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Nonequilibrium dynamics in Ising-like models with biased initial condition
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We investigate the dynamical fixed points of the zero temperature Glauber dynamics in Ising-like models. The
stability analysis of the fixed points in the mean field calculation shows the existence of an exponent that depends
on the coordination number z in the Ising model. For the generalized voter model, a phase diagram is obtained
based on this study. Numerical results for the Ising model for both the mean field case and short ranged models
on lattices with different values of z are also obtained. A related study is the behavior of the exit probability
E (x0), defined as the probability that a configuration ends up with all spins up starting with x0 fraction of up
spins. An interesting result is E (x0) = x0 in the mean field approximation when z = 2, which is consistent with
the conserved magnetization in the system. For larger values of z, E (x0) shows the usual finite size dependent
nonlinear behavior both in the mean field model and in the Ising model with nearest neighbor interaction on
different two dimensional lattices. For such a behavior, a data collapse of E (x0) is obtained using y = (x0−xc )

xc
L1/ν

as the scaling variable and f (y) = 1+tanh(λy)
2 appears as the scaling function. The universality of the exponent and

the scaling factor is investigated.

DOI: 10.1103/PhysRevE.104.034123

I. INTRODUCTION

Nonequilibrium dynamics associated with spin systems
quenched from a high temperature have been extensively
studied in the past. Various features associated with the or-
dering dynamics have been explored for the Ising model
defined by the Hamiltonian H = −J

∑
i j σiσ j (σi = ±1) [1].

Classical spin models have no intrinsic dynamics; however,
one can study the stochastic time evolution using certain
dynamical algorithms that maintain the detailed balance [2].
Glauber dynamics is one of the popular choices that reduces
to a simple energy lowering scheme at zero temperature.
To study the ordering process, the system is taken to be
completely disordered (i.e., at a high temperature) initially
and suddenly cooled to a lower temperature T ; we consider
T = 0 specifically in this paper. In finite systems, the one
dimensional Ising-Glauber model, following such a zero tem-
perature quench, always ends up with all spins up or down
irrespective of the initial fraction of up spin x0. In higher
dimensions, striped and blinker states can also be reached
when the initial state is completely disordered, i.e., x0 = 0.5
[2–5]. On the other hand, there are a fairly large number
of models which use Ising spins but without any energy
function associated with them, for example the voter model.
In such models, the system evolves by a given dynamical
rule.

Various features in the ordering process, for example
domain growth, persistence, aging, time evolution of the
order parameter, and other relevant quantities, have been
studied for quite some time, particularly in the spin mod-
els. Exit probability is another feature associated with the
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nonequilibrium dynamics that has received a fair amount of
attention more recently [6–21]. The exit probability E (x0)
is defined as the probability that an all-up configuration
is reached starting from x0 fraction of up spins. E (x0) is
linear in the one dimensional Ising model and the voter
model (in all dimensions): E (x0) = x0 [2]; this occurs due
to the conservation of the order parameter. In contrast, in
the two dimensional Ising system E (x0) is nonlinear and
shows strong finite size effects [18]. The exit probabil-
ity as well as the dynamics have also been studied in
the recent past for binary opinion dynamics models using
mean field and several other analyses simple square lattices
[7,8,15,17,22–24].

In this paper, we have considered the dynamics of Ising
and Ising-like models where the evolution of the fraction of up
spins (x) is studied. A mean field approach leads to the iden-
tification of the fixed points. We note that a nontrivial fixed
point is x = 0.5 which corresponds to a disordered state. The
stability of this fixed point is studied by starting from a biased
but uncorrelated initial condition where the initial fraction x0

deviates from 0.5. The results for the mean field Ising model,
obtained for different values of z, the coordination number,
are compared with the short range model in finite dimensions.
The fixed points for the generalized voter model (GVM) are
also obtained parametrically, and the stability analysis leads to
obtaining the mean field phase diagram in the two parameter
plane.

The evolution of x in time helps in understanding the be-
havior of the exit probability. The exit probability is computed
numerically for the Ising-Glauber model in square and trian-
gular lattices and the mean field Ising model. The results for
finite sizes show the existence of a scaling function with which
two parameters can be associated, as noted in some earlier
studies [12,13].

