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Fingerprints of viscoelastic subdiffusion in random environments:
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Many experimental studies revealed subdiffusion of various nanoparticles in diverse polymer and colloidal
solutions, cytosol and plasma membrane of biological cells, which are viscoelastic and, at the same time,
highly inhomogeneous randomly fluctuating environments. The observed subdiffusion often combines features
of ergodic fractional Brownian motion (reflecting viscoelasticity) and nonergodic jumplike non-Markovian
diffusional processes (reflecting disorder). Accordingly, several theories were proposed to explain puzzling
experimental findings. Below we show that some of the significant and profound published experimental results
are better rationalized within the viscoelastic subdiffusion approach in random environments, which is based on
generalized Langevin dynamics in random potentials, than some earlier proposed theories.
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I. INTRODUCTION

Brownian motion is omnipresent and important in physics
providing a paradigm in soft matter and biological physics
[1]. It is generally characterized by a linear in time spread
of the particle positions’ variance, 〈δx2(t )〉 ∝ tα , on the en-
semble level of description, with α = 1, which is the case
of normal diffusion in the contemporary phrasing. However,
anomalous diffusion with other scaling power-law exponents
0 < α < 1 (subdiffusion) and α > 1 (superdiffusion) became
increasingly popular over the last 50 years [2–4]. Also another
important, logarithmic scaling in subdiffusion with 〈δx2(t )〉 ∝
|ln t |a with a > 0 can be met in nature [2–4]. Nominally
it is named ultraslow diffusion with the particular exponent
a = 4 corresponding to the so-called Sinai diffusion [2–5].
This “ultraslow” can, however, be a quite misleading naming
[6,7]. Also, normal, according to the α = 1 criterion, diffusion
can be anomalous concerning the probability density P(x, t )
of the particle positions’ spread. Indeed, instead of Gaussian
or normal distribution, the Laplace or exponential distribution
was revealed experimentally in several studies and named
anomalous, yet Brownian diffusion [8,9].

There are many different theories [2–4,10,11] aimed to ra-
tionalize anomalous diffusion. Various physical systems may
require quite different theoretical approaches. In this paper,
we are dealing with soft matter liquidlike systems, where the
approaches of viscoelastic subdiffusion [10,11] seem most ap-
propriate. Indeed, soft media such as dense polymer solutions,
cytosol of biological cells, biological membranes, and even
interface layers of water are intrinsically viscoelastic [12–19].
In living cells, the underlying random polymer network con-
sisting, in particular, of actin and other biopolymer filaments
[20,21] provides a natural physical environment for various
mobile nano- and microparticles. The microrheological prop-
erties of such a medium can be characterized by a complex
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shear modulus [12–14], G∗(ω) = G′(ω) + iG′′(ω), with elas-
tic, G′(ω), and loss, G′′(ω), parts. They both often show a
power-law scaling, G′(ω), G′′(ω) ∝ ωβ , in certain frequency
range(s), with some power-law exponent β, which often cor-
responds to the power-law exponent of anomalous diffusion,
β = α [12–14]. For example, actin filament solutions are
macroscopically characterized by β = α = 0.75 [12,14,21].

Such viscoelastic media can be considered as soft glassy
materials (SGMs) [21,22], which can phenomenologically be
characterized by a dimensionless noise temperature x in accor-
dance with a random medium theory proposed in [22]. Above
the temperature of glass transition at x = 1 and for the range
1 < x < 2, β = x − 1 [22]. Then, the medium should be er-
godic and fluidlike [22]. For example, microrheology of some
living cells yielded β ∼ 0.15–0.35 [23] in a low-frequency
range, which was interpreted as x ∼ 1.15–1.35 within the
SGM model. Other cells can exhibit other β. For example,
β = 0.4 or 0.5 in [24] depending on whether microtubuli are
present or not. Sometimes the corresponding microrheology,
which is characteristic for living cells, is named power-law
microrheology [21].

