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The fluctuation-dissipation theorem (FDT) is a simple yet powerful consequence of the first-order differential
equation governing the dynamics of systems subject simultaneously to dissipative and stochastic forces. The
linear learning dynamics, in which the input vector maps to the output vector by a linear matrix whose elements
are the subject of learning, has a stochastic version closely mimicking the Langevin dynamics when a full-batch
gradient descent scheme is replaced by that of a stochastic gradient descent. We derive a generalized FDT for
the stochastic linear learning dynamics and verify its validity among the well-known machine learning data sets
such as MNIST, CIFAR-10, and EMNIST.
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I. INTRODUCTION

It is not an uncommon perception among the practitioners
of machine learning and of theoretical many-body physics that
some ideas of physics, most notably those of equilibrium and
nonequilibrium statistical physics, might have significance in
the fundamental understanding of the machine learning dy-
namics. Such a sentiment and progress along the direction
has continued for some time and is still in active pursuit,
mostly by the researchers in the machine learning community
[1–9]. The belief in the statistical-physics foundation of the
machine learning will be strengthened obviously by more
examples of ideas originating from statistical physics and then
manifesting themselves in the machine learning. Here, we
establish one such connection, relating a fundamental theorem
in near-equilibrium statistical physics [10–14] to the theory of
learning dynamics [1–3,6,7,9], in particular where the learn-
ing process is linear and described by a stochastic equation
similar to what governs the Ornstein-Uhlenbeck processes
[15,16]. The theorem in question is the fluctuation-dissipation
theorem (FDT).

The FDT in a strict sense refers to specific relations that
hold between correlation functions and response functions
of physical systems under equilibrium [16]. Here, we use
the term in a more relaxed sense, referring to mathematical
identities among the observable quantities under the stationary
state condition. The difference between the equilibrium and
the stationary state is revealed by the existence of an anti-
symmetric matrix Q [10–14], which will be defined shortly.
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The FDT is illustrated most simply in the Langevin dynamics
of a single-particle subject simultaneously to dissipative and
stochastic forces

ẋ = −γ x + f (t ), (1.1)

where, in the context of Newtonian motion, x represents the
velocity of a particle in one dimension, −γ x is the resis-
tive force, and f (t ) is the random force coming from the
environment. On integrating the first-order differential equa-
tion we obtain the formally exact solution x(t ) = e−γ t [x(0) +∫ t

0 dt ′eγ t ′
f (t ′)] which, in the long-time limit (t → ∞), yields

the average

〈x2〉 = 2De−2γ t
∫ t

0
dt ′e2γ t ′ = D/γ , (1.2)

assuming the white-noise correlation 〈 f (t ) f (t ′)〉=2Dδ(t−t ′).
The competing tendencies of the dissipation (γ ) and fluctua-
tion (D) find balance through the identity.

Multidimensional generalization of the Langevin dynamics
finds expression in

ẋ = −�x + f (t ), (1.3)

with n-dimensional variables x = (x1, . . . , xn), the n × n dis-
sipation matrix �, and the n-dimensional stochastic force
vector f obeying the zero mean 〈f〉 = 0 and the variance
〈f (t )fT (t ′)〉 = 2Dδ(t − t ′), in terms of the n × n diffu-
sion matrix D. From the exact solution x(t ) = e−�t [x(0) +∫ t

0 e�t ′
f (t ′)dt ′] we derive the long-time correlation average

�(t ) = 〈x(t )xT (t )〉

= 2
∫ t

0
dt ′e�(t ′−t )De�T (t ′−t ), (1.4)

and the following identity for � = �(t → ∞):

�� + ��T = 2D. (1.5)
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This identity relates the diffusion matrix D with the dis-
sipation matrix � through the correlation matrix � in the
stationary state, for the Ornstein-Uhlenbeck processes with
constant � and D [10,11]. Extensions and applications of
the theorem both in physical systems and machine learning
have since appeared [2,3,14]. Owing to the identity, one can
write the matrix �� as the sum of the symmetric (D) and
antisymmetric (Q) matrix:

�� = D + Q. (1.6)

It was pointed out in Ref. [13] that Q = 0 implies the detailed
balance, otherwise one should allow the possibility Q �= 0 in
the decomposition, Eq. (1.6).

