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Real-time temperature measurement in stochastic rotation dynamics
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Many physical and chemical processes involve energy change with rates that depend sensitively on local
temperature. Important examples include heterogeneously catalyzed reactions and activated desorption. Because
of the multiscale nature of such systems, it is desirable to connect the macroscopic world of continuous
hydrodynamic and temperature fields to mesoscopic particle-based simulations with discrete particle events.
In this work we show how to achieve real-time measurement of the local temperature in stochastic rotation
dynamics (SRD), a mesoscale method particularly well suited for problems involving hydrodynamic flows with
thermal fluctuations. We employ ensemble averaging to achieve local temperature measurement in dynamically
changing environments. After validation by heat diffusion between two isothermal plates, heating of walls by a
hot strip, and by temperature programed desorption, we apply the method to a case of a model flow reactor with
temperature-sensitive heterogeneously catalyzed reactions on solid spherical catalysts. In this model, adsorption,
chemical reactions, and desorption are explicitly tracked on the catalyst surface. This work opens the door for
future projects where SRD is used to couple hydrodynamic flows and thermal fluctuations to solids with complex
temperature-dependent surface mechanisms.
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I. INTRODUCTION

Many physical and chemical processes involve an ex-
change of energy with the surroundings or the conversion of
one form of energy to another. One of these forms is thermal
energy. Temperature is commonly perceived as the “hotness”
or “coldness” of matter [1]. More precisely, from statistical
mechanics we know that temperature can be expressed in
terms of the average kinetic energy of the constituent atoms
in the absence of macroscopic flow [2].

Temperature is important for various physical and chemi-
cal processes, including adsorption, desorption, and chemical
reactions, which often take place at interfaces, such as the
interface between a solid catalyst and a fluid containing the
reactants and products. The rates with which these processes
take place are not only influenced by microscale kinetic fac-
tors but also by local macroscale properties such as pressure,
hydrodynamic velocity fields, and, importantly, temperature.
Applications of these processes often involve fluids in com-
plex geometries, for example adsorption in porous media or
heterogeneously catalyzed reactions taking place in packed
bed reactors. When modeling such systems, one usually
encounters the problem of having to tackle phenomena at
different length scales ranging from the microscale to the
macroscale.

Macroscale computational techniques are based on the
continuum assumption. These techniques generally require
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solving conservation equations in the form of partial differ-
ential equations. As a result, the continuum methods model
macroscopic effects of the embedded microscopic behavior
directly [3]. The continuum assumption breaks down for sys-
tems where molecular effects such as Knudsen diffusion,
and other effects that involve finite numbers of particles, are
prominent. In such a case, microscale techniques, such as
molecular dynamics (MD) simulations are preferred. How-
ever, microscale techniques are usually too computationally
expensive to simulate larger volumes of continuum fluid
phases.

In such cases, it is advantageous to use mesoscale simu-
lation methods, such as lattice Boltzmann, direct simulation
Monte Carlo, dissipative particle dynamics (DPD), or stochas-
tic rotation dynamics (SRD) [4]. The advantage of SRD
in particular is that it automatically accounts for thermal
fluctuations and hydrodynamics, and can easily be extended
to include reactions on surfaces. This makes it a promis-
ing tool to investigate the coupling of convection-diffusion
mechanisms to microkinetic (adsorption-reaction-desorption)
phenomena taking place on reactive surfaces and in porous
media.

In SRD, a system consisting of point particles is evolved
with a discrete streaming step and a collision step in which all
particles in a collision cell simultaneously exchange momen-
tum. This general approach is often referred to as multiparticle
collision dynamics (MPCD or MPC) [4] and shares some
features with the direct simulation Monte Carlo approach.
SRD refers to a particular implementation in which the colli-
sions are executed through a stochastic rotation of the relative
velocities of the particles in the collision cell [5]. Ihle and
Kroll [6] pointed out that the introduction of a grid-shift
procedure is necessary to sustain Galilean invariance. The fact
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that SRD is particle based and generates Navier-Stokes hydro-
dynamics in an efficient way makes this method very suitable
for simulations of complex systems such as equilibrium
and nonequilibrium colloid and polymer solutions [7–18],
microswimmers [19–25], and viscoelastic fluids [26–28]. Ap-
plications of SRD to biological systems have sprung up, such
as for biological functional molecules, bacteria, and cell sus-
pensions and their dynamic behaviors [29–34].

Most of the implementation cases of SRD are assumed to
be isothermal [35,36]. However, recently researchers start to
pay attention on the nonequilibrium simulations with SRD.
Lepri [37] studied nonequilibrium steady states of a one-
dimensional fluid in a finite domain with thermal walls.
Investigating temperature effects has not been the first concern
in this method and is complicated by the feature of inherent
thermal fluctuations. More precisely, in MPC or SRD, the
temperature is not set as a direct parameter but is inher-
ent in the particles’ velocity fluctuations. This feature brings
difficulties for measuring and simulating real-time local tem-
perature change in the system, since the temperature is not an
explicitly accessible variable of the simulation. Usually when
there is viscous heating present in a nonequilibrium simula-
tion, a thermostat is used to regulate temperature and establish
a steady state. A thermostat rescales the relative velocities of
particles in a collision cell, without compromising the cell-
averaged velocity, nor the Maxwell-Boltzmann distribution in
the collision step [5]. Thermostats are widely used in MPC,
for example, Anderson thermostat [35]. Dynamic parameter
values remain constant in thermostatted systems, while the
kinetic temperature relaxes to a fixed temperature.

If certain system properties are highly temperature de-
pendent, then local temperature variations can lead to strong
feedback effects. An important example of this is hetero-
geneous catalysis, where the rates of catalyzed chemical
reactions can change orders of magnitude due to a relatively
small change of temperature. Because of the high sensitivity
of reaction rates to local temperature, the conversion and
selectivity in structured or packed bed reactors is intricately
linked to variations in temperature that can change over rel-
atively small time and length scales. Modelling such reactors
with proper temperature-dependent local reaction rates thus
requires measurement of the local temperature in real time.

