ) [with Flg given in Eq. (6)]
with respect to ρc(s). However, the analytic derivative with
respect to ρc(s) is quite involved, owing to the dependency of
ρpc,α (s) on ρc(s). It is therefore advisable to minimize the total
particle-polymer grand functional

�̃[ρc, {ρpc,α}] = ϒ̃ −
∑

s

ρc(s)[μ − Vext(s)]

+ ρres
p

∑
s

∑
α

(
1 −

∑
s′∈{s,s+êα}

ρc(s′)

)
(8)

[with ϒ̃ given in Eq. (3)], with respect to ρpc,α (s) and ρc(s)
simultaneously. The self-consistent equations for the colloid
and polymer cluster density profiles take a form suitable for
Picard iteration. They read

ρc(s) = z(s) e6βε [1 − m1(s)][1 − m2(s − êx )][1 − m3(s)][1 − m4(s − êy)][1 − m5(s)][1 − m6(s − êz )]

[1 − m10(s)]5

ρpc,x(s) = ζ
[1 − m1(s)][1 − m2(s)]

[1 − m7(s)]

ρpc,y(s) = ζ
[1 − m3(s)][1 − m4(s)]

[1 − m8(s)]

ρpc,z(s) = ζ
[1 − m5(s)][1 − m6(s)]

[1 − m9(s)]
. (9)

Here, z(s) = exp(β[μ − Vext(s)]). The definitions of the
weighted densities mi(s) is given in Eq. (A2). The Picard
iterations are done in a standard manner with suitable mixing
of old and new density profiles.

For the problem of inhomogeneous states (droplet, cylin-
der, slab) in the finite box, there is no external potential:
Vext(s) = 0. For an initial state at a specific density, an excess
density over the bulk gas density in an approximately spher-
ical, cylindrical or slablike domain is chosen, or a density
profile from a previous iteration at a slightly different density
is used.

The final results are the equilibrated inhomogeneous den-
sity profiles ρc,eq(s) and the associated auxiliary polymer
cluster profile ρpc−eq,α (s) as well as the total grand poten-
tial � = �̃[ρc,eq, {ρpc−eq,α}]. There are hysteresis effects in
the system, i.e., at a specific average density near transition
regions, both a droplet, respectively, cylinder profile can be
found in the droplet-cylinder transition region, or a cylinder,
respectively, slab profile in the cylinder-slab transition region.
Reported below are the profiles with the lowest free energy

at a specific average density. From droplet profiles surface
tensions and droplet radii are extracted using the phenomeno-
logical considerations of the next section.

C. Phenomenological theory for the surface tension of droplets

The treatment here is quite standard; see, e.g., Ref. [4]. We
assume a stable state of a droplet in the center of a finite box
V with volume V at chemical potential μ.

The chemical potential is not equal to the chemical
potential at liquid-vapor coexistence, μ �= μcoex. For a ho-
mogeneous system, the function ρ(μ) has two solutions near
coexistence: for μ = μcoex these are the coexistence densities
ρv,coex (vapor) and ρl,coex (liquid). For μ �= μcoex we associate
with ρv = ρ(μ) the solution near ρv,coex and with ρl = ρ(μ)
the solution near ρl,coex. Similarly we define pv = p(μ) and
pl = p(μ) where p(μ) describes the pressure as function of
chemical potential for a bulk system. The droplet has a total
free energy F , respectively, a grand potential � and is charac-
terized by an equilibrium density profile ρ(r). The association
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of a droplet surface corresponding to this density profile is
arbitrary but two definitions of a surface Ad = ∂Vd (where
Vd is the spherical droplet with volume Vd) are common
and useful. The first is the notion of an equimolar surface
defined by∫

Vd

[ρl − ρ(r)]dr =
∫
V\Vd

[ρ(r) − ρv]dr. (10)

The condition is equivalent to the statement that the total
volume can be divided into a homogeneous liquid inside
Vd with density ρl and a homogeneous vapor in V\Vd with
density ρv such that the total number of particles N =∫
V ρ(r)dr = ρlVd + ρv(V − Vd ) (no excess adsorption at the

droplet surface). The drop is assumed to be spherical with
radius Re (equimolar radius) which follows from the above
condition as