The actin networks can, however, also display experimen-
tally β less than 0.75 at small frequencies [21], which was
explained within a glassy wormlike chain (GWLC) model
[21,25,26]. The GWLC model, like the SGM model, is es-
sentially based on a random barrier assumption typical for
random media. The larger the disorder, the smaller is β

[21,25,26]. These two models are important. However, they
cannot explain all the facts of anomalous diffusion in polymer
networks, which are porous and can be characterized by a
random mesh size. Here, the ratio of the particle size to the
mesh size becomes an important parameter and α can be very
different from β [27–29].

Transport processes in cytosol and plasma membrane are
vital for living cells [20,30]. A number of experimental studies
[15,16,30–40] revealed their anomalous subdiffusive char-
acter. It is generally believed that subdiffusion of various
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nano- and submicron particles in such inhomogeneous
crowded media is essentially based on viscoelasticity. Typical
power-law anticorrelations of the test particle displacements
often follow the pattern of a fractional Brownian motion
(FBM) [41], in agreement with a theory based on generalized
Langevin equations (GLEs) [10,13,14]. However, such media
are also featured by intrinsic randomness, which is, e.g., a
central part of the SGM and GWLC models [21] and can
also manifestly influence diffusion and transport processes.
Randomness is fundamental for the continuous-time random
walk (CTRW) description of subdiffusion [3,4,42–44], where
the particles sojourn for a long random time in some trap-
ping domain and relatively fast change their location to a
different trap. Here, the approach based on infinite mean resi-
dence times (MRTs) in traps played historically a leading role
[3,4,42–44] motivating a corresponding interpretation of the
experimental data [45]. Some of the results of this approach
can, however, be interpreted in a very different way, not as-
suming infinite MRTs [46], or even not assuming any moment
of the residence time distribution (RTD) be infinite [6,7]. It is
a much more physical vista on anomalous diffusion processes.

It seems obvious that both viscoelasticity and randomness
are important ingredients of subdiffusion in such complex soft
media. To combine viscoelasticity and randomness, several
different approaches were developed, such as subordination
of FBM to a CTRW [37], FBM on fractal structures [47,48],
FBM with a subdiffusion coefficient randomly fluctuating
in time [49,50], and GLE subdiffusion in random potentials
[51,52]. The latter approach appeals by its generality and
extensibility beyond thermal equilibrium [10,53,54]. It leads
to several remarkable features, which we will show below
are observed experimentally indeed. For this, we will look
anew at the experimental data from several remarkable stud-
ies, which opted for different theoretical interpretations, and
provide their alternative fits based on the theory of Langevin
diffusion [6,7,55,56] and GLE subdiffusion [51,52] in random
Gaussian landscapes. It will be shown that the approach of
viscoelastic subdiffusion in random environments allows for
a better understanding of previous experimental findings in-
deed.

II. SUBDIFFUSION IN SOME EXPERIMENTAL
SYSTEMS REVISED

A. Water solutions of semiflexible actin filaments

Our first example relates to the water solutions of semiflex-
ible actin filaments, an important model for cytosol [20]. On a
macroscopic scale such media are viscoelastic and character-
ized by a complex shear modulus [12–14] G∗(ω) = G′(ω) +
iG′′(ω), with a power-law scaling, G′(ω), G′′(ω) ∝ ωα , α ∼
0.5–0.85, in a frequency range [ωmin, ωmax]. The exponent
α corresponds to power-law scaling in subdiffusion [12–14],
〈δx2(t )〉 ∝ tα , which is observed in the time range [tmin, tmax]
with tmin ∼ 1/ωmax and tmax ∼ 1/ωmin [12–14,29]. However,
the microscale properties of this subdiffusion can dramatically
change depending on the ratio of the test particle’s radius
R to the averaged mesh size ξ of random actin meshwork
[27–29]. Moreover, these properties also crucially depend [29]
on a mean length of actin filaments L. Indeed, if L � R, the