2470-0045/2021/104(3)/034123(9) 034123-1 ©2021 American Physical Society

https://orcid.org/0000-0001-6922-6858
https://orcid.org/0000-0002-4641-022X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.104.034123&domain=pdf&date_stamp=2021-09-17
https://doi.org/10.1103/PhysRevE.104.034123


RESHMI ROY AND PARONGAMA SEN PHYSICAL REVIEW E 104, 034123 (2021)

II. MEAN FIELD CALCULATION IN THE ISING MODEL

A. Master equation approach

We first consider the Ising model in the mean field ap-
proximation. The master equation for the variable x(t ), the
fraction of up spins at time t , is set up after calculating the
spin flip probabilities. The system evolves under the zero
temperature Glauber dynamics; i.e., spins are flipped when
energy decreases by it and flipped with probability 1/2 when
energy does not change by flipping. For a particular spin, a
neighboring spin here is simply another spin with which it
interacts and the number of such neighbors or the coordination
number z is taken as a variable.

1. z = 2

We first consider the case z = 2. Suppressing the argument
t for x, an up spin flips with probability

(i) (1 − x)2, when it has two neighboring down spin;
(ii) 2x(1 − x)/2 when it has 1 down neighbor and 1 up

neighbor. This can happen in two ways and for each of the
cases the spin flips with probability 1

2 .
Denoting P+ (P−) as the total probability that an up (down)

spin flips, one can therefore write

P+ = (1 − x)2 + x(1 − x),

P− = x2 + x(1 − x). (1)

The evolution equation for x(t ) can be expressed in general as

dx

dt
= (1 − x)P− − xP+, (2)

which reduces to dx
dt = 0 using Eq. (1). This implies x(t ) = x0;

i.e., the dynamics conserve the magnetization m(t ) = 2x(t ) −
1 such that E (x0) = x0 in this case obviously.

2. z = 4

We next consider the case for z = 4. In this case, an up spin
flips with probability

(i) (1 − x)4 if it has 4 neighboring down spins;
(ii) 4x(1 − x)3 when it has 3 down neighbors and 1 up

neighbor which can happen in 4 ways;
(iii) 6x2(1 − x)2/2 in the case of 2 up and 2 down neigh-

bors (possible in 6 ways and the spin flips with probability 1/2
in each case).

Therefore,

P+ = (1 − x)4 + 4x(1 − x)3 + 3x2(1 − x)2,

P− = x4 + 4x3(1 − x) + 3x2(1 − x)2. (3)

At the steady state, we obtain from the master equation

dx

dt
= −2x3 + 3x2 − x = 0, (4)

with the solutions x∗ = 0, 0.5, 1.
To check the stability of the solutions, we consider x =

x∗ + δ(t ) where δ(t ) is the deviation from the fixed point. For
both x∗ = 0 and 1, considering only up to linear order terms
in δ, we get dδ

dt = −δ, the solution of which is

δ(t ) = δ0 exp(−t ), (5)

 x x x=x x= =x

(b)
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FIG. 1. (a) Flow diagram for the mean field Ising model for z >

2. x = 0 and 1 are the stable fixed points and x = 0.5 is unstable.
(b) shows the flow diagram for the generalized voter model. x1 =
0.5 is the unstable fixed point and x2 = 1

2 + 1
2

√
2z1+z2−2

2z1−z2
and x3 =

1
2 − 1

2

√
2z1+z2−2

2z1−z2
are stable fixed points provided that the exponent is

positive.

where δ0 ≡ δ (t = 0). The negative exponent implies that
x∗ = 0 and 1 are stable fixed points.

For x∗ = 0.5, one gets

δ(t ) = δ0 exp
(

1
2 t

)
. (6)

The positive exponent here implies that x∗ = 0.5 is an un-
stable fixed point. Of course, δ cannot increase indefinitely
and its extreme values are ±0.5. The stability analysis thus
shows that the system ends up with all spins up or down (for
δ0 positive or negative). The magnetization m(t ) = 2δ(t ) here.

3. z = 6

A similar analysis is done for z = 6. Here, P+ and P− can
be expressed as

P+ = (1− x)6+ 6x(1 − x)5+ 15x2(1 − x)4+ 10x3(1 − x)3,

P− = x6 + 6x5(1 − x) + 15x4(1 − x)2 + 10x3(1 − x)3, (7)

and therefore the master equation can be written as

dx

dt
= 6x5 − 15x4 + 10x3 − x. (8)

Solving the steady state equation dx
dt = 0, one gets x∗ =

0, 1
2 , 3+√

21
6 , 3−√

21
6 , 1. The third and fourth solution being un-

physical, x∗ = 0, 0.5, and 1 are the only physical solutions.
Considering x = x∗ + δ(t ) in Eq. (8), the solution becomes
δ(t ) = δ0 exp(−t ) for x∗ = 0 and 1 which are stable fixed
points. For x∗ = 0.5, one obtains

δ(t ) = δ0 exp
(

7
8 t

)
, (9)

which shows that x∗ = 0.5 is again an unstable fixed point.
The larger value of the exponent in the z = 6 case indicates
that the dynamics are faster for z = 6 compared to that in the
z = 4 case. Figure 1(a) shows the flow diagram for the mean
field Ising model for z = 4 and z = 6.