Re = 3

√
3

4π

(ρ̄ − ρv)V

ρl − ρv
, (11)

with the average density ρ̄ = (1/V )
∫
V ρ(r) dr in the box. For

the lattice gas, one has to use the equilibrium profile ρc,eq(s)
and replace the integral by a sum over all lattice points. The
second definition is the so-called surface of tension which
rests on a mechanical definition. First, one defines the surface
tension γ as an excess grand potential

γ Ad = � − [−plVd − pv(V − Vd )], (12)

and from the definition it is clear that the surface tension is
not unique but depends on the choice of the droplet surface.
Second, the radius Rs of the spherical drop surface of tension
is fixed by the Laplace condition

�p = pl − pv = 2γ

Rs
. (13)

It is useful to introduce the (radius-dependent) Tolman
length by

δ(Rs) = Re(Rs) − Rs. (14)

From the Gibbs adsorption equation, one can derive a
differential equation for γ (Rs), named the Gibbs-Tolman-
Koenig-Buff (GTKB) equation [21]:

d ln γ

d ln Rs
=

2δ
Rs

[
1 + δ

Rs
+ 1

3

(
δ
Rs

)2]
1 + 2δ

Rs

[
1 + δ

Rs
+ 1

3

(
δ
Rs

)2] . (15)

A solution for γ (Rs) require knowledge of the function δ(Rs),
so the GTKB equation should be viewed as the consistency
relation between these two functions in the first place.

We proceed by an ansatz for an expansion of γ (Rs), valid
for large radii [7]:

γ (Rs)

γ∞
= 1 − 2δ∞

Rs
+ A

βγ∞

ln(Rs/a)

Rs
2 + B

βγ∞

1

Rs
2 + . . .

(16)

Here, γ∞ = γ (Rs → ∞) and likewise δ∞ = δ(Rs → ∞).
Furthermore, β = 1/(kBT ) is the inverse temperature and a
is a microscopic length, characteristic for the system (for the
lattice gas, a is simply the unit cell side length and is put to 1).

FIG. 1. Binodal for the Highlander functional and the standard
mean-field functional. For the Highlander functional, we investigated
droplets at the three temperatures βε = 1.0, 1.2, and 1.4 (horizontal
blue solid lines) and for the mean-field functional we chose the three
temperatures βε = 0.82, 0.99, and 1.15 (horizontal green dashed
lines). The red cross marks the quasiexact critical point from sim-
ulations [25] βc,simε ≈ 0.887.

This ansatz combines a simple 1/Rs-expansion with capillary-
wave droplet shape fluctuations [6], here the constant A =
−7/(12π ) ≈ −0.19 is universal and can be obtained from
integrating over droplet interface fluctuations using a standard
Landau-Ginzburg Hamiltonian [22–24]. Note that the exact
value of a is unimportant, using a different value a′ just results
in a shift in the nonuniversal constant B by A ln(a′/a).

This expansion of γ (Rs) is consistent with the GTKB equa-
tion if the following expansion for the Tolman length holds:

δ(Rs) = δ∞ − A

βγ∞

ln(Rs/a)

Rs
+

( 1
2 A − B

βγ∞
+ 3δ2

∞

)
1

Rs
+ . . .

(17)

In the lattice gas there is a symmetry between the liquid and
the gas phase. This entails a vanishing Tolman length δ∞. If
furthermore there were no logarithmic term in the expansion,
then the coefficient for the linear term ∝ −1/Rs in the Tolman
length and the quadratic term ∝ 1/Rs

2 in the surface tension
would be equal. This will be important below.

III. RESULTS

We investigated droplet formation for the Highlander func-
tional at three different temperatures, characterized by βε =
1.0, 1.2, and 1.4. These are not close to the critical point
(see Fig. 1 for a phase diagram) but are also higher than the
roughening temperature βεrough ≈ 1.64 [26]. For comparison,
we also calculated droplets using the standard mean-field
functional at the three three temperatures βε = 0.82, 0.99,
and 1.15 which are roughly at the same relative distance to
the mean field critical point as the Highlander temperatures
are from the Bethe-Peierls critical point.

A. μ equation of state and droplet solutions

For a finite system, one can obtain solutions for the full
range of average densities ρ̄ between the coexistence densities
ρv,coex and ρl,coex. These define a curve μ(ρ̄) (different for
each system size) which we call “μ equation of state.”
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FIG. 2. (a) μ equation of state for the Highlander functional at βε = 1.0 for three system sizes distinguished by symbols. (b) Density
profile for a stable droplet in the midplane of the box at ρ̄ = 0.155 for system size 453 with one-dimensional cuts.