particle feels such a medium as nearly homogeneous and
exhibits a subdiffusion with macroscopic exponent α [see,
e.g. experimental results for L = 0.5 μm and R = 0.42 μm
in Fig. 1(a) of [29], where α ≈ 0.85 from tmin ∼ 0.5 ms until
about tmax ∼ 20 s]. Notice that the results of the single-particle
and two-particle microrheologies remarkably agree in such a
case [29]. With increasing L 	 R, the two-particle microrhe-
ology probes subdiffusion on a macroscopic spatial scale
[14,27,29,57] with α changed to α = 0.5–0.75 [depending on
L, see in Figs. 1(b)–1(d) of [29]]. The value α = 0.75 cor-
responds to macroscopic shear modulus G∗(ω). The results of
single-particle microrheology are, however, profoundly differ-
ent [14,27,29,57], as it corresponds to particles feeling local
cages of size ξ . Indeed, for R > 1.5ξ , the particles become
practically trapped in the long-time limit [28], which is clearly
seen in Fig. 1(b) of [29], where ξ = 0.3 μm and L = 2 μm.
However, when a particle diffuses within a cage, it displays
a subdiffusion with a macroscopic, nonobstructed value α =
0.75, which agrees with the picture of locally viscoelastic
subdiffusion in a random environment [52]. Accordingly, for
R � ξ , on a large timescale, particles display a subdiffusion
with α(t ), which depends on the ratio R/ξ [28] and time.

1. Power-law subdiffusion

In Ref. [28], experimental data were fitted by a sim-
ple power-law dependence 〈δx2(t )〉 = 2Dαtα with a single
time-independent exponent α and some anomalous diffusion
constant Dα . It has obviously two fitting parameters α and
Dα , with α related to a power-law scaling exponent of the
residence time distribution ψ (τ ) = cα/τ 1+α [4,11], at τ > τ0,
where τ0 is a short-time cutoff required for normalization of
ψ (τ ). It has two fitting parameters, α and cα . In our Fig. 1, we
reexamine this interpretation. In parts (a) and (b) we plot the
data extracted from Fig. 1 of [28] for R = 0.25 μm and vari-
ous ξ . Generally, we see in part (a) that at least two values of
α are required for different times. For ξ = 0.75 μm, α(t ) ≈ 1
(upper dashed black line) until 0.2 s, i.e., diffusion is normal
initially. Subsequently, it is, however, anomalously slow with
α = 0.75 (upper solid magenta line). With increasing R/ξ , an
effective single α decreases; see in Fig. 2, where we fit the
data extracted from Fig. 4 of [28] by α = 1/[1 + (1.45R/ξ )4]
dependence. For example, for ξ = 0.55 μm in Fig. 1(a), α

becomes smaller. However, also in this case two α values,
α ≈ 0.825 initially (dash-dotted blue line) and α ≈ 0.596
(dashed orange line) for large times, are needed to describe
the experimental data consistently. Also for ξ = 0.30 μm and
ξ = R = 0.25 μm, the power law fits with α ≈ 0.344 (lower
solid light-green line) and α ≈ 0.159 (lower dashed red line),
respectively, are not perfect.

Let us now look at the same data from a different perspec-
tive.

2. Sinai-like subdiffusion

Remarkably, the same data can alternatively be fitted by a
Sinai-like power-of-logarithm dependence

〈δx2(t )〉 = ξ 2| ln(t/t0)/σeff |a (1)