From the above studies, we conclude that in the mean
field approximation, in general δ(t ) = δ0 exp(γ t ) where γ

increases with z. This behavior is a short time one as the
system reaches the stable fixed points at long times, confirmed
by the simulation results discussed in the next subsection.
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FIG. 2. Variation of δ(t ) is shown with time for z = 4 for dif-
ferent δ0 where mean field approach is used. This plot also shows
the data for several system sizes. Data are fitted to the exponential
function, mentioned in the key. Maximum number of configuration
was 5000. δ(t ) attains the saturation value faster for larger δ0 and the
process is slower for smaller value of δ0.

Hence γ can be interpreted as an inverse timescale over which
the exponential growth of δ(t ) can be observed.

B. Simulation results

To check the mean field results we have conducted simula-
tions where a spin interacts with randomly chosen z neighbors.
The system consists of N spins and the choice of the random
neighbor is made in an annealed manner which implies the
interaction can take place with different spins at each step in
general.

We defer the discussion on the z = 2 case to Sec. IV and
consider the cases z = 4 and 6 where we expect an unstable
point at x = 0.5. We have started from a fixed initial fraction
of up spin x0 = 0.5 + δ0 with δ0 > 0 and studied how the frac-
tion δ(t ) [= x(t ) − 0.5] evolves in time. N updates constitute
one single Monte Carlo step. Here, we have considered only
those configurations for which positive consensus is attained
to obtain the exponent γ and compare with the result found in
the analytical calculation.

δ(t ) shows an exponential growth with time which shows
consistency with the results of Sec. II A as N is increased.
The results for z = 4 shown in Fig. 2 indicate the exponential
growth becomes more noticeable as N increases and that the
associated exponent ≈ 0.5 is independent of δ0 for all prac-
tical purposes. A data collapse for different values of δ0 is
obtained by scaling δ(t ) by δ0, shown in Fig. 3, which is also
consistent with the analytical results.

A similar estimation has been done for z = 6 by consider-
ing the interaction of the selected spin with 6 randomly chosen
neighbors. δ(t ) shows an exponential behavior with time again
and the exponent is ∼0.86. Figure 4 shows the results. The
exponent 7/8 obtained in Sec. II A for z = 6 agrees fairly well
with the simulation results.

It should be mentioned here that the saturation is obtained
very rapidly; the exponential fitting is therefore valid only for
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FIG. 3. Data collapse of δ(t ) is shown with time for several δ0

where z = 4 and data are fitted to an exponential form as mentioned
in the key. These data are for a system of 216 spins averaged over a
maximum of 5000 realizations. Inset shows the unscaled data. In this
simulation mean field approach is used.

a few initial time steps. The saturation is enhanced for larger
values of δ0 and z.

III. SIMULATIONS FOR SHORT RANGE
MODELS ON LATTICES

The simulations for the Ising model are repeated on two
dimensional lattices where the spins have short range inter-
actions. We consider the vicinity of the unstable fixed point
again, such that x(0) = 0.5 + δ(0), and study the evolution of
δ(t ) where x(t ) = 0.5 + δ(t ).

In order to check the dependence on z, we have consid-
ered square lattices with nearest and nearest plus next nearest
neighbors and triangular lattices with nearest neighbors such
that z = 4, 8, and 6, respectively.
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FIG. 4. Plots of δ(t ) are shown against time for several system
sizes where z = 6. Data for several values of δ0 are also shown. Inset
shows the data collapse for different δ0 for a system of 216 spins.
As δ0 increases, δ(t ) rapidly saturates. Minimum number of different
initial configuration was 2000 and mean field approximation is used
for this simulation.
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FIG. 5. Variation of δ(t ) with time is shown in square lattice
nearest neighbor Ising model for several δ0. Data are fitted to the
power law form; exponents are mentioned in the key. The power
law exponent β decreases as the value of δ0 increases. Inset shows
the variation of β with δ0. These data are for system size L × L =
64 × 64 averaged over 5000 realizations.