At the highest temperature βε = 1.0 for the Highlander
functional, μ(ρ̄ ) shows the typical behavior known from pre-
vious work [2,15]; see Fig. 2(a). For the average density ρ̄

slightly larger than ρv,coex, the system stays homogeneous and
follows the bulk μ equation of state [shown as vdW loop in
Fig. 2(a)]. Increasing ρ̄, a transition to a droplet state occurs,
characterized by a sharp downward jump in μ. A second sharp
jump occurs which marks the transition to a cylinder state,
and the third sharp jump marks the transition to a state with
two planar interfaces (slab state). In Fig. 2(b) we show an
example for a 2D cut through the midplane of the box of
the 3D droplet density profile, where the system size is 453

and the average density is ρ̄ = 0.155. Evidently the droplet
has a smooth interface with a width of a few lattice units.
For comparison, we show density profiles of the cylindrical
and slab configurations at the same temperature βε = 1.0 in
Appendix B.

Lower temperatures introduce changes in μ(ρ̄). First, os-
cillations appear in the slab portion of μ(ρ̄ ) and by lowering
the temperature further, kinky oscillations appear in the cylin-
der portion of μ(ρ̄). This is shown in Fig. 3 where the
μ equation of state is shown for βε = 1.4 with suitable en-
largements of the different portions. The droplet portion of
μ(ρ̄) appears to be smooth (nonoscillatory) but we will show
below that some unusual behavior is seen in the extracted
droplet radii.

We discuss first the oscillations in the slab portion. There
we have two planar interfaces which form under the constraint
of a fixed average density. In Ref. [18] we had investigated one
planar interface with such a constraint which simply translates

into a constraint for the equimolar position of the interface. In
the lattice gas model, the properties of the interface are a priori
only invariant upon discrete shifts of the interface. Suppose
that through the average density constraint one tries to put a
few additional particles into a system with a free, equilibrium
interface. These additional particles can be accommodated by
displacing the interface towards the vapor phase or they are
added in the bulk, i.e., they change the bulk densities. In gen-
eral, we find that both mechanisms occur, and we had found
solutions at chemical potentials μ �= μcoex, i.e., these are solu-
tions for a planar interface off-coexistence. Necessarily these
solutions are found with a periodicity of 1 in the equimolar
position of the interface and since the interface position is
proportional to the average density in the slab system, the
oscillations in μ(ρ̄ ) result.

These oscillations in the slab portion then also translate to
the cylinder portion.

It is reasonable to assume that there are certain re-
laxed cylindrical droplet states whose radii differ by discrete
amounts. If one adds more particles to such a state, then they
may add to the bulk density away from the cylinder droplet
(thus changing μ) or increase the cylinder radius. Depending
on which process dominates, changes in μ with ρ̄ are steeper
and lead to the spiky oscillations.

In the droplet portion of the μ equation of state such oscil-
lations are not obvious at first sight. From the density profiles
we extract the equimolar radius through Eq. (11) and the
radius of the surface of tension through Eq. (13). In Fig. 4(a),
these are shown for βε = 1.4 (Highlander functional). The
equimolar radius is a smooth function of the average density
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FIG. 3. μ equation of state for the Highlander functional at βε = 1.4 for three system sizes distinguished by symbols. Enlargements show
μ(ρ̄ ) for the droplet, cylinder, and slab portions of the μ equation of state.

ρ̄ but the radius Rs shows undulations, especially for the
largest system which accommodates the largest droplets.
The radius of the surface of tension is closest connected to
the classical sharp surface and also closely related to the
location where the density profile changes most strongly.
Thus we see that the droplet radius increase upon increasing
ρ̄ proceeds unsteadily. For the simple mean-field functional,
this effect is much stronger. In Fig. 4(b), both radii are
plotted for βε = 1.15 and the mean-field functional. For the
second-largest system, Rs changes with steps of roughly 1
upon increasing ρ̄, and for the largest system the steps are
occasionally larger. This can be viewed as a manifestation
of a droplet layering transition. In Appendix C, we give
strong evidence that in 2D and using the simple mean-field

functional, the droplet layering transition is indeed sharp. The
Highlander functional (which includes more “fluctuations”)
shows this transition only washed-out. This phenomenology
is qualitatively similar to layering transitions at flat surfaces,
e.g., in the continuum AO model where DFT predicts a
whole sequence of discrete jumps [27] in the adsorption but
simulations resolve only the first three jumps [28].