with a in the range [2,4], and two other fitting parameters
t0 and σeff [see in Fig. 1(b)]. Such a dependence with a = 4
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FIG. 1. Experimental data extracted using Engauge Digitizer
[58] from Ref. [28] and their fits. In (a) and (b), the ensemble-
averaged mean-square displacement vs time is taken from Fig. 1 in
[28]. In all cases, R = 0.25 μm; however, mesh size varies from ξ =
0.75 μm (empty magenta triangles), through ξ = 0.55 μm (filled
blue circles) and ξ = 0.30 μm (filled green squares) to ξ = 0.25 μm
(filled red diamonds). In (a), various power-law fits are presented
with the parameters given in this plot (see the main text for more
detail). In (b), the same data are fitted with Eq. (1) and the param-
eters shown. In (c), the data on the RTD from Fig. 3(b) of [28] for
ξ = 0.31 μm and the same R are fitted by (i) power-law dependence
ψ (τ ) ∝ τ−1−α with α = 0.33, which was used in [28] (dashed black
line), and (ii) a generalized log-normal distribution (2) (solid green
line), with the parameters given in the plot.
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FIG. 2. Experimental data (empty black squares) on the depen-
dence of subdiffusion exponent α on the ratio of the particle radius
R and the mesh size ξ in an entangled actin meshwork and their
fit (solid black line). Data are extracted using Engauge Digitizer
[58] from Fig. 4 of Ref. [28]. Fit is done by α = 1/[1 + (cR/ξ )d ]
dependence using one fitting parameter c at fixed d = 4. The optimal
value is c = 1.45. The quality of fit is not visibly improved, if to
make also d variable. The red open circles with their connecting
dashed red line depict the value of α ≈ 4/σeff predicted by our theory
using fitting values σeff from Fig. 1(b), which in turn were obtained
by applying Eq. (1) to data from Ref. [28]. The predicted value of α,
which corresponds to R/ξ = 1/3, lies outside of the figure’s frame,
being unphysical, as α cannot exceed 1. This fit is expected to work
only for σ � 2 or σeff � 5.86. Nevertheless, the overall agreement
between the theory and experimental data is convincing. The inset
shows fitting values t0 from Fig. 1(b) and their exponential fit.

is known under the label of “Sinai-diffusion,” and is widely
considered as ultraslow diffusion [2,3], which can be a quite
misleading naming [7]. By a simple scaling argumentation,
like one used in [2], Eq. (1) was derived [7] for a memo-
ryless diffusion in stationary zero-mean correlated Gaussian
potentials U (x), with the root-mean-square (rms) amplitude of
fluctuations σ = 〈δU 2(x)〉1/2 exceeding strongly thermal en-
ergy kBT , σ � 5, scaled in kBT . It has two limiting theoretical
values a = 4 and a = 2, which are related by a = 2/δ to the
scaling law of the maximal amplitude of the potential fluctua-
tion growth with distance, |δUmax(x)| ∝ | ln(x/xin )|δ . Here, xin

depends on the functional form of correlation decay [7]. For
a smooth disorder (e.g., with a Gaussian or power-law decay
of correlations), it is defined by a spatial scaling parameter
entering x dependence of the 〈U (x0)U (x0 + x)〉 correlations
multiplied with some constant of the order of unity, which
depends on the functional form of correlations [7]. Moreover,
there is about one potential well per correlation length pa-
rameter for such a smooth disorder [7,52]. For these reasons,
we identified xin with ξ in Eq. (1). Notice, however, that ξ

and σeff therein can be combined in one parameter, ξ 2/σ a
eff .

Furthermore, for any stationary Gaussian potential, δ = 1/2
asymptotically [7], which yields a = 4, and σeff = 2

√
2σ ≈

2.83σ , in a semiquantitative agreement with numerics [7].
The occurrence of this Sinai-like diffusion was also shown

for GLE subdiffusion in such random potentials [51,52].
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Moreover, the theory [7] predicts that for a large σ , a can tran-
siently be smaller, a = 2, due to transient features of δU (x)
fluctuations. The same transient features predict, in agree-
ment with numerics [7] for σ � 2, the emergence of a more
common power-law dependence with α ∼ 2/σ̄eff ≈ const for
several transient time decades, where σ̄eff ∼ σeff/2 = √

2σ .
In numerical simulations, σ̄eff ∼ (1.24–1.52)σ , depending on
the disorder correlation features [6,7,51]. For viscoelastic sub-
diffusion in random Gaussian potentials, this estimate also
works pretty well, e.g., for σ = 4 and σ = 5 [51,52]. Interest-
ingly, a very similar dependence with α = 1/σ , 0 < α < 1,
also features CTRW with exponential energy disorder, power-
law RTD ψ (τ ) ∝ 1/τ 1+α , and diverging MRT [4,42–44].