In this work, we investigate a novel way to measure and
simulate thermal dynamics in SRD, by which we extend the
field of possible application of the SRD method. This paper
is arranged as follows. In Sec. I, we provide a theoretical
background of SRD for modeling hydrodynamics and a newly
developed technique for real-time local temperature measure-
ment. In Sec. III, we validate the method for different cases
of heat conduction through a fluid phase and between a fluid
and a solid phase and investigate heat effects in systems with
surface reactions. Finally, in Sec. IV we give our conclusions
and outlook.

II. METHODOLOGY

A. Fluid model

Stochastic rotation dynamics is a mesoscale simulation
method in which the fluid (either a gas or a liquid) is

coarse-grained to a set of point particles that interact ac-
cording to highly efficient multiparticle collision rules [5,15].
The resulting dynamics obeys the Navier-Stokes equations at
larger scales, while also offering the advantage of automati-
cally accounting for thermal fluctuations and (coarse-grained)
molecular diffusion. N particles are placed in the system to
represent the fluid, with a total mass of �k

j=1XjmjN . Here
Xj , mj , and k are the mole fraction, mass of component j,
and the number of components in the system, respectively. In
between two subsequent collisions, in the so-called streaming
step, the position of each particle i is updated by a first-order
Euler scheme. If rt

i and vt
i are the position and velocity vectors

of particle i at time t , and �ts is the timestep used during
streaming, then the new position vectors are given by:

rt+1
i = rt

i + vt
i�ts. (1)

If there is a body force applied to the fluid, e.g., to drive a flow,
then the velocity of particle i is updated in the streaming step
according to

vt+1
i = vt

i + g�ts. (2)

In this expression, g is the acceleration associated with the
body force.

Particles only interact with each other during the collision
step. To achieve this in a computationally efficient way, space
is coarse-grained every collision time interval �tc (chosen as
an integer multiple of �ts) into a grid of cubic lattice cells,
with a size of a0 in each direction. The particle interactions
are modelled by instantaneous exchange of their momenta in
each lattice cell. In SRD, the velocity vector of each particle
is updated according to:

v′
i = v̄ + �(vi − v̄), (3)

where vi indicates the postcollision velocity. In the above
expression, v̄ = ∑

j m jv j/(
∑

j m j ) is the center-of-mass ve-
locity of all particles j in the same cell as particle i and � is a
matrix that rotates the velocities by a fixed angle α around an
axis (where for each cell a different randomly oriented axis is
chosen, leading to the stochasticity of the method). This rota-
tion step leads to mixing of the particle velocities, i.e., viscous
dissipation. The local conservation of mass and momentum on
the scale of a collision cell leads to hydrodynamic behavior on
larger scales, in agreement with the Navier-Stokes equations.

We note that a random grid shift procedure is needed
before each collision step to ensure Galilean invariance [6],
wherein the SRD grid is shifted randomly in all three Carte-
sian directions at every collision step, with the same shift
applied to every SRD cell. While fixing the Galilean invari-
ance of the fluid, the shifted grids can coincide with the
domain walls, resulting in partially occupied cells at the walls,
leading to a nonzero slip velocity [5,38,39]. A correction is
made by adding “ghost” particles at the wall [40,41], with
velocities satisfying the Maxwell-Boltzmann distribution with
zero mean velocity and a variance corresponding to the fluid
temperature [5].

In our simulations, the units of length, mass, and energy are
chosen equal to a0 (the length of a collision cell), m0 (the mass
of the majority species SRD particle), and kBT0 (thermal en-
ergy at the reference temperature T0), where kB is Boltzmann’s
constant, leaving the average number of particles per collision
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TABLE I. Simulation parameters of SRD and derived units. In
our simulations the collision cell size, majority species mass, and
thermal energy at the reference temperature are the units of length,
mass, and energy, respectively.

SRD fluid simulation parameters

a0 ≡ 1 Collision cell size
m0 ≡ 1 Solvent (majority species) mass
kBT0 ≡ 1 Thermal energy (at reference temperature)
γ Average number of particles per collision cell
�ts Streaming integration timestep
�tc Collision time interval
α SRD rotation angle

Derived units

Density m0/a3
0

Time t0 = a0

√
m0

kbT0

Diffusion

coefficient D0 = a2
0

t0
= a0

√
kbT0
m0

cell γ , the time interval between successive collisions �tc, and
the rotation angle α as independent simulations parameters.
The units of other variables, such as density, time, and various
diffusion coefficients, can be derived from the three base units,
as given in Table I.

An important advantage of SRD is that the transport prop-
erties are well defined for arbitrary values of the simulation
parameters. The simplified dynamics of SRD allows deriva-
tion of analytical expressions for most transport properties
[42–45], which is not possible for other particle-based meth-
ods such as MD and DPD. The streaming step and collision
step lead to separate (and additive) contributions to the trans-
port coefficients, usually referred to as kinetic and collisional
contributions (see Table II). Analytical expressions for the
(kinematic) viscosity ν and thermal diffusivity DT have been
derived and validated by Ihle and Tüzel [43,46,47]. The self-
diffusion coefficient of SRD particles has been calculated and
investigated by Kapral [4,48]. In contrast to the shear viscosity
and thermal diffusivity, there is no analytical expression for
the collisional contribution to the self-diffusion coefficient be-

TABLE II. Kinetic (streaming) and collisional contributions to
SRD transport coefficients for a three-dimensional single-component
SRD fluid, valid up to order 1/γ 2. Note that the shear viscosity
is expressed as a kinematic viscosity, i.e., with the same units as
thermal diffusivity and self-diffusivity.

Kinetic contribution × kB T � tc/(2m)

Shear viscosity ν = 5γ

(γ−1+e−γ )[2−cos α−cos(2α)] − 1

Thermal diffusivity DT = 3
1−cos α

(1 − 1
γ

) + 24
5γ

− 1
Self-diffusivity Ds = 3γ

(γ−1+e−γ )(1−cos α) − 1

Collisional contribution × a2
0/� tc

Shear viscosity ν = 1
18γ

(γ − 1 + e−γ )[1 − cos α]

Thermal diffusivity DT = 1
15γ 2 (γ − 1)[1 − cos α]

cause it has proven difficult to theoretically include effects of
hydrodynamic correlations on the self-diffusivity. The analyt-
ical expression for self-diffusivity is, therefore, most accurate
for λ > 0.6, where λ = �tc/t0 is the dimensionless mean free
path. For such a large mean free path, the random collision
approximation can be expected to be valid.