In Sec. II, we derive an analogous mathematical identity for
the stochastic linear learning dynamics. This is then verified,
in Sec. III, through numerical experiments on several well-
known machine learning data sets. Implications of our work
are discussed in Sec. IV.

II. FDT IN LEARNING DYNAMICS

In the learning dynamics one is confronted with a collec-
tion of input vectors xα (e.g., pixels in a jpg file reformatted
as a one-dimensional vector) and output vectors yα (e.g., clas-
sification of the picture as an image of a cat or a dog), where
1 � α � N runs over the entire data set called the batch. In
the linear learning dynamics one is interested in finding the
matrix W that minimizes the error

E = 1

2N

N∑
α=1

(yα − Wxα )T (yα − Wxα )

→ 1

2
Tr[�xxWT W − WT �yx − �T

yxW]. (2.1)

There is a constant term which is dropped in going to the
second line. The two correlation functions appearing in the
second line are

�xx = 1

N

N∑
α=1

xαxT
α , �yx = 1

N

N∑
α=1

yαxT
α . (2.2)

The gradient descent (GD) method of finding the optimal W
results in the first-order differential equation for W [6,7]:

dW
dt

= − δE

δW
= −W�xx + �yx. (2.3)

The full solution is given by W(t ) = W(0)e−�xxt + W0(1 −
e−�xxt ), where W0 = �yx�

−1
xx offers the equilibrium solution.

An interesting connection to the Langevin dynamics and
FDT arises when we treat �xx and �yx in the dynamics of
Eq. (2.3) as a minibatch (not a full-batch) average. At each
stage of W evolution one picks a different, randomly chosen
minibatch to compute the average �xx(t ) = N−1

m

∑
α∈B(t ) xαxT

α

and �yx(t ) = N−1
m

∑
α∈B(t ) yαxT

α , where Nm is the minibatch
size and B(t ) is the particular minibatch chosen at the time t .
The W dynamics according to the stochastic gradient descent
(SGD) scheme becomes

dW
dt

= −W�xx(t ) + �yx(t ). (2.4)

Phrased in the language of Langevin dynamics, both the dis-
sipative [�xx(t )] and the stochastic [�yx(t )] forces are time
dependent, whereas the conventional Langevin dynamics has
constant dissipative force matrix and the (time-dependent)
stochastic force.

The analysis of the SGD equation above is facilitated by
making the change of variables as the sum of the stationary,
time-independent piece and the time-dependent, fluctuating
piece. Here, time t refers to the artificial time in the evolution
of the learning matrix W(t ). First, the learning matrix itself is
separated as the sum of two pieces,

W(t ) = W0 + W(t ), (2.5)

with the overline representing the fluctuating part of W(t ) and
W0 = �xy�

−1
xx is the stationary solution. A similar decompo-

sition takes place for other variables in the equation,

�xx(t ) = �xx + �xx(t ),

�yx(t ) = �yx + �yx(t ). (2.6)

By definition, the average of the fluctuation parts of the cor-
relation functions has zero mean 〈�xx〉 = 0 = 〈�yx〉 when
computed after reaching convergence to equilibrium, that is,
after a sufficiently long time. Instead of Eq. (2.4), we get to
work with the equivalent equation

dW(t )

dt
= −W(t )[�xx + �xx(t )] + �yx(t ) − W0�xx(t ).

(2.7)

This equation describes the convergence of the learning ma-
trix W(t ) in the SGD scheme.

In fact, it is possible to write down the exact solution to the
stochastic Eq. (2.7) in the form of a Wiener integral, as shown
in Appendix A. Not surprisingly, however, the exact solution
is not amenable to further analysis unless some approxima-
tion scheme is involved. The way forward in analyzing the
stochastic learning dynamics is to replace �xx + �xx(t ) by
its time-independent part �xx, i.e., the full-batch correlation
matrix, in Eq. (2.7). Then one can find an exact solution for
W(t ) in the form

W(t ) =
[

W(0) +
∫ t

0
�

′
yx(t ′)e�xxt ′

]
e−�xxt , (2.8)

where �
′
yx(t ) = �yx(t ) − W0�xx(t ). To complete the analy-

sis, we need also to examine the influence of the term we
ignored, i.e., �xx(t ), and this is done in Appendix A. The
result, as expected, is that as long as �xx(t ) is sufficiently
small compared to �xx, the correction to the solution we
obtained in Eq. (2.8) is perturbatively small in �xx(t ).