B. Asymptotic behavior of γ (Rs ) and δ(Rs )

For the discussion of the radius-dependent behavior of the
surface tension γ (Rs) [defined through Eqs. (12) and (13)]
and the radius-dependent Tolman length δ(Rs) = Re(Rs) −
Rs we employ a fit of γ (Rs) to the following asymptotic
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FIG. 4. Equimolar droplet radius Re and radius Rs of the surface of tension for (a) the Highlander functional and βε = 1.4 and (b) the
mean-field functional and βε = 1.15.
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TABLE I. Coefficients A, B, and βγ̃∞ from the three fits of the Highlander numerical results for the surface tension to Eq. (18).

A B βγ̃∞

fit 1 − 7
12π

−0.011 ± 0.011 0.14804 ± 0.00026
βε = 1.0 fit 2 −0.025 ± 0.004 −0.236 ± 0.005 0.14660 ± 0.00003

fit 3 0 −0.272 ± 0.002 0.14637 ± 0.00004

fit 1 − 7
12π

−0.088 ± 0.011 0.35123 ± 0.00026
βε = 1.2 fit 2 −0.010 ± 0.002 −0.324 ± 0.003 0.34949 ± 0.00002

fit 3 0 −0.337 ± 0.001 0.34939 ± 0.00001

fit 1 − 7
12π

−0.119 ± 0.009 0.55108 ± 0.00024
βε = 1.4 fit 2 0.008 ± 0.012 −0.369 ± 0.015 0.54901 ± 0.00014

fit 3 0 −0.358 ± 0.002 0.54910 ± 0.00005

form:

βγ (Rs) = βγ̃∞ + A
ln Rs

Rs
2 + B

1

Rs
2 . (18)

In fit 1, the universal value of A = −7/(12π ) ≈ −0.19 is
used, and only B and γ̃∞ are fitted. In fit 2, all three constants
A, B, and γ̃∞ are fitted and in fit 3 we put A = 0 and again
only B and γ̃∞ are fitted. The fit coefficients are used in the
equation for the Tolman length

δ(Rs) = − A

βγ̃∞

ln(Rs)

Rs
+

A
2 − B

βγ̃∞

1

Rs
, (19)

which follows through consistency with the GTKB Eq. (15)
and checked against the numerical results for δ(Rs).

Due to the discreteness of the lattice model, the planar
interface tension γ∞ (weakly) depends on the orientation of
the interface [29]. For a droplet, the surface tension γ̃∞ in
the limit of Rs → ∞ will be an average of the planar sur-
face tension with different orientations. For simplicity, we
treat γ̃∞ as a fit parameter and discuss the fit result in the
light of simulation and our own results for the anisotropy
of γ∞.

The results for the fit coefficients are found in Table I
and the comparison of the fits to the numerical data for the
Highlander functional at βε = 1.0 is shown in Fig. 5 and at
βε = 1.2 and 1.4 in Fig. 6. For all three temperatures, the
data for γ (Rs) are smooth while the data for δ(Rs) are only
smooth for βε = 1.0. For the two lower temperatures the
wiggly behavior of Rs [see Fig. 4(a)] leads to the spikes in
δ(Rs). For all temperatures, fit 1 with A fixed to the universal
constant only works moderately well for the surface tension.
The ensuing asymptotic form for δ(Rs) does not match the
numerical data. Fit 2 (with A free) and fit 3 (with A = 0)
work equally well for γ (Rs) and are not distinguishable on
the plots. For βε = 1.0, fit 2 matches the data points for the
Tolman length for larger radii rather well, whereas there is a
discrepancy for fit 3 which ignores the logarithmic term [see
Fig. 5(b)]. For the two lower temperatures, the spiky behavior
of δ(Rs) does not allow for a discrimination in quality between
fits 2 and 3.