B. Temperature change and measurement

1. Measuring temperature in the fluid phase

In SRD, similarly to molecular dynamics simulations,
temperature can be calculated from the average fluctuation
velocities, i.e., particle velocities minus any contribution due
to convective motion, of a sample of particles [49]. According
to statistical mechanics, the instantaneous temperature of a
collection of n particles may be determined from:

kBT = 1

3(n − 1)

n∑
i=1

mi(vi − v̄)2, (4)

where the number of degrees of freedom (per Cartesian di-
rection) n is reduced by one to account for the constraint
that the average of the velocities vi must equal the center-of-
mass velocity v̄ of all n particles. Based on Eq. (4), a local
and instantaneous temperature T (xc, t ) can be determined for
each cell located at xc. However, the number of particles per
cell (typically in the range of 5 to 20) is usually too low
to perform a statistically meaningful local and instantaneous
measurement. For a system in steady state, a proper solution
to find the—possibly spatially dependent—temperature is to
locally average over many subsequent time instances, in other
words to perform a long time average. Conversely, for systems
with a certain symmetry in the geometry, this symmetry may
be exploited to average over multiple equivalent locations
and find the—possibly time dependent—average temperature.
However, an unsteady-state system with a complex geometry,
such as the start-up of reactive flow in structured or packed
bed reactors, calls for an innovative way of averaging that pre-
serves the local and instantaneous nature of the temperature
field.

In this work we propose to determine the local and in-
stantaneous temperature by averaging over sufficiently many
independent realisations of the same system, i.e., replica
averaging.

There are two ways in which replica averaging can be
implemented: serial and parallel. In the serial implementation,
each simulation is run to completion and saved and then
reinitialized and repeated. The accumulated solution is then
averaged at the end of ns iterations. In a parallel implemen-
tation, ns versions (replicas) of the simulation are performed
simultaneously, while exchanging data and averaging between
the replicas at each time step.

Both implementations have their advantages and disadvan-
tages. Serial implementation is simpler to realize. It is well
suited for problems in which the dynamics are independent
of on-the-fly information about the local temperature. For
example, a study of heat transfer through a fluid between
boundaries at different temperature can be easily realized with
this technique since the influence of local temperature varia-
tions on the heat transfer is emergent. Parallel implementation
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is more involved, but it allows us to solve problems where
on-the-fly information about the local temperature influences
the dynamics of the system. For example, determining the
reaction rate of a heterogeneously catalyzed reaction requires
access to a statistically meaningful measurement of the local
instantaneous temperature. By using the power of parallel
computing we can implement an ensemble of ns equivalent
versions of the system, while exchanging data and averaging
each time step.

SRD or MPCD is naturally suitable for parallel computing,
owing to the fact that the system is discretized in indepen-
dent particles, and no differential equations need to be solved
to simulate the fluid. Howard et al. exploited the parallel
computational capabilities of GPUs in the implementation of
MPCD algorithm [50]. One way to implement parallel SRD is
by using Compute Unified Device Architecture, an extension
to the C language developed by Nvidia. The advantage of
this technique is that it can accelerate the simulation even
if there is only one instance running. The implementation is
suitable to all potential applications of SRD. However, such
GPU-based implementations are often bottlenecked by hard-
ware limitations. GPUs often possess smaller RAM capacities
than CPUs, which could be limiting for a memory-intensive
method such as the one studied in this work.

In this work, a new variation of SRD is developed that
employs Open MPI. Parallel replicas of the simulation are
executed simultaneously. Communication between the paral-
lel simulations is only needed when averaging macroscopic
properties such as local temperature. This can be handled
efficiently in Open MPI. The parallel algorithm used in this
study is shown in Fig. 1. The simulation starts by initial-
izing multiple instances (four instances in Fig. 1) of the
simulation simultaneously. For each time step, every instance
undergoes, independently from other instances, the streaming,
wall bounce-back, and collision step, and any chemical or
physical process implemented in the simulation that possibly
partially depends on the local macroscopic variables. Local
macroscopic variables are evaluated for each instance and
then averaged between the instances and delivered back to
each node. The overall mean values of macroscopic variables
can then be used in the next time step.

2. Heat exchange between bulk fluid and bulk solid phase

The temperature of the bulk of a solid phase is often
neglected in SRD. Rather, the wall temperature is usually
accounted for via boundary conditions (BCs). In SRD, the
most commonly used BC at a wall is the bounce back BC,
leading to an effective no-slip boundary condition. In bounce
back, all components of a particle’s velocity are inverted when
it collides with a solid surface or a hard wall of the domain, as
in Eq. (5),

vi → −vi. (5)

However, the bounce back BC does not allow for energy
exchange between the fluid and the solid since the distribution
of the postcollisional velocity exactly mirrors the distribution
of the precollisional velocity. In other words, from a ther-
mal perspective bounce back BCs are equivalent to adiabatic
boundaries.
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Data
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t<tend
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Collision

t<tend
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FIG. 1. Flowchart of the OpenMPI algorithm for parallel averag-
ing of local macroscopic variables in SRD. In this example we show
ns = 4 instances (replicas).

Any system with viscous fluid flow exhibits viscous dis-
sipation: the kinetic energy associated with fluid flow is
converted into thermal energy, which is observed as an in-
crease in velocity fluctuations. Previous SRD studies [38,51]
removed this excess heat by enforcing a predetermined tem-
perature. Such a thermostat is not utilizable here since the goal
of this work is to mimic systems in which reaction heat or
viscous dissipation can cause the temperature to evolve in time
and space.