We can write down the long-time correlation matrix for
W(t ) as

�WW (t ) = 〈[W(t )]T W(t )〉

=
∫ t

0
dt ′

∫ t

0
dt ′′e�xx (t ′−t )〈[�′

yx(t ′)]T �
′
yx(t ′′)〉e�xx (t ′′−t )

=
∫ t

0
dt ′e�xx (t ′−t )2De�xx (t ′−t ). (2.9)
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The part of the W(t ) solution in Eq. (2.8) that depends on the
initial condition W(0) can be dropped, due to its exponential
decay at long time t . Furthermore, we assumed a zero-range
temporal correlation 〈[�′

yx(t ′)]T �
′
yx(t ′′)〉 = 2Dδ(t ′ − t ′′) in ar-

riving at the final form in Eq. (2.9). Whether this sort of
assumption is justifiable remains to be checked, and the test
performed in the next section finds the answer to be in the
affirmative.

Going back to Eq. (2.9) for now, we can easily deduce from
it the following identity,

�xx�WW + �WW �xx = 2D, (2.10)

for �WW ≡ �WW (t → ∞). One notes an unmistakable sim-
ilarity between this relation and the one derived in Eq. (1.5)
from Langevin dynamics. Since the former relation is typi-
cally known as the FDT in the Langevin dynamics, we label
the mathematically analogous relation derived in Eq. (2.10)
as the FDT-type relation in the stochastic linear learning dy-
namics. Granted, there is no physical dynamics underlying our
SGD equation. In deriving the formula (2.10), however, the
existence of a physical dynamics is irrelevant as long as there
is a good mathematical analogy between the two situations.
Although �xx and �′

yx(t ) in Eq. (2.7) are not the true dissi-
pative and stochastic forces as in the Langevin dynamics, we
do not hesitate to label Eq. (2.10) as the FDT-type relation
on the basis of the formal, mathematical analogy. Whenever
possible, exploiting an exact relation such as Eq. (2.10) is
helpful in the analysis of a given problem.

Technically, an even more refined form of the FDT-type
relation than the one shown in Eq. (2.10) can be derived. The
interested reader is referred to Appendix B. Meanwhile, we
work with the more tractable version as shown in Eq. (2.10)
when we try to check the validity of the FDT-type relation
numerically in the next section.

III. NUMERICAL EXPERIMENTS

For sufficiently small time t = h we can solve the stochas-
tic Eq. (2.4) approximately,

W(h) ≈
[

W(0) +
∫ h

0
�yx(t ′)e�xx (0)t ′

dt ′
]

e−�xx (0)h

≈ W(0)[1 − �xx(0)h] +
∫ h

0
�yx(t ′)dt ′. (3.1)

We can further divide up the interval t ∈ [0, h] into M
equal segments, each of width ε ≡ h/M, and write �xx(0) →
M−1 ∑M

i=1 �xx(i · �),
∫ h

0 �yx(t ′)dt ′ → ε
∑M

i=1 �yx(i · �). In
the end, Eq. (3.1) turns into a recursive formula

W(n+1) = W(n)[1 − ε�(n)
xx

] + ε�(n)
yx , (3.2)

where �(n)
xx and �(n)

yx are averages over the minibatch of size
MNm. From now on, we will simply refer to MNm as the
minibatch size Nm. At sufficiently large n, W(n) converges
to W0, with small fluctuations whose properties will be the
subject of investigation.

In particular, we are interested in whether the small fluc-
tuations near the equilibrium W = W0 obey the relation
derived in Eq. (2.10). To test the claim, we employ three

representative data sets that researchers in machine learning
frequently employ: MNIST, CIFAR-10, and EMNIST Let-
ters (abbreviated as EMNIST from here on) [17]. As is well
known, MNIST and CIFAR-10 consist of ten different ob-
jectives or output vectors yα , represented by one-hot vectors
(1, 0, . . . , 0) through (0, . . . , 0, 1). Twenty-six alphabets are
represented by as many output vectors in the case of EMNIST.
The pixel sizes are 28 × 28 for both MNIST and EMNIST,
and 32 × 32 for CIFAR-10. There are 60 000 (50 000 and
140 000) training data samples in MNIST (CIFAR-10 and
EMNIST), which we use to form the full batch.