In Fig. 1(b), larger R/ξ corresponds to larger σeff and
smaller t0, which can be fitted by t0 ≈ exp(0.742 − 
S/kB),
with 
S/kB ≈ 12.97R/ξ (see inset in Fig. 2). The rationale
behind this fit is that the attempt frequency ν0 = 1/t0 to escape
a cage depends exponentially on the entropic part 
S of the
free energy barrier, which depends on R/ξ . For σ < 2, the fit
with Eq. (1) is not expected to be good. Nevertheless, it is not
worse in part (b) than in part (a) of Fig. 1 for ξ = 0.75 μm
(upper solid magenta line) and ξ = 0.55 μm (upper dashed
blue line) and a sufficiently large t . For ξ = 0.30 μm (lower
solid light-green line) and the fitting value σ ≈ 4.77 it be-
comes much better than in (a). The fit for ξ = 0.25 μm (lower
dashed red line) is also good. However, it requires a different
a = 2. Importantly, the α values derived from such a simple
theory agree well with the experimental values in Fig. 4 of
[28] (see in Fig. 2).

All in all, our Eq. (1) does not have more free fitting
parameters than the earlier fit of the same experimental data.
Hence, the clear improvement of the fit quality is not due to
an increased number of fitting parameters.

3. Residence time distributions

The case ξ = 0.30 μm is especially interesting because
[28] provides an experimental RTD and its power law fit for
the same R and similar ξ = 0.31 μm in Fig. 3 of [28]. We
present this extracted experimental data and its fits in our
Fig. 1(c). The power law with α = 0.33 (dashed black line)
fits the data over one time decade and correlates well with
the diffusional exponents α = 0.32 in [28] and α ≈ 0.34 in
our Fig. 1(a). However, as was observed in [51], viscoelastic
subdiffusion in a random Gaussian potential with σ = 5 and
exponentially decaying correlations also yields α ≈ 0.32 and
a generalized log-normal RTD [7,51]

ψ (τ ) ∝ e−| ln(τ/τ0 )/κ|b/τ (2)

for τ � τ0, with b = 1.58 and κ = 3.33. This RTD has also
a power-law-looking part with α ≈ 0.30 [see Figs. 5(a) and
5(c) in [51] and the corresponding discussion. In Fig. 1(c)
we make this statement more precise. Indeed, RTD (2) with
b = 1.7 and κ = 2.70 (solid green line) fits the experimental
points much better than a power-law distribution, if to relax
the restriction τ � τ0 [compare with Eq. (17) in [51] suitable
in 1D]. It comes through all the experimental data points (with
small error bars imagined). The RTD (2) has not only the
first moment, but all the moments finite, which is typical for
viscoelastic subdiffusion [10,59].

It should be mentioned that Eq. (2) has three fitting param-
eters, one more than a power-law distribution of infinite time
range. However, can the major assumption on infinite MRT
central for power-law fitting be justified from experimental
data, in the considered case? Of course, in any experiment
there are some minimal, τmin, and maximal, τmax, residence
time intervals measured. This makes the corresponding con-
ditional MRT

〈τ 〉c = 1

1 − α

τ 1−α
max − τ 1−α

min

τ−α
min − τ−α

max

(3)

always finite. However, it increases and eventually diverges
with increasing τmax as 〈τ 〉c ∝ τ 1−α

max . So must do also the
experimentally observed 〈τ 〉e, which anyway should not be
much smaller than τmax. At odds with this, for experimental
data in Fig. 1(c), we find 〈τ 〉e ≈ 80.77 s, while τmax ≈ 1618 s
is about 20 times larger, and Eq. (3) yields 〈τ 〉c ≈ 448.21 s,
also much larger than 〈τ 〉e. In the discussed cases, the assump-
tion of diverging MRT, upon increasing τmax, is questionable
indeed. The fact that Eq. (2) much better fits the experimental
data cannot be attributed merely to one more parameter it uses.