In many real systems, viscous heat generated in the fluid is
removed via the confining walls. To mimic this, an option is
to use the stochastic BC suggested by Padding and Louis [15].
In this BC, postcollision velocities at the surface are generated
from the expected velocity distribution of SRD particles, at the
desired wall temperature. This method results in a small slip
velocity in systems with flow tangential to the wall, because
of the nonzero average tangential velocity before the collision
with the wall. A correction to this was proposed by Bolin-
tineanu et al. [40]. Essentially, the Gaussian distribution in
the tangential direction is biased with the local mean velocity
to counteract the slip. This leads to the following probabilities
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to generate new velocity components vni and vt i normal and
tangential to the wall, respectively, for a particle i that bounced
into the wall:

P(vni ) = vni exp

(
−miv

2
ni

kBTw

)
	(vni ), (6)

P(vt i ) =
√

kBTw

2πmi
exp

[
−mi(vt i + v̄t i )2

kBTw

]
, (7)

where Tw is the wall temperature, 	(vni ) is a Heaviside
function ensuring that only positive normal velocities are gen-
erated, and v̄t i is the fluid flow mean particle velocity of the
cell in which particle i was located in the previous time step.
Note that the + sign in front of v̄t i in Eq. (7) is not a typo,
because the mean tangential postcollisional velocity should
be equal to −v̄t i, which corrects the slip velocity by using a
bounce-back scheme on the mean local tangential velocity.
No additional noise is introduced, since the mean velocity
profile is obtained by averaging. Even though the number
of particles in a single SRD cell is limited, the correction
of the boundary condition is not affected. This method will
henceforth be called the biased stochastic boundary condition.

The biased stochastic bounce-back BC not only enables us
to specify the temperature of the wall boundary but also to
describe the heat flux through the boundary between the fluid
and solid phase. To this end it is important to also consider
thermal conduction through the solid structure.

Temperature conduction in a solid is described by the gov-
erning energy equation:

ρsCs
∂T

∂t
= Ks∇2T, (8)

where ρs is the density of the solid material, Cs is the heat
capacity (per unit mass), and Ks is the thermal conductivity
of the solid. Note that in practice we specify the thermal
diffusivity Ks/(ρsCs) (in units of D0) and the heat capacity
per unit volume ρsCs (in units of kBT0/a3

0) of the solid phase.
In this work the temperature field in a solid is evaluated

on a Cartesian grid. Solids with curved surfaces are therefore
approximated into cuboidal volumes. However, the fluid phase
in coarse-grained particle form is not influenced by this ap-
proximation. The spatial derivatives on the right-hand side of
Eq. (8) can be discretized using a central difference scheme.

For boundary cells, there are no more solid cells in one
or more directions. Special care has to be taken in the di-
rections where the solid is contacting the fluid. Taking a
one-dimensional case, we can discretize the spatial derivative
as:

Ks
∂2T

∂x2
=

Ks
(

∂T
∂x

)
x+�x/2 − Ks

(
∂T
∂x

)
x−�x/2

�x

= −Fx+ + Fx−
�x

, (9)

where Fx+ and Fx− denote the heat flux at the right and left
interfaces of the cell. For interior cells, each of these terms
can be further discretized with a general central difference
scheme. For boundary cells, the flux term on the interface
contacting the wall is replaced with the actual flux from the
SRD fluid, which is determined as follows.

In the case of arbitrary geometries, a solid temperature
mesh spans across the entire simulation domain, indicating
cells that contain solid with a flag. The solid cells in contact
with the fluid can be classified as a boundary cell, cells in the
fluid as fluid cells, and solid cells fully surrounded by other
solid cells as interior cells. Each solid temperature mesh cell
contains the coefficients for itself and its six closest neighbors.
In the preprocessing step, the interior cells are identified and
given their coefficients. Then, the boundary cells are identified
and given their coefficients according to Eq. (9), leaving out
the external flux terms. This allows us to simply calculate
the total energy transfer due to all particle-wall collisions in
the cell without having to store in memory every location of
surface collision.

When a particle collides with a wall, the exact location of
the contact is calculated and the corresponding solid temper-
ature mesh cell is identified. The flux due to the collision is
then added to the flux variable of the mesh cell. All interior
wall cells are given a flux value of 0 by default. The solid
temperatures are then updated using the coefficient matrix to
determine the discretization and the flux variable to add the
necessary flux from the SRD fluid. This ensures that all wall
cells can be updated with the same code, regardless of its con-
tact with the fluid. A drawback of this method is the additional
memory required to store the coefficient matrices. However,
this memory requirement is small compared to that required
to save the large number of simultaneous simulations.

The wall temperature Tw is determined from the solid cell
temperature closest to the interface, and the postbounce-back
velocity of the particle is calculated using Eqs. (6) and (7).
This essentially changes the temperature of the outgoing par-
ticles to that of the local wall. The particle collisions with the
interface of a specific solid cell during a time step result in
energy change

�E =
∑

i

1

2
mi

(
�v2

xi + �v2
yi + �v2

zi

)
, (10)

that quantifies the heat flux into the solid cell:

Ft = �E

�x2�t
. (11)

This heat flux is used in Eq. (9) to update the solid temperature
[52]. This creates a two-way exchange of energy between the
solid and the fluid.

3. Surface heat sources

In the previous part, we dealt with energy exchange be-
tween a fluid and a solid. We now consider the case where
thermal energy is generated on the interface, for example as
a result of adsorption or a (heterogeneous) surface reaction.
Since the surface has no volume, and therefore no heat capac-
ity, the question is how this heat should be initially distributed
between the fluid phase and solid phase. For materials used in
most common applications (solids in the form of metals, fluids
in the form of water, air, or other gases), the thermal diffusivity
in the solid is larger than that in the fluid. In that case, surface
heat tends to first predominantly transfer to the solid phase
and only then to the fluid phase. This is the approach taken in
this work.
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FIG. 2. Comparison of analytical and simulated velocity in
Poiseuille flow. The walls are kept at a constant temperature.

When there is a surface heat source, the energy change in
Eq. (10), which is used to determine the heat flux into the
solid, must be replaced by:

�E =
∑

i

1

2
mi

(
�v2

xi + �v2
yi + �v2

zi

) + �Esurf , (12)

where �Esurf is the amount of heat generated on the surface.

III. RESULTS

Before investigating a complex process involving heat and
mass transport, we first validate the method by computing the
velocity profile under the modified boundary condition, the
heat diffusion between two isothermal plates, and between a
hot strip and solid walls that can be heated. We then present
the temperature measurement during programed desorption
and a chemical reaction involving both the fluid phase and
the solid phase.

A. Biased stochastic boundary condition

We validate the boundary conditions by comparing the
simulated flow profile and the the analytical solution for a
planar Poiseuille flow. The SRD fluid parameter values are
chosen as: γ = 7, �tc = 0.5, and α = 90◦. The flow is in-
duced by a body force g = 0.001 (in SRD units) acting on
the SRD particles. This yields a Reynolds number of approx-
imately 10.