The minibatch update scheme is implemented by randomly
choosing Nm = 5, 500, and 100 data from the batch in the case
of MNIST, CIFAR-10, and EMNIST, respectively, and using
them to generate the nth correlation functions �(n)

xx and �(n)
yx .

Once a minibatch selection is complete, we return the data
back to the full batch for the next round of minibatch selection.
This could induce some correlations between different mini-
batches as the same data may appear repeatedly over different
minibatches. We will analyze the correlations between differ-
ent minibatches later on, and find the correlation effect at n �=
n′ to be rather small. The learning rate of ε = 2 × 10−7, 2 ×
10−8, 5 × 10−7 (MNIST, CIFAR-10, EMNIST) was used for
the update. The update W(n) → W(n+1) takes place according
to the simple update scheme in Eq. (3.2). The minibatch size
and the learning rate are chosen such that a good convergence
to equilibrium takes place in the iteration. We have not sys-
tematically investigated how the efficiency of the convergence
depends on either Nm or ε, as that is not the main objective of
this research, but only confirmed that different choices do not
affect the final quality of the data as long as the convergence
is achieved.

In order to derive the relation (2.10), a recourse was made
to an approximation in which the mini-batch �xx(t ) was re-
placed by the full-batch �xx—see Eq. (2.7) and the ensuing
discussion. It was also mentioned that this approximation does
not invalidate the theorem (2.10) as long as the difference
between the full-batch �xx and the minibatch �xx(t ) remains
sufficiently small. On the other hand, the actual numerical
integration of the SGD equation through Eqs. (3.1) and (3.2)
is done with time-dependent, minibatch �(n)

xx rather than the
time-independent, full-batch �xx. Despite the difference, as
we now discuss, the relation (2.10) is obeyed quite nicely in
our simulation that uses the minibatch �(n)

xx in the updates.

Figure 1 shows the Euclidean norm ratio ||�(n)
xx ||/||�xx|| af-

ter the equilibrium has been reached. To our surprise, the
ratio is not necessary very small as our analytical deriva-
tion of Eq. (2.10) forced us to assume. Nevertheless, we
were able to achieve good convergence W(n) → W0 numer-
ically, and the formula (2.10) is nicely reproduced in the
simulation.

The convergence of W(n) at large n to the equilibrium value
W0 = �xy�

−1
xx was checked by measuring the inner prod-

uct of the W(n) and W0 divided by their norms: cos[θ (n)] =
W(n) · W0/‖W(n)‖‖W0‖. The inner product of two matrices
is defined by taking a product of the matrix elements sharing
the same (i j) index and making a sum over all (i j)’s. The
norm is the square root of the inner product of a matrix with
itself. Once the steady state is reached, e.g., cos[θ (n)] � 0.999,
we start calculating the W-correlation matrix �WW and the D.

034126-3



HAN, PARK, LEE, AND HAN PHYSICAL REVIEW E 104, 034126 (2021)

FIG. 1. (a)–(c) Euclidean norm ratio ||�(n)
xx ||/||�xx|| over several minibatches labeled by n after the equilibrium is reached. (b) The

Euclidean norm of the unequal time correlation matrix ||D(m)||/||D(0)|| [Eq. (3.4)]. The minibatch size used in each figure is Nm = 5, 500,
and 100 for MNIST, CIFAR-10, and EMNIST, respectively.

For �WW we use

�WW � 1

n2 − n1

n2∑
n=n1+1

[W
(n)

]T W
(n)

(3.3)

for some large n1, n2 well within the equilibrium region.
The sampling data n2 − n1 ∼ 104 were sufficient to guarantee
good averaging and a clear image for �WW , ready for sub-
sequent analysis. The overline indicates that the difference
between the nth learning matrix W(n) and W0 must be used
in obtaining �WW .