It is perhaps not surprising that the asymptotic behavior of
γ (Rs) and δ(Rs) from DFT does not exhibit the universal log-
arithmic term. For example, for the continuum Lennard-Jones
fluid, expressions in an 1/Rs expansion had been derived for
a very simple DFT model without the logarithmic term [30].
The analytic expansion for the full theory and approximate

DFT’s can be different but the overall description of γ (Rs)
can nevertheless be good (if the underlying functional is). For
the lattice gas droplets in Highlander DFT, the corrections to
the surface tension are dominated by the 1/Rs

2 term, but it is
interesting to note that this term as the leading term is not fully
consistent with the behavior of δ(Rs) according to the GTKB
equation, and a small logarithmic term is needed to restore the
consistency.

For fits 2 and 3, the asymptotic surface tension βγ̃∞ lies
between the surface tensions βγ∞ for the interface in [100]
orientation and in [111] orientation, see Table III. For fit 1, the
value is outside or very close to βγ∞[111]. The Highlander
values for the anisotropy are reasonably close to values from
simulations [29] if one compares for temperatures with the
same βc/β.

For the droplet surface tension from the simple mean-
field functional, the fit results are reported in Table II. For
the two higher temperatures (βε = 0.82 and 0.99), the main
radius dependence in γ (Rs) is in the 1/Rs

2 term, note that
the associated coefficient B is only about half of the B value
from the Highlander functional. Thus, the improvement in the
functional leads to a significantly larger radius dependence of
the surface tension. For the lowest temperature (βε = 1.15)
the surface tension shows spikes due to the layering transition
[see Fig. 4(b) for the manifestation in the radii] and the fits are
not particularly meaningful.

IV. SUMMARY AND CONCLUSIONS

In this paper, we have applied a recently developed density
functional for the lattice gas (Ising model) to the problem of
droplet states in finite systems. We have found the sequence
of droplets to cylinders to planar slabs upon increasing the
average density ρ̄ in the system similar to previous simu-
lation studies. Owing to the discreteness of the lattice, we
have seen additional effects in the state curve μ(ρ̄ ) (the μ

equation of state). Upon lowering the temperature away from
the critical temperature, we first find oscillations in μ(ρ̄) in the
slab portion. When decreasing the temperature further, spiky
undulations in μ(ρ̄ ) in the cylinder portion are seen and in
the droplet region an undulatory behavior of Rs(ρ̄) (radius of
the surface of tension) is found. We could relate this behavior
in the cylinder and droplet region to washed-out layering
transitions at the surface of liquid cylinders and droplets. The
analysis of the large-radius behavior of the surface tension
γ (Rs) gave a dominant contribution ∝ 1/Rs

2, although the

034127-7



M. MAERITZ AND M. OETTEL PHYSICAL REVIEW E 104, 034127 (2021)

0.000 0.025 0.050 0.075 0.100 0.125 0.150

1/Rs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

δ(
R

s
)

(b)

size=323

size=453

fit 1

fit 2

fit 3

0.00 0.05 0.10 0.15 0.20 0.25

1/Rs

0.1300

0.1325

0.1350

0.1375

0.1400

0.1425

0.1450

0.1475

β
γ

s

(a)

size=203

size=323

size=453

fit 1

fit 2

FIG. 5. Surface tension γ (Rs ) (a) and Tolman-length (b) vs 1/Rs for the Highlander functional at βε = 1.0. The fits in panel (a) are
according to Eq. (18) with A considered universal (fit 1) or a fit parameter (fit 2) or A = 0 (fit 3). The resulting fit parameters are shown in
Table I. The dotted, dash-dotted, and dashed lines in panel (b) are according to the GTKB-consistent Eq. (19) with the parameters taken from
fits 1, 2, and 3 from panel (a). In contrast to panel (b), fits 2 and 3 are visually indistinguishable in panel (a), therefore only fit 2 is shown in
panel (a).

consistency of γ (Rs) with the asymptotic behavior of δ(Rs)
(the radius-dependent Tolman length) through the GTKB
equation seems to suggest a weak logarithmic contribution
∝ ln Rs/Rs

2 in γ (Rs). The coefficient of this logarithmic term

is smaller than a universal value derived with field-theoretic
methods.