The velocity profiles in Fig. 2 show that the bounce-back
BC yields the closest agreement with the analytical solu-
tion. As expected, the stochastic BC shows some amount of
slip, which is mostly corrected by the biased stochastic BC
in Eq. (7). In this work, to demonstrate the significance of
real-time temperature measurement and heat-transfer between
solid and fluid, the biased stochastic BC is chosen in further
simulations.

B. Heat diffusion between isothermal plates

Heat transfer is tested by simulating a fluid confined be-
tween two infinite plates (i.e., periodic boundary condition are
applied in the x and z directions). The plates are located at
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FIG. 3. Time evolution of the temperature distribution between
two isothermal plates; the analytical solution is under the assumption
of a constant thermal diffusivity evaluated at the temperature of the
hot plate.

y = 0 and y = Ly, where Ly is the distance between the plates.
In this case, the geometry of the simulation domain is set as
Lx = 15, Ly = 40, and Lz = 5. The wall at y = Ly is main-
tained at the initial temperature of 1, while the wall at L = 0
is instantaneously heated to a temperature of 1.1 at time t = 0,
and maintained at this temperature throughout the simulation.
The fluid number density was chosen to be γ = 7, the rotation
angle α = 90◦, and time step size �tc = 0.5. Following the
equations in Table II, the thermal diffusivity varies between
0.5806 and 0.6371 depending on temperature, if the average
fluid density of γ = 7 can be assumed fixed. 7500 simula-
tions were conducted simultaneously for ensemble averaging.
Analytically, one-dimensional heat transfer from a plate to an
infinite domain is described by the following expression:

∂T

∂t
= ∂

∂y

(
DT

∂T

∂y

)
, (13a)

T (y, t = 0) = T0 T (y = 0, t ) = Tw, (13b)

where T0 and Tw are the initial system temperature and the
heated wall temperature, respectively. If the thermal diffusiv-
ity DT is assumed to be constant, then the solution to the
above differential equation can be readily found to be the
complementary error function, with a width growing in time
as

√
DT t .

In the simulation, the existence of the cold wall at y = Ly

invalidates this solution for an infinite domain, except for the
initial times of the simulation when the effect of the hot wall
has not yet reached the opposite cold wall. Moreover, the
thermal diffusivity is not constant in the simulation, because
it depends on the local temperature and local number density.
For relatively small temperature differences between the two
walls we can approximate the thermal diffusivity to be con-
stant at the value of the hot wall (which is most relevant for
thermal diffusion of the hotter parts of the fluid). Following
this approach, Fig. 3 shows that the temperature evolution
follows the expected analytical solution.

The thermal diffusivity can also be measured from the SRD
simulation in various ways [6,42,45,47,53,54]. For example,
Ihle et al. [43] used a discrete-time projection operator tech-
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FIG. 4. Comparison between the theoretical thermal diffusivity
(Table II) and the thermal diffusivity obtained from the measured
heat flux [Eq. (15)].

nique to obtain the Green-Kubo relations for the transport
coefficients. With the establishment of real-time temperature
measurement in the present study, the thermal diffusivity can
be measured more directly and computationally efficiently
from the steady-state heat flux to the walls during conduction
between flat plates, given by:

Ft,x=0 = K
dT

dx
, (14)

DT = K

ρCP
, (15)

where Ft,x=0 denotes the thermal flux at x = 0 (or any other
plane in steady state), K is the thermal conductivity of the
fluid, ρ the mass density, and CP the heat capacity per unit
mass. We apply this method to to a system with fluid particle
density ρ = mγ = 50. The resulting thermal diffusivity is
shown in Fig. 4 for various settings of the collision time step
�tc and compared with the theoretical solution for thermal
diffusivity derived in the work of Ihle et al. [43]. The simu-
lated results closely match the analytical solution.

C. Fluid confined between planar walls

The exchange of heat between solid and fluid phases plays
a key role in many processes. For example, the reaction ki-
netics and the catalyst efficiency in a heterogeneous catalytic
reactor can be sensitive to temperature, and the formation of
local hot spots due to the inefficient thermal conductivity can
cause severe problems. In simulating such problems, a heat
transfer model between solid and fluid is necessary.

The performance of the fluid-solid coupled model intro-
duced in Sec. II B 2 is evaluated by conducting a test case
in which a heat flow is induced between two planar surface.
A rectangular strip of the wall at y = 0 is maintained at a
temperature of 1.1 [see Fig. 5], whereas the temperature of the
rest of the wall and the wall at y = Ly can evolve freely from
an initial temperature of 1.0. A 10% maximum difference
in temperature is chosen to limit the effects of changes in
temperature-dependent properties such as diffusivity, while
producing a relatively high signal-to-noise ratio. The latter

FIG. 5. Schematic of the heated wall. Blue represents the zone
with variable temperature, yellow the heated zone and the red arrows
denote the direction of heat flow. Domain boundaries in x and z
coordinates are periodic.

reduces the needed number of parallel simulations to be run
for averaging.

Figure 6 presents the evolution of the local wall surface
temperatures with time. The temperatures are averaged in the
x direction since the system does not vary along this direction.
It can be observed that the conduction through the fluid to
the cold wall occurs as expected. Since the temperature of the
heated strip is higher than the surroundings, the temperature
increase of the fluid starts near the hot strip. The opposite wall
slowly increases in temperature due to the thermal diffusion
across the gap.

D. Temperature programed desorption
and isothermal surface reactions

By now, the foundation for the real-time temperature mea-
surement has been laid. Next, we will demonstrate that the
model is suitable for simulating complex surface processes
like heterogeneous chemical reactions, which contains three
steps: adsorption, reaction, and desorption at catalytic surface
sites.

To implement heterogeneous chemical reactions, the Lang-
muir adsorption-reaction model proposed by Sengar [55] is
applied. Details of the model can be found in Appendix.