Deducing the diffusion matrix D is a bit more challeng-

ing. First of all, it is obtained as the correlator of �
(n)′

yx =
�

(n)
yx − W0�

(n)
xx . In general, an unequal time correlator of these

quantities may be defined as

D(m) ≡ 1

n2 − n1

n2∑
n=n1+1

[
�

(n+m)′

yx

]T
�

(n)′

yx . (3.4)

We have performed an analysis of D(m) for several m and
shown the result in Fig. 1. For m �= 0, the size of the Euclidean
norm ||D(m)|| becomes no more than 4% of the value at
m = 0, suggesting the uncorrelated nature of the matrices at
different “times.” To obtain the diffusion matrix D, we choose
m = 0 and take D = D(0). Now that we have both �WW and
D from the numerical data, we can compare their values and
look for proof of proportionality between them. Both D and
�xx�WW + �WW �xx are displayed graphically in Fig. 2. It
turns out the correlators exhibit a highly periodic structure
with period a coming from the a × a pixel size of each data
set. (The original a = 28 dimension of the MNIST and EM-
NIST was chopped at the boundary to a = 24. Otherwise it
was difficult to get the full-batch inverse �−1

xx ).
Due to the highly periodic structure of the real-space im-

ages of �xx�WW + �WW �xx and D, only a handful of Fourier

peaks at k = (kx, ky) given by multiples of 2π/a were sig-
nificant. Figure 2 shows the Fourier components along k =
(kx, 0) normalized by the value at k = (0, 0). The near-perfect
match in the Fourier analysis of both �xx�WW + �WW �xx and
D is not a priori obvious, and must be attributed to the FDT
theorem at work in the stochastic linear learning dynamics.
The accuracy of the FDT theorem seems somewhat reduced
in the case of CIFAR-10 in comparison to the other two data
sets, as one can see from comparing the images in the third
row in Fig. 2. We believe this is due to the conversion of
the original color image to the black-and-white image before
processing the CIFAR-10 data, or perhaps the complexity of
the CIFAR-10 images compared to the other two cases, or a
combination of both. A further investigation of the origin of
the reduced accuracy of the FDT theorem for the CIFAR-10
data set is the subject of future investigation.

IV. DISCUSSION

Our work addresses a FDT-type relation in the stochastic
linear learning dynamics. The relation derived in Eq. (2.10) is
found to hold quite well for a number of machine learning
data sets. The analogy to the Langevin dynamics naturally
gives rise to an interpretation of the input covariance matrix
�xx as the effective friction, and the input-output variance
�yx as the effective stochastic force in the learning dynamics.
Although it is more or less obvious from the context, we want
to emphasize once again that the analogy to the celebrated
fluctuating-dissipation theorem in statistical physics [15,16]
is a purely formal and mathematical one. The mathematical
similarity of the Langevin Eq. (1.3) and the stochastic gradient
Eq. (2.4) is what makes the derivation of the FDT-type relation
(2.10) possible.

We have made several attempts to go beyond the simple
stochastic linear learning scheme. For one, we tried placing a
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FIG. 2. Fluctuation analysis for (a) MNIST, (b) CIFAR-10, and (c) EMNIST data sets. Top: Plots of D obtained from each data set. Middle:
Plots of �xx�WW + �WW �xx . Bottom: Normalized Fourier components for D (red) and �xx�WW + �WW �xx (blue) plotted along k = (kx, 0)
with k0 = 2π/a.

convolutional neural network (CNN) layer before the neural
network layer W. As shown in Appendix C, this formula-
tion naturally leads to FDT in terms of the CNN-filtered
input data sets Xα = C ⊗ xα , where ⊗ represents the CNN
operation. The FDT holds with respect to the renormalized
data sets Xα . In another attempt, we tried introducing non-
linearity explicitly by using an alternative error function E =
(2N )−1 ∑N

α=1

∑n
i=1(yα

i − zα
i )2 with the sigmoid function zα

i =
[e−∑n

j=1 Wi j xα
j + 1]−1 parametrized by the learning matrix W.

Such a formulation leads to the dynamics dW/dt that is,
unfortunately, highly nonlinear and defies further analytical
treatment.