We remark that Ref. [31] utilizes a Bethe-Peierls approach
for the lattice gas to calculate numerical solutions for droplets.
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FIG. 6. Surface tension γ (Rs ) (a, c) and Tolman-length (b, d) vs 1/Rs for the Highlander functional at βε = 1.2 and 1.4. For information
on the fits see the caption of Fig. 5. Fits 2 and 3 are indistinguishable in (a, c) and their difference is not very illuminating in (b, d) owing to
the oscillatory numerical data, therefore only fits 1 and 2 are shown.
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TABLE II. Coefficients A, B, and βγ̃∞ from the three fits of the mean field numerical results for the surface tension to Eq. (18).

A B βγ̃∞

fit 1 − 7
12π

0.132 ± 0.016 0.10655 ± 0.00031
βε = 0.82 fit 2 −0.008 ± 0.002 − 0.12 ± 0.002 0.10499 ± 0.00001

fit 3 0 −0.131 ± 0.001 0.10493 ± 0.00001

fit 1 − 7
12π

0.087 ± 0.008 0.27152 ± 0.00018
βε = 0.99 fit 2 −0.009 ± 0.02 −0.158 ± 0.028 0.26993 ± 0.00019

fit 3 0 −0.171 ± 0.003 0.26985 ± 0.00007

fit 1 − 7
12π

0.046 ± 0.012 0.43086 ± 0.00032
βε = 1.15 fit 2 −0.055 ± 0.063 −0.124 ± 0.083 0.42949 ± 0.00072

fit 3 0 −0.196 ± 0.011 0.42891 ± 0.00029

However, further intermediate approximations are made in
Ref. [31] (assumption of radially symmetric density profiles,
assumption of an effective distorted lattice at the droplet in-
terface) such that a comparison is difficult. While we find a
reduction of the surface tension with decreasing radius for all
investigated temperatures, an increase is found in Ref. [31] for
low temperatures.

Although the lattice gas (Ising model) has been studied
thoroughly with simulations, no particular attention has been
paid to the lattice discreteness effects observed here. It would
be interesting to check for those in future simulations. In
a wider perspective, it would also be desirable to develop
DFT and simulation methods further for lattice or continuous
systems to achieve agreement for the behavior of γ (Rs) over
a wider range of droplet sizes. For example, for the Lennard-
Jones system this would imply performing DFT calculations
in the same cubic boxes as used in simulations; here, it is of
interest to study the difference between droplet and bubble
nucleation [32,33].

APPENDIX A: THE EXCESS FREE-ENERGY
FUNCTIONAL FOR THE SYSTEM OF LATTICE GAS

PARTICLES AND POLYMER CLUSTERS

The interactions between lattice gas particles and polymer
clusters are characterized as follows: Both the particles [with
density ρc(s)] and polymer clusters of a certain orientation
α ∈ {x, y, z} [with density ρpc,α (s)] are separately hard lat-
tice gases (mutual exclusion of particles on one lattice site).
Polymer clusters of different orientation do not interact with
each other. The lattice gas particles are excluded from the site
of the polymer clusters and one additional site in α direction.
Intrinsically, this is a nonadditive model, and the construction
of the excess free-energy functional proceeds via lattice FMT
[34,35]. In 1D, this gives the exact functional [20].

TABLE III. Planar surface tension from slab configurations for
different orientations of the interface for the Highlander functional,
using a constraint ρ̄ = 0.5 for the average density in the system.

βε βγ∞[100] βγ∞[110] βγ∞[111]

1.0 0.145 0.147 0.147
1.2 0.342 0.351 0.354
1.4 0.523 0.554 0.561

The construction of lattice FMT functionals proceeds via
the following iterative procedure [35]. First, one finds a max-
imal set of 0D cavities. A 0D cavity consists of a set of lattice
points for each species with the following property: If one
particle of a certain species occupies one of the points in the
set, then no other particle will fit in the cavity. The 0D cavity
is maximal if no further points can be added to the set. The
requirement on the excess functional is that it gives the exact
0D excess free energy for a density distribution, compatible
with any such maximal cavity at an arbitrary location. The
exact 0D excess free energy of a cavity with occupation η is
given by β−1�0D(η), with

�0D(η) = η + (1 − η) ln(1 − η). (A1)

Second, the iterative procedure is started as follows: The
excess free energy is a sum over the 0D free energies of all
such density distributions. However, when a specific cavity
of the maximal set is evaluated with this trial functional, it
will generate the correct 0D free energy plus some residual
terms. All these residual terms are explicitly subtracted in
an updated excess free energy. Re-evaluation with a specific
cavity may result in further residual terms which need to be
subtracted again. As shown in Ref. [36], this procedure is
guaranteed to terminate with no residual terms and thus the
excess functional has the desired property of giving the exact
0D free energy for any maximal cavity. In our previous work,
Ref. [18], the construction is performed in detail for the lattice
gas in 1D, 2D, and 3D.