In the preprocessing step, the catalyst surface is assigned
active sites. They can either be distributed uniformly on the
surface in a fixed grid pattern, or they can be randomly dis-
tributed. In this work, we distribute the active sites randomly
onto discretized surface cells. For simplicity, these cells are
taken to be the intersections between the solid and the SRD
grids. A particle is then adsorbed exactly where it collides
with the wall if there are any free active sites in the cell. This
way, instead of fixing the locations of each active site, we
fix the number of active sites in each cell, which determines
the capacity of the cell to hold adsorbed particles. In this
way, the catalyst sites can be easily implemented for complex
boundaries. It is notable that being coarse-grained particles,
the SRD particles represent multiple molecules and similarly
the catalyst sites are larger than the size of molecular catalyst
sites.
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FIG. 6. Temperature evolution of the surface of the unheated
(a) and heated (b) wall with time. Subsequent time steps are plotted
above each other to illustrate the change in temperature profile with
time.

The grid shift procedure needs to be adjusted for the pres-
ence of catalytic spheres. Ghost particles are added when the
particle density in the SRD cell near a sphere is lower than
average number density of the fluid, which is similar to the
treatment of the wall of the domain described in Sec. II A.
The velocities of these particles are taken from a Gaussian
distribution with mean velocity equal to that of the spherical
particle (zero for the fixed spheres in this work) and the same
temperature as the fluid, as determined in the previous step.

We first perform a virtual experiment of temperature pro-
gramed desorption (TPD) from a slowly heated solid spherical
catalyst in a bath of SRD particles. The geometry of the test
domain is set to Lx = Ly = Lz = 20, and the sphere radius is
2 with in total 10 000 catalytic sites on the surface. To load the
sphere surface with particles, the adsorption probability pref-
actor p0

a is set to 0.5 and desorption probability prefactor p0
d to

0. The simulation is then allowed to run until all Ncat catalytic
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FIG. 7. Desorption rate versus temperature during a TPD virtual
experiment where the sphere temperature is increased at a rate of
β = 0.001.

sites per unit area are occupied. The temperature of the solid is
then lowered to 0.1 and subsequently slowly increased at a rate
of β = 0.001. The adsorption probability prefactor is set to 0
to avoid re-adsorption. The desorption probability prefactor is
set to 1 and the particles are allowed to desorb from the surface
as the temperature increases. �ts is the streaming time interval
as the timestep to update adsorption, reaction, and desorption.
The fractional surface coverage of the sphere θ = Na/Ncat,
where Na is the number of adsorbed particles per unit area and
Ncat is the number of catalytic sites per unit area, will evolve
according to the rate of desorption:

dθ

dt
= −θ

p0
d

�ts
e−Ed /kBT , (16)

where Ed is the desorption activation energy, set to 0.5kBT0 in
this example. The left-hand side can now be transformed as:

dθ

dt
= dθ

dT

dT

dt
= dθ

dT
β. (17)

Therefore, the final expression for the TPD curve can be
written as:

dθ

dT
= − p0

d

β�ts
θe−Ed /kBT . (18)

Equation (18) can be solved numerically to obtain the final
solution. This resulting solution, the desorption rate as the
change of dθ

dt with temperature is compared with the simula-
tion results in Fig. 7. It shows that the observed simulation
results closely agree with the theoretical prediction, which
validates that the desorption model exhibits the expected tem-
perature kinetics. The fluctuations in the simulation results are
a consequence of density fluctuations in the SRD fluid.

Next we test the competition among adsorption, reaction,
and desorption for an isothermal case (in the next section
we will investigate heat effects). At the catalyst surface, an
adsorbed reactant particle A reacts to form a product particle
B. While both A and B are set to have equal adsorption
and desorption probability prefactors as well as activation
energies, the desorption probability prefactor is set to a low
value of 0.05 to create a rate-limiting step when adsorption
probability prefactor is 0.5. This also avoids unwanted hydro-
dynamic effects due to sudden changes in local density. The
probability prefactor for reaction is set to 0.005. The real-time
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fractional surface coverage is then measured. As explained in
Appendix, the number of A and B particles adsorbing per unit
area per unit time can be written as:

RA,ads = CA

√
2kBT

πmA
p0

a

(
1 − NA,ads + NB,ads

Ncat

)
e−Ea/kBT ,

(19)

RB,ads = CB

√
2kBT

πmB
p0

a

(
1 − NA,ads + NB,ads

Ncat

)
e−Ea/kBT ,

(20)

where CA and CB are the local concentrations (number densi-
ties) of A and B particles, respectively, and the term between
brackets is the explicit form of (1 − θ ), expressed in terms of
the number of adsorbed A and B particles per unit area, NA,ads

and NB,ads, relative to the total number of catalytic sites per
unit area, Ncat. The number of A and B particles desorbing per
unit area per unit time can be written as:

RA,des = NA,ads
p0

d

�ts
e−Ed /kBT , (21)

RB,des = NB,ads
p0

d

�ts
e−Ed /kBT . (22)

Finally, the number of A reacting to B per unit area per unit
time (assuming an irreversible reaction) can be written as:

RA,react = NA,ads
p0

r

�ts
e−Er/kBT . (23)

These equations can now be combined to form a set of dif-
ferential equations governing the number of A and B on the
surface:

dNA,ads

dt
= RA,ads − RA,des − RA,react, (24)

dNB,ads

dt
= RB,ads − RB,des + RA,react. (25)

These equations can be solved numerically to give the surface
particle numbers with time. In our numerical solution, we
assume that the amount of B particles readsorbing onto the
surface is negligible, so we effectively set γB = 0.

Figure 8 compares the surface coverage in the numerical
solution (blue line) and the SRD model (red dots). It can be
seen that the SRD solution closely resembles the numerical
solution. The equilibrium total surface coverage can be seen
to match the theoretical value, proving that the adsorption and
desorption are working as expected.

E. Surface reactions on catalytic particles with heat effects

To further demonstrate the real-time measurement of tem-
perature in heterogeneous catalytic reaction simulations, a
model with multiple spherical catalyst particles is tested in
a flowing reactant medium. For heterogeneous catalytic reac-
tions in densely packed beds, dead zones in the hydrodynamic
fields, which can cause the formation of hot spots in the
domain. These hot spots could be catastrophic for the reactor.
Simulations can aid in understanding, controlling and prefer-
ably preventing the emergence of hot spots.

0 50 100 150 200 250
Time  t

0

0.2

0.4

0.6

0.8

1

S
ur

fa
ce

 c
ov

er
ag

e 

Theoretical total coverage

Simulated total coverage

FIG. 8. Time dependence of surface coverage of a catalytic
sphere for isothermal adsorption-reaction-desorption.