Unfortunately, unlike in the CTRW theory based on power-
law distributions, there is not at present a well-established
relation between the parameters σeff or σ and t0 in Eq. (1) and
b, τ0, and κ in Eq. (2). Some qualitative relations, however,
exist. In particular, the larger σ , the smaller is b � 1 in Eq. (2).
For example, for Gaussian disorder with power-law decaying
correlations and σ = 5 in Fig. 5(b) of Ref. [51], b = 1.88 and
κ = 2.18. For σ = 2 in the same figure, b = 2.23 and κ =
1.43. The parameter b also depends on the functional form
of the correlations’ decay. For example, for exponentially
decaying correlations and σ = 5 in Fig. 5(a) of Ref. [51],
b = 1.58 and κ = 3.33. In Fig. 1(c) here, b = 1.7 and κ = 2.7
with σ = 4.77, which interpolates between the values b and κ

in the cases exponential and power-law decays in [51] for a
similar σ = 5. Hence, a qualitative agreement is present.

B. Ion channels in biological membranes

Our second example relates to subdiffusion of Kv2.1 potas-
sium ion channel proteins clustered in biological membranes,
which was investigated in [48]. Experimental RTD distribu-
tions extracted from Fig. 4 of this paper are shown in Fig. 3
for two sizes of the initial confinement area with radius RH .
A power-law fit with α = 0.9 [48] (dashed red line) covers
at most one time decade with a significant data scatter due
to poor statistics. For the smaller RH statistics is improved.
However, the largest residence time in this case does not
exceed 4 s. Hence, the tail of distribution decays obviously
faster than the claimed power law. Our generalized log-normal
fit (dash-dotted light-green and solid black lines) to the same
data with Eq. (2) is much better. In both cases, b = 1.91
and b = 1.92, correspondingly, are rather close to log-normal
b = 2. Moreover, the values κ are also similar for two values
of RH . Clearly what makes a difference is the value of τ0,
which is essentially smaller for smaller RH . This provides
clear evidence that the MRT is not only finite, but it also
diminishes with RH . Indeed, in this figure, 〈τ 〉e ≈ 0.77 s for
the experimental data point at RH = 44.72 nm, whereas the
corresponding τmax ≈ 9 s. Also for RH = 22.36 nm in this
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FIG. 3. Experimental RTD and their fits. Data for two values
RH ≈ 22.36 nm (filled black squares) and RH ≈ 44.72 nm (empty
green triangles) are extracted using Engauge Digitizer [58] from
Fig. 4 in [48] for clustered Kv2.1 ion channels initially confined
to a circle of radius RH . Different fits are presented: (i) power law
with α = 0.9 (dashed red line) following [48], for RH ≈ 22.36 nm;
(ii) generalized log-normal distributions (2) (dash-dotted light-green
and solid black lines), with the parameters shown. The second fit is
evidently better than the power-law fit, which covers one time decade
at best and is hampered by a strong data noise for τ > 4 s. Moreover,
for RH ≈ 22.36 nm the RTD is most obviously not a power law
asymptotically—the largest experimental residence time is about 4 s
only.

figure, 〈τ 〉e ≈ 0.355 s for the experimental data points,
whereas the corresponding τmax ≈ 3.5 s. From this, we con-
clude that 〈τ 〉 ∝ RH approximately, which is to be expected
for finite mean residence times, independently of how large is
τmax.

Physically, the actin elements of cytoskeleton make also
a random meshwork on the biological membranes creating
pockets of a random size, where diffusing particles can be
trapped. Hence, a physical picture of viscoelastic subdiffu-
sion in a random potential is also relevant in this case. It is
complementary to the approach of viscoelastic subdiffusion
subordinated to a diffusion on fractal structures developed in
[48]. In addition, diffusion of lipid molecules and proteins in
crowded lipid-protein membranes without cytoskeleton ele-
ments [41,60,61] fits well into our concept, as discussed in
[52], and possibly even diffusion of water molecules near
lipid membranes [17], and drug molecules in interface water
[18,19].