The FDT-type relation in the stochastic learning was no-
ticed some years earlier by Yaida [9]. His derivation of the
so-called FDT relation avoids any use of an explicit er-
ror function and relies solely on the stationary property of

observables after the learning process has saturated. It is a
powerful formulation in the sense that the relations apply to
an arbitrary learning architecture with nonlinearities. On the
other hand, by avoiding the stochastic differential equation
formulation, the connection that his relations have with the
FDT in statistical physics becomes somewhat vague. More
seriously, when our error function is used to work out his
formulas, the outcome does not match our FDT formula de-
rived in Eq. (2.10). This leads us to suspect that there may be
multiple FDT-type theorems governing the stationary states of
learning, with both our formula and his addressing different
facets.

We have investigated whether, writing �xx�WW in
Eq. (2.10) as the sum �xx�WW = D + Q, there will be a sig-
nificant contribution of the antisymmetric matrix Q. A crude
measure of the significance of Q relative to D is the maximum
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value of the matrix elements in Q divided by that of D.
The results are 0.12, 0.096, and 0.045 for MNIST, CIFAR-10,
and EMNIST, respectively, suggesting that the antisymmetric
components are probably very small and insignificant.
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APPENDIX A: FULL WIENER INTEGRAL

The fluctuation-dissipation theorem (2.10) for stochastic
linear learning dynamics was obtained assuming time-
independent �xx and time-dependent �yx(t ). It means a
full-batch �xx and a minibatch �yx(t ) are assumed in the
derivation. On the other hand, the numerical integration of
Eq. (2.4) or (2.7) was done in our experiment using both
minibatch �xx(t ) and �yx(t ). In spite of the difference, the
FDT seems to hold quite well numerically. We reexamine the

full stochastic equation for linear learning dynamics written
in Eq. (2.7),

dW
dt

= −W(�xx + �xx(t )) + �yx(t ) − W0�xx(t )

= −W(A + a(t )) + b(t ). (A1)

Notations have been simplified in the second line. The full
solution to this can be found using the Wiener path integral
formulation, familiarly known in physics as the Feynman path
integral.

First, one makes a decomposition W → We−At , and de-
rives the equation in terms of the new W:

dW
dt

= −We−At a(t )eAt + b(t )eAt

= −WaI (t ) + bI (t ). (A2)

The subscript I is meant to indicate the “interaction picture”
representation of the learning dynamics following similar jar-
gon in quantum mechanics. With both aI (t ) and bI (t ) being
time dependent, one can find the solution in the path integral
form,

W(t ) =
(

W(0) +
∫ t

0
dt ′bI (t ′)Pt ′→0 exp

[∫ t ′

0
dt ′′aI (t ′′)

])
P0→t exp

[
−

∫ t

0
aI (t ′)dt ′

]

= W(0)P0→t exp

[
−

∫ t

0
aI (t ′)dt ′

]
+

∫ t

0
dt ′bI (t ′)Pt ′→t exp

[
−

∫ t

t ′
aI (t ′′)dt ′′

]
. (A3)

The symbol P0→t means that the operator (matrix) defined at
time t ′ = 0 is to be written at the far left, and the one at time
t ′ = t at the far right. The symbol Pt ′→t means that the t ′′ = t ′
operator appears on the far left, and the t ′′ = t operator at the
far right. The usual composition rule of path integrals gives
the second expression of the second line.

The first term ∼W(0) can be ignored because the long-time
result should not depend on the initial condition. Furthermore,
we are interested in terms that are only first order in the
fluctuation. Under these assumptions we can write the result
in Eq. (A3) approximately,

W(t ) − W0 ≈
∫ t

0
dt ′b(t ′)eA(t ′−t ). (A4)

The full definition of the W matrix is restored in the above.
Note that this is exactly the same expression obtained earlier
in Eq. (2.8), without the initial W(0). Hence the FDT derived
earlier is valid to the leading order in the fluctuation.

APPENDIX B: REFINEMENT OF THE FDT THEOREM

It is possible to define a more general kind of diffusion
matrix than the one presented in Eq. (2.9),

〈[�yx(t ) − �yx]iα[�yx(t ′) − �yx] jβ〉
= 2Diα, jβδ(t − t ′), (B1)

that does not involve the summation over the output indices
i, j. A similar generalization for the W -correlation matrix

gives

〈(W − W0)i j (W − W0)kl〉 = �i j,kl

=
∫ t

0
dt ′2Diα,kβ [eA(t ′−t )]α j[e

A(t ′−t )]βl , (B2)

where the result from Eq. (A4) is used to reach the second
line.