To replicate the conditions in a densely packed bed reactor
where hot spots may form, spherical catalyst particles are
configured closely together. Figure 9 shows a schematic of
the simulation geometry, which consists of a periodic fluid
domain with a thermostatted buffer region at x = Lx spanning
a length of 5 units. One, two, or three spheres with a radius
of 3 are inserted at z = Lz/2, each sufficiently far away from
the buffer region. A flow is induced by a uniform forcing
term in the x direction. The buffer region returns the outlet
fluid to a constant temperature of 1, while also converting
B particles back into A, avoiding accumulation of B in the
system. Lx is chosen to be 20 (plus buffer region), Ly is 26, and
Lz is 16. The coordinates of spheres 1, 2, and 3 are (6,13,13),
(12,8,13), and (12,19,13), respectively. In this configuration,
when simulating more than one catalytic sphere, the distance
between them is set to be slightly larger lessthan 1 SRD cell.
This procedure keeps the catalytic spheres close enough to
show effects of heat accumulation in the narrow area between
the spheres. Individual solid temperature meshes are created
for each sphere in the domain. The fluid collision time step

FIG. 9. Schematic overview of the simulation domain (xy plane)
for catalytic particles with heat effects.
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TABLE III. Parameters for the simulations with surface reactions
on catalytic particles (see also Appendix).

Property Value Property Value

�tc 0.5 D 0.6249
α 90◦ DT 0.6653
γ 7 ν 0.3503
p0

a 0.5 Ea 0.5
p0

r 0.5 Er 0.5
p0

d 0.005 Ed 0.5
Ncat 100 �ts 0.0005
KS 10 ρSCS 100

is set to 0.5 and the local particle density to 7. The flow is
driven by a body force g = 0.001. The arrangement method
of catalytic sites is the same as for the temperature programed
desorption case and explained in Sec. III D. The number
of catalyst sites per catalytic sphere is 100. The complete
simulation settings are listed in Table III. Two hundred fifty
simulations were conducted simultaneously to enable real-
time temperature measurement.

Figure 10 presents the product density field in the sim-
ulation domain. Figures 10(a)–10(c) show the steady-state
number density contour on the plane z = Lz/2 for the three
scenarios. It is clearly visible how in the buffer region the
product particles are reset to reactant particles. From the prod-

FIG. 10. Mean product number density distribution in a cross
section of a domain. Panels (a), (b), and (c) shows results for one,
two, and three spheres. Panel (d) compares the total number of B
particles in each of the system with the results expected for multiple
isolated spheres.

uct density distribution in Figs. 10(a)–10(c), it can be seen that
convection-diffusion of the product from the surface of the
catalyst occurs and varies for the three scenarios. The distri-
bution of the product in the domain is biased toward the right
due to convection. In the case of multiple spheres, product
accumulation happens in the narrow space between spheres,
along with the occurrence of hydrodynamic dead spots. Since
the reaction is highly desorption limited, the magnitude of the
product number density is smaller than that of the reactant.

Figure 10(d) shows the evolution of the total number of
B particles in the system with time. The three solid lines
represent the three different schemes investigated here. The
two dashed lines, named “2 sphere isolated” and “3 sphere
isolated,” are constructed by simply scaling the results for “1
sphere” by the number of spheres in the domain. It can be seen
that the qualitative behavior remains the same as the number
of spheres is scaled up. However, the relative placement of
the three spheres can be seen to encourage the entrapment of
more product particles in the system, when compared with
three independent spheres. This effect can be attributed to the
presence of the dead zone between the spheres. The particles
that reach these dead zones would have a longer residence
time than the rest of the particles, which leads to nonunifor-
mity in the reaction balance within a packed bed.

Each of the scenarios exhibit a quick initial increase, fol-
lowed by a gradual decrease of the total number of B particles.
The initial rise takes place over the first 100 to 200 time steps,
which coincides with the time for the development of the
velocity field. At these initial times, the effect of convective
transport has not reached a significant value, leading to a

FIG. 11. Steady-state temperature profiles for a cross section of
the domain [(a)–(c)]. Panel (d) gives the transient change in local
temperature midway between spheres 2 and 3 (x = 12 and y = 14).
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FIG. 12. Variation of local B number density (a) and temperature (b) in cross section of domain with time.

diffusion dominated transport of product. Once the convec-
tion picks up, the additional particles away from the spheres
are gradually forced to the buffer region and converted back
to reactant particles, thereby decreasing the total number of
product particles.

Figures 11(a)–11(c) show the steady-state fluid temper-
ature distribution surrounding one, two, and three spheres,
respectively, about the plane z = Lz/2. Comparing Figs. 10
and 11, it is seen that the temperature contour follows the
same qualitative behavior as the product density profile, while
the temperature enhancement penetrates further into the fluid
than the product does. This is not caused by the diffusion,
since both mass and temperature have similar diffusivity in
this case (Table II). Instead, this behavior can be attributed
to the difference in flux of mass and energy. The energy
generated due to the surface reaction is used to increase the
local wall temperature. This energy is then transferred to all
the particles hitting that location of the wall. In contrast, only
one product particle is created per reaction event. This results
in a higher flux of heat to the fluid than that of product
particles. Figures 11(b) and 11(c) demonstrate the effect of
dead spots in the flow profile. The location of the hot spots
coincides with that of the density field, which is as expected.
Additionally, a slightly lower temperature can be observed in
Fig. 11(c) between spheres 1 and 3 compared to 1 and 2. This
can once again be attributed to the effect of slightly higher
local velocity, refreshing the mixture with relatively cool fluid.

It can also be seen that there is an increase in the magnitude
of temperature at the hot spot with increase in number of
spheres. This can be attributed to the presence of more sources
and a lower heat transfer coefficient to the bulk fluid due to
the restricted flow. Figure 11(d) shows the temporal variation
of local temperature half-way between spheres 2 and 3 (at
x = Lx/2). It can be seen to follow the same behavior as the
total product particle number density. The initial sharp in-
crease is attributed to the diffusion dominated start-up regime,
which is followed by a gradual decrease due to the increasing
dominance of convection.