C. Subdiffusion of RNA-protein particles in cytosol

Finally, we revisit experimental results on distribution of
RNA-protein particle subdiffusive displacements in cytosol of
Escherichia coli and Saccharomyces cerevisiae cells [39] fit-
ted therein by Laplace distribution P(x, t ) ∝ exp(−|x/x1(t )|).
It is a particular case, with χ = 1, of the exponential power
distribution (EPD)

P(x, t ) ∝ exp(−|x/xχ (t )|χ (t ) ). (4)

The Laplace or exponential distribution was earlier proposed
in relation to anomalous yet Brownian diffusion in soft matter
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FIG. 4. Displacement distribution of RNA-protein particles in
the cytosol of (a) E. coli cells and (b) S. cerevisiae cells normal-
ized by the standard deviation of displacement for two instants
of time in each case. Data are taken from Fig. 4 of [39] using
Engauge Digitizer [58]. Fits [solid blue (dark) and orange (light)
lines] are done using Eq. (4) with fitting parameters shown in the
plots. Variable values 1 < χ < 2 allow for visibly better fits of the
central part than the scaled and normalized Laplace distribution
P(x) = exp(−√

2|x|)/√2 (dashed black lines) [39], also depicted for
comparison.

including actin filament solutions [8,9]. We relax this restric-
tion on χ and use (4) with a variable power χ . The results are
depicted in Fig. 4(a) for E. coli and (b) for S. cerevisiae cells.
The central part of the experimental distribution is clearly
much better described by the EPD with χ ∼ 1.26–1.54.

Importantly, the distribution (4) also emerges for diffusion
in random potentials [6], including viscoelastic GLE subdif-
fusion [52]. In addition, it appears for diffusion of lipids and
proteins in crowded lipid-protein systems [41,60,61], and of
drug molecules in interface water [19]. Importantly, the larger
σ , the smaller is χ � 1 in Eq. (4) within our model. For
example, for σ = 4, in Fig. 2 of the Supplemental Material
in Ref. [6], χ is about 1.37. It still did not reach its minimum,
while evolving in time. In the same figure, χ is about 1.5 at
the minimum for σ = 2. Likewise, for σ = 2 in Ref. [52], χ is
about 1.59 at its minimum in Fig. 3(c) therein. For σ = 4, it is
about 1.45 at the end of simulations, where the minimum was
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not reached. For larger σ , χ is expected to be smaller. Hence,
a qualitative agreement with the results in Fig. 4 of this paper
is present.

In this respect, subdiffusion of mRNAs in E. coli re-
vealed and studied first in [34] was initially interpreted as a
CTRW subdiffusion because of a large scatter in single tra-
jectory averages [45], which should not be the case of ergodic
GLE viscoelastic subdiffusion in a homogeneous environment
[59,62]. However, later on it was shown that this subdiffusion
is, in essence, of viscoelastic FBM or GLE origin [63]. Like-
wise, patently viscoelastic subdiffusion in [15,39] exhibits a
large scatter in single-trajectory averages. Some scatter can,
of course, emerge because of the particles’ different size [64].
However, it cannot be the only reason because the scatter
can be large, several orders of magnitude, as characterized by
the anomalous diffusion coefficient defined for single trajec-
tories, and the particle size varies not that strongly. Also for
viscoelastic subdiffusion in random environments, one of the
fingerprints of is a broad scatter of single-trajectory time aver-
age of the particles’ mean-square displacement [51,52]. It can
be characterized by a pair (α, Dα ) of power-law exponent α

and the corresponding subdiffusion coefficient Dα , which are
both broadly distributed [51,52]. The average single-trajectory
α agrees, however, pretty well with α defined using the ensem-
ble average. This picture agrees well with the experimental
results in [15,39], where a similar phenomenon was observed
and gave the grounds for the authors of [15,39] to claim that
the diffusion they observed and studied is ergodic. In the
theory developed in [39], one assumes, however, that α is not
distributed, but only Dα has an exponential distribution. The
latter leads to the Laplace, or exponential distribution with
χ = 1 in Eq. (4). However, if we relax the assumption of
constant α, which in fact does not fully agree with the results
presented in Figs. 1(c) and 1(d) of [39], then it is also natural
to relax the assumption of constant χ = 1. Indeed, variable χ

results in a better agreement with experiment in our Fig. 4.
Viscoelastic subdiffusion in random environments pro-

vides a natural theoretical framework to reconcile viscoelas-
ticity with nonergodic features caused by randomness [51,52].
It is an important message of this work.