If we fix the two output indices i and k in the above relation,
then one can rewrite it in the following fashion:

(�i,k ) jl =
∫ t

0
dt ′[eAT (t ′−t )] jα (2Di,k )αβ[eA(t ′−t )]βl

=
∫ t

0
dt ′[eAT (t ′−t )2Di,keA(t ′−t )] jl . (B3)

In other words, for a given pair of output indices (i, k), we
have a matrix relation

�i,k =
∫ t

0
dt ′[eAT (t ′−t )2Di,keA(t ′−t )], (B4)

subject to the same kind of identify as before:

AT �i,k + �i,kA =
∫ t

0
dt ′ d

dt ′ [e
AT (t ′−t )2Di,keA(t ′−t )]

= 2Di,k . (B5)

In conclusion, the FDT holds irrespective of the choice of
output indices (i, k).
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APPENDIX C: STOCHASTIC LINEAR LEARNING WITH
CNN LAYER

Adding a CNN layer before the W layer and optimizing
the error function with respect to both W and the CNN filter
matrix turns out to be within the mathematically tractable
scope. The CNN layer transforms the input vector xα into a
modified input vector Xα = C ⊗ xα according to the recipe

X α
j =

c∑
ix,iy=1

Cix
α
i+ j−1. (C1)

We switch to a two-dimensional vector notation of the indices,
i = (ix, iy), j = ( jx, jy), and write 1 = (1, 1). The convolution
operator C is a c × c dimensional matrix. The error function
is the same as before, Eq. (2.1) with Xα taking the place of xα:

E = 1

2N

N∑
α=1

(yα − WXα )T (yα − WXα ). (C2)

Minimization of the error must take place with respect to both
W and C.

Taking the derivative of the error E with respect to an
element of the convolution matrix Ci can be done by using
the chain rule,

∂E

∂Ci
=

∑
α, j

∂E

∂X α
j

∂X α
j

∂Ci

=
∑
α, j

∂E

∂X α
j

xα
j+i−1. (C3)

Supplemented by δE/δXα = N−1WT (WXα − yα ), we
arrive at

dCi

dt
= 1

N

∑
α, j

(WT yα − WT WXα ) jx
α
j+i−1. (C4)

The first term on the right-hand side (rhs) becomes

1

N

∑
α, j,k

Wk, jy
α
k xα

j+i−1 =
∑
k, j

Wk, j�
yx
k, j+i−1. (C5)

This is a summation over the output index k, and a con-
volution with respect to the input indices. The surviving

index is i, which covers the elements of the filter matrix C.
We have 1 � j � L − c + 1, 1 � i � c, and 1 � j + i − 1 �
L, which keeps track of the range of indices in a correct
manner. For the second term on the rhs we get

1

N

∑
α, j

(WT WXα ) jx
α
j+i−1

= 1

N

∑
α, j,k

(WT W) j,kX α
k xα

j+i−1

= 1

N

∑
α, j,k,l

(WT W) j,kCl x
α
l+k−1xα

j+i−1

=
∑

l

Cl

⎡
⎣∑

j,k

(WT W) j,k(�xx )l+k−1, j+i−1

⎤
⎦. (C6)

We can define two new quantities,

Pi,l ≡
∑
j,k

(WT W) j,k(�xx )l+k−1, j+i−1 = Pl,i,

Qi ≡
∑
j,k

Wk, j�
yx
k, j+i−1, (C7)

to simplify the equation

dCi

dt
= Qi −

∑
l

Pi,lCl . (C8)

The W matrix appears in various places in the definition of P
and Q, and can be obtained from

dW
dt

= −W�XX + �yX , (C9)

where

�XX
i, j =

∑
k,l

CkCl�
xx
k+i−1,l+ j−1,

�
yX
i, j =

∑
k

Ck�
yx
i, j+k−1. (C10)

The two Eqs. (C8) and (C9) can be solved simultaneously by
GSD. At equilibrium we have C = P−1Q but this formula is
a bit misleading as the filter C enters implicitly in both P and
Q as well.
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