Figure 12 shows the temporal evolution of density and tem-
perature in a cross sectional plane at z = Lz/2. At t = 21, the
density and temperature from each of the spheres has started
to affect each other. This gradually leads to the formation of a
hot spot, which is seen from the series of figures from t = 0
to t = 97. This behavior is in line with the observations made
in the previous paragraphs. One major observation from this
is the difference in timescales for density change and temper-
ature change. In the region between the catalytic spheres, the
temperature can reach up to 1.3. This will cause a change in
diffusivity, particle density, and viscosity. This influence may
induce a natural convection effect. However, with a dominant
flow driven by a body force g = 0.001, we did not observe
obvious natural convection in this simulation.

A final observation from these two graphs is the persis-
tence of noise in the simulations. While 250 simulations are

034124-11



FAN, ZACHARIAH, PADDING, AND HARTKAMP PHYSICAL REVIEW E 104, 034124 (2021)

sufficient to observe the major transient behavior in this case, a
considerably higher number of ensemble averages is required
to resolve smaller temperature variations.

Based on all the above results, it can be concluded that the
newly developed techniques (real-time temperature measure-
ment, surface reactions, wall coupling) are capable of working
together in synergy to simulate highly complex reactive sys-
tems.

IV. CONCLUSION

In this study, a novel temperature measurement technique
for stochastic rotation dynamics was developed, based on
kinetic theory. This was then combined with a new form of
ensemble averaging to enable real-time measurement of tem-
perature. A proper boundary condition is applied to achieve
an accurate constant-temperature no-slip boundary condition.
The real-time temperature change due to chemical reaction
and heat transfer in fluid phase is achieved and measured.

The newly formulated nonisothermal model was coupled
with a temperature conduction equation that can model the
formation of complex surface temperature patterns. The cou-
pled method was applied to model surface reactions on
catalytic particles. A SRD approach was adopted to model
the adsorption, where the SRD particles have a temperature-
dependent probability to adsorb onto the limited number of
active sites on the surface. The adsorbed particles then react
with a rate that depends on the local wall temperature. A wall
temperature-dependent desorption model was used to release
the products into the fluid. This reaction model was validated
against theoretical predictions.

Finally, the combined model was applied to simulate a flow
past catalytic spheres. The obtained results highlight the ca-
pability of the model to simultaneously solve for the transient
evolution of macroscopic properties such as mean velocity,
temperature, and density, along with employing accurate wall
reaction mechanisms. This expansion of the SRD method to
transient and nonisothermal simulations enables the use of
this method for the study of highly nonlinear and transient
mesoscale problems.

In our future work, we will introduce more complex reac-
tion mechanisms, surface diffusion, and rearrangement based
on interactions between adsorbed particles. The method de-
veloped in this work can be improved with more accurate
treatment of the solid temperature distribution to simulate
authentic reactions in porous media and verified with ex-
perimental results. This would firmly establish SRD as a
promising candidate for simulating reactors with complex
geometries and complex surface chemistry.
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APPENDIX: SIMULATING HETEROGENEOUS
REACTIONS

In this work we use the reaction method suggested by
Sengar [55]. When a SRD particle bounces on a catalytic
surface, the particle will be adsorbed with a certain probability

pa. In a single time step �ts, for adsorbed particles, further
probabilities for reaction and desorption can be applied. Based
on this, the intrinsic rates in terms of the SRD simulation
parameters can be calculated. In the following, to simplify our
notation, we will assume that the probabilities per time step
are sufficiently small. If large probabilities (0.1 < p � 1) are
used, then the conversion to rates should be done according to
k = − ln(1 − p)/�ts, see Ref. [55] for a detailed explanation.

The kinetic model used by Pooley and Yeomans [45] is
extended to derive an expression for the particle collision rate
at walls. The collision frequency, i.e., the number of collisions
occurring per unit area of the wall per unit time step, is as
follows:

Z = Cs〈|vy|〉. (A1)

In this expression, Cs is the number density of the particle
species of interest and |vy| is the average velocity of the parti-
cles perpendicular to the wall (in this example the wall normal
is chosen in the y direction). The expectation value of |vy|
from the Maxwell-Boltzmann distribution is

√
2kbT/(πm).

The adsorption rate, i.e., the number of adsorption events per
unit area of catalytic surface per unit time, can therefore be
expressed as

Ra = Cs

√
2kbT

πm
pa. (A2)

The adsorption probability per collision event pa depends
on local temperature through the activation energy for ad-
sorption Ea, which arises from the Eyring-Polanyi equation
in transition state theory, and depends on the fractional cat-
alytic surface coverage θ = Na/Ncat, where Na is the number
of adsorbed particles per unit area and Ncat is the number
of adsorption sites per unit area of catalytic surface. In this
work, we use a first-order (Langmuir model) dependence on
the fraction of empty sites (1 − θ ), giving us the following
expression for adsorption probability:

pa = p0
a(1 − θ )e−Ea/kBT , (A3)

where p0
a is the adsorption probability pre-exponential factor.

If there are Nr,a reactant particles adsorbed per unit area
catalytic surface (remember that there may also be adsorbed
product particles), then we can write the reaction rate, i.e., the
number of reactant particles converted to product particles per
unit area per unit time, as:

Rr = Nr,akr, (A4)

where kr is the reaction rate which in the simulations is con-
trolled by setting the reaction probability pr :

kr = pr

�ts
. (A5)

Here pr is the probability of an adsorbed reactant particle
to react to an adsorbed product particle during a single time
step �ts. This probability can be written in the form of an
Arrhenius equation (similarly to the adsorption probability):

pr = p0
r e−Er/kBT , (A6)

where p0
r is the reaction probability pre-exponential factor and

Er is the activation energy for the reaction.
A similar approach can be adopted to determine the desorp-

tion rate per unit area catalytic surface. For example, focusing
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on desorption of product particles, we have:

Rd = Np,akd , (A7)

kd = pd

�ts
, (A8)

pd = p0
d e−Ed /kBT , (A9)

where Np,a is the number of adsorbed product particles per
unit area, kd is the desorption rate, pd is the probability of
an adsorbed particle to desorb during a time step �ts, Ed is
the desorption activation energy, and p0

d is the pre-exponential
factor. Although in this work they are chosen equal, differ-
ent desorption activation energies and pre-exponential factors
may be chosen for the reactant particles.
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