III. DISCUSSION AND CONCLUSIONS

We wish to underline that our concept does not contradict
other suggestions to combine viscoelastic FBM and GLE
features with breaking ergodicity. Rather, it provides a uni-
fying framework. Indeed, local subdiffusion in random-size
pockets of complex meshworks can phenomenologically be
characterized by a local random pocket-specific subdiffu-
sion coefficient. It can be interpreted as an inhomogeneous
viscoelastic subdiffusion with a randomly distributed subdif-
fusion coefficient as is done in [38,39], if on the observation
timescale the particles do not change their localization pocket.
It can also be the reason why diffusion can be seen normal
from the perspective of the single-trajectory averages and
anomalous on the ensemble level [40], even if it can be mod-
eled differently, with a fluctuating in time diffusion [40] or
subdiffusion [49,50] coefficient.

However, when the particles jump to other localization
pockets on the observation timescale, like in [28] (see Fig. 2

therein), then a CTRW picture might seem more appropriate,
and it was taken in [28]. Viscoelastic subdiffusion in ran-
dom environments provides a general theoretical framework
to unify different perspectives. It provides a natural exten-
sion and generalization of a random landscape approach to
anomalous diffusion [2] practiced for many years assuming
local diffusion be normal. In this respect, we wish to observe
that the initial time in Fig. 1 here and in [28] starts from about
0.03 s. However, if one were to extend it down to 0.1 ms, like
in [29], then the regime of initial subdiffusion with α = 0.75
until 0.01 s matching the macroscopic behavior becomes obvi-
ous [see parts (b)–(d) in Fig. 1 of [29]], even if asymptotically
particles become practically trapped at R/ξ = 1.4 with the
asymptotic value of α smaller than 0.1. Also in Fig. 1(a)
of Ref. [57], the results of two-particle microrheology (the
lower curve therein), which probes the diffusion behavior on
a macroscale, implicate subdiffusion with bulk value α =
0.75. However, the results of single-particle microrheology
(the upper curve therein) indicate clearly a subdiffusion of
Sinai-like type, our Eq. (1), which is caused by local envi-
ronment. It agrees well with a general picture of a finite-range
viscoelastic subdiffusion in a random environment [52]. Note-
worthy, judging from the minimal ωmin of power-law scaling
of G∗(ω) in actin solutions, the macroscopic scale subdif-
fusion in Ref. [29] should not extend beyond the temporal
range of 10–20 s. However, subdiffusion caused by trapping
in random pockets of actin meshwork for the particle size R
comparable with the mesh size ξ can extend far beyond this
range, as our theory predicts generally [52]. It is an experi-
mentally verifiable prediction, which seems to be in line with
the experimental results in [29,57].

To conclude, it is amazing that the functional dependencies
(1)–(4) emerged within the studies of one-dimensional GLE
viscoelastic subdiffusion in stationary Gaussian potentials
[51,52]—a theoretical toy model—prove their importance
while fitting the results obtained for real three-dimensional
(3D) and two-dimensional (2D) viscoelastic disordered sys-
tems much better than the original fits based on different
theories. This signifies our approach’s validity and importance
and calls for its further exploration and extension, partic-
ularly 2D and 3D, different random potentials (models of
spatial disorder), and models of time correlations, including
fluctuating in time random potentials and out-of-equilibrium
effects. There is plenty of research space opening in theory.
The experimental studies based on these recent insights will
be crucial. Therefore, we wish to invite researchers to rethink
their data in the light of GLE viscoelastic subdiffusion in
random environments as a fundamental approach.
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