In 3D, the iteration procedure leads to a set of 10 weighted
densities:

m1(s) := ρpc,x(s) + ρc(s),

m2(s) := ρpc,x(s) + ρc(s + êx ),

m3(s) := ρpc,y(s) + ρc(s),

m4(s) := ρpc,y(s) + ρc(s + êy),

m5(s) := ρpc,z(s) + ρc(s),

m6(s) := ρpc,z(s) + ρc(s + êz ),

m7(s) := ρpc,x(s),

m8(s) := ρpc,y(s),

m9(s) := ρpc,z(s),

m10(s) := ρc(s). (A2)
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FIG. 7. Comparison of droplet, cylindrical and slab density profiles for the Highlander functional at βε = 1.0. Panels (a) show the heat-map
of two-dimensional cross-sections of the corresponding geometries (left: droplet; middle left: cylinder with normal of the plane parallel to the
symmetry axis; middle right: cylinder with normal of the plane orthogonal to the symmetry axis; right slab with normal of the plane orthogonal
to normal of the slab.). Panel (b) shows the density profile along the corresponding lines in panels (a). The average density of the droplet is
ρ̄ = 0.155, the cylinder has ρ̄ = 0.3 and the slab is at ρ̄ = 0.4.

The excess free-energy functional can be written with a local
free-energy density

βF̃ ex
AO =

∑
s

�AO,3D(s), (A3)

and this density �AO,3D(s) is given by

�AO,3D(s) = �0D(m1) + �0D(m2) + �0D(m3) + �0D(m4)

+�0D(m5) + �0D(m6) − �0D(m7)

−�0D(m8) − �0D(m9) − 5 �0D(m10). (A4)

APPENDIX B: DENSITY PROFILES OF CYLINDRICAL
AND SLAB CONFIGURATIONS

In Fig. 7 the density profiles of droplets, cylinder, and slab
configurations are compared. As one sees, the bulk densities
only differ slightly. The shape of the density profile is similar
for all geometries.

APPENDIX C: DROPLET LAYERING TRANSITION FOR
THE SIMPLE MEAN-FIELD FUNCTIONAL IN 2D

Stable droplets can also be generated in finite 2D boxes.
Here we use the simple mean-field functional to investigate
these droplets for a temperature of βε = 1.5 (note that the
mean-field critical point is at a value of 1.0). Figure 8 shows
the μ equation of state which contains a circular droplet por-

tion and a slab portion. In the droplet portion, two discrete
jumps in μ are seen at ρ̄ ≈ 0.214 and ρ̄ ≈ 0.221. In Fig. 9
density profiles of droplets are shown which correspond to
states right to the left and to the right of each jump. For
example, the purple downward triangles and green crosses
show the change in density profile at the first jump; the density
profile changes by adding approximately one layer to the
circular droplet. The same holds for the turquoise diamonds
and red upward triangle which correspond to the second jump.
So the two jumps in the chemical potential correspond to two
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FIG. 8. μ equation of state for the mean-field functional in 2D at
βε = 1.5 for one system size 642. Enlargements show μ(ρ̄) for the
circular droplet and slab portions of the μ equation of state.
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FIG. 9. Droplet solutions for the mean-field functional in 2D at βε = 1.5. (a) Re and Rs vs ρ̄, symbols mark states whose density profiles
along the x axis are shown in panel (b) using the same symbols. Arrows mark the two discrete jumps seen in panel (a).

layering transitions in the droplet profiles. For comparison,
another density profile at a higher ρ̄ = 0.234 (beyond the
second jump at ρ̄ = 0.221) is shown which shows only a small
change compared to the profile at the second jump.

In 2D, these droplet layering transitions are completely
gone when using the Highlander functional, we checked this
for temperatures down to βε = 3.0. Accordingly we assume
that they do not exist in simulations in 2D as well.
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