It is well known that the absolute value of the magne-
tization grows as tβ in the ordering process of the Ising
model in all finite dimensions when the initial configuration
is completely disordered. This follows from the fact that
domains of up or down spins both grow as tηd where η is
the domain growth exponent and d is the spatial dimension.
The magnetization is given by m = ∑

ξi, where ξi ∝ ±tηd

are uncorrelated random variables and the sum is over all
domains. The stochastic variable m thus satisfies 〈m〉 = 0
and 〈m2〉 ∝ tηd , leading to the result |m| ∝ t

ηd
2 . One can also

derive this from the dynamic scaling obeyed by the correlation
function [1]. It is known that η = 1

2 in all dimensions and thus
β is dependent on the dimension: in two dimensions β = 0.5.
For x(t ) = 0.5 + δ(t ), as mentioned before, magnetization is
simply 2δ(t ) and the variation of m(t ) and δ(t ) would be
identical.

It is observed that for any value of z and δ0, δ(t ) shows a
power law behavior with time before reaching the saturation
value for all values of δ0:

δ(t ) ∼ tβ. (10)

The results for z = 4 are shown in Fig. 5. The value of β de-
pends on δ0; as δ0 increases (which means the system is more
ordered to begin with), it decreases as shown in the inset of
Fig. 5 for z = 4. This is understandable; in the limit δ0 → 0.5,
the system is almost static such that the time dependence is
weak reflected by a smaller value of β.

In the triangular lattice, where z = 6, δ(t ) is also found to
show a power law variation with time according to Eq. (10).
As δ0 increases, β decreases as indicated by the data presented
in Fig. 6. The values of β are reasonably close to those
obtained in the square lattice.

We also consider the the Ising model with a Moore neigh-
borhood where next nearest neighbor interactions are included
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FIG. 6. Variation of δ(t ) with time is shown in triangular lattice
for nearest neighbor interaction. Data are fitted to Eq. (10) and the
exponents are mentioned in the key. These data are for system size
L × L = 64 × 64 averaged over 5000 realizations.

and z = 8. The Hamiltonian of this system is given by

H = −J1

∑
〈i, j〉

SiS j − J2

∑
〈i, j′〉

SiS j, (11)

where J1 and J2 are the strengths of interaction for nearest
neighbor and next nearest neighbor, respectively. We have
considered the interactions to be equal in strength, J1 = J2.
Here, z = 8 and once again we find a behavior similar to
z = 4, 6 in two dimensions (see Fig. 7).

It is also interesting to check whether for the same value
of z but in a different dimension, the value of β remains the
same. For this, simulations have been conducted on a cubic
lattice Ising system where z = 6 as in the triangular lattice.
δ(t ) shows a power law variation in this case also; however,
the exponent β is larger compared to the two dimensional case
(see Fig. 8).

The above results show that the exponent β is independent
of z in two dimensions while for three dimensions, with the
same z we find a different value of β when δ0 �= 0.
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FIG. 7. Variation of δ(t ) with time is shown in square lattice next
nearest neighbor Ising model for several system sizes. Data are fitted
to the power law form as mentioned in the key.
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FIG. 8. Variation of δ(t ) with time is shown in cubic lattice
nearest neighbor Ising model for different δ0. β decreases as the value
of δ0 increases. Data are fitted to the power law form; exponents
are mentioned in the key. The power law exponent β decreases as
the value of δ0 increases. These data are for system size L3 = 83

averaged over 5000 realizations.

IV. EXIT PROBABILITY

In this section, we present the results for E (x0), the prob-
ability that the system ends up in a state with all spins up,
starting from an initial state with x0 fraction of up spins.
Since some results are already known for the short range Ising
models, we first discuss that and then continue to report the
results for the mean field case.

A. Results for nearest neighbor interactions

Next, we have studied the exit probability for the two
dimensional nearest neighbor Ising models. Exit probability
E (x0) is known to have a liner behavior E (x0) = x0 for a one
dimensional Ising Glauber model. In a two dimensional model
E (x0) is nonlinear and shows strong finite size effects [18–20].
As the system size increases the curves become steeper and
the data suggest that E (x0) approaches a step function in the
thermodynamic limit. Finite size scaling can be done using the
form

E (x0, L) = f

(
x0 − xc

xc
L

1
ν

)
, (12)

as observed in Ref. [12], where f (y) → 0 for y  0 and is
equal to 1 for y � 0. Therefore, a data collapse for different
system size can be obtained when E (x0) is plotted against
x0−xc

xc
L1/ν where xc = 0.5. On square lattices, an Ising system

freezes into a striped configuration for x0 = 0.5 in 33.9%
of cases (an exact result [5]) in the thermodynamic limit.
Numerical simulations show that the freezing probability has
strong system size dependence [3,4]. However, the dynamical
scaling behavior remains intact in spite of the freezing. Very
close to x0 = 0.5, such frozen striped states may occur with
a nonzero probability in finite systems as shown in Ref. [4].
While calculating E (x0), such configurations have been dis-
carded.

The data collapse is obtained using eye estimation for the
square lattice Ising model when ν ≈ 1.3 agreeing with the

FIG. 9. Data collapse of E (x0) is shown for different system sizes
in square lattice Ising model using ν = 1.307. Data are fitted to the
form of Eq. (13) as mentioned in the key. Inset shows the unscaled
data. Number of different initial configuration was 5000 for these
simulations.

result of [19,20]. The collapsed data can be fitted to the form

f (y) = 1 + tanh(λy)

2
(13)

as in Ref. [13]. The value of λ turns out to be 1.10 using
GNUFIT.

To get a more accurate value of ν required for obtaining the
best data collapse, we have employed another method used
previously in Ref. [20]. We have calculated y = x0−xc

xc
L1/ν for

the different values of L. As the data collapse is supposed to
fit to the form of Eq. (13) we have chosen the range of ν and λ

for which the collapse and fitting seem good. We have varied
the values of ν and λ in steps of 0.001 and for every pair we
have calculated the error ε given by

ε = 1

n

√∑
n

[ f (y) − E (x0)]2. (14)

The values of the pair of ν and λ for which the minimum
value of ε is obtained are the optimal values required for best
data collapse and scaling function. The values of ν and λ are
1.307 and 1.111 using this method and the results are shown
in Fig. 9.

These results were already available from previous studies,
although for smaller system sizes. We repeat these simulations
as our aim is to determine whether any universality in the
scaling behavior exists in two dimensional Ising systems.
Hence we have studied the exit probability in a triangular
lattice (number of nearest neighbors z = 6). To obtain the best
data collapse the least squares method has been employed in
this case also and is graphically illustrated in Fig. 10. The data
collapse of E (x0) for different system sizes is obtained with
ν = 1.204 using the above method and the scaled data are
fitted according to Eq. (13). Figure 11 shows the results. The
value of ν is close but not exactly equal to the value obtained
for the square lattice. λ = 0.857 is definitely different.
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λ
FIG. 10. Variation of the least square error ε with λ is shown

for ν = 1.204 in triangular lattice. The minimum of the curve is at
λ = 0.857.

B. Results for mean-field-like model

Here we present the results for the exit probability E (x0)
using a mean field approach where the z neighbors are chosen
randomly.

For z = 2, the exit probability shows a linear behavior
E (x0) = x0 (see Fig. 12). This is consistent with the conser-
vation we noted for x in Sec. II A. It may seem surprising that
the mean field result with z = 2 gives the exact result known
for the one dimensional Ising model. We attempt to justify
why this happens in the following way.

We note that for the voter model, the ith spin σi flips with
a probability

w(σi ) = 1

2

(
1 − σi

∑
j

σ j/z

)
, (15)

where j is a neighbor of i. This probability is valid in any
dimension. Thus the above dynamics in the voter model con-
serve the total spin in any dimension. It is well known that in
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1/1.204
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L=16
L=32
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L=128
[1+tanh(0.857y)]/2

FIG. 11. Data collapse of E (x0) is shown for different system
sizes in triangular lattice using ν = 1.204 and data are fitted to
Eq. (13). Number of different initial configuration was 5000 for these
simulations.
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N=28
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FIG. 12. E (x0) is shown against x0 for z = 2 where mean field
approach is used. E (x0) shows a linear variation with x0. Number of
different initial configuration was 5000 for these simulations.

one dimension, the voter model dynamics coincide with the
Ising dynamics where z = 2. In the mean field calculations
for z = 2 it is evident that the voter model dynamics are
being used precisely and since in the latter, conservation is
valid always, we get a result which is the exact one for the
one dimensional Ising model too. It is interesting to note
that hence for the z = 2 case, it does not matter whether one
picks up randomly any two neighbors or strictly the nearest
neighbors as far as conservation is concerned. We have also
checked that if the choice of neighbors is done randomly in a
quenched manner, the results remain the same.

For other values of z, E (x0) becomes steeper in the mean
field case than that was obtained using nearest neighbor in-
teractions. Here, a data collapse is obtained by plotting E (x0)
against x0−xc

xc
N1/ν ′

(where N is the total number of spins) using
ν ′ = 2 for both z = 4 and z = 6. The scaled data are fitted to
the form of Eq. (13) where y = x0−xc

xc
N1/ν ′

. The value of λ

obtained for z = 4 is ≈0.48 and λ ≈ 0.58 when z = 6. Data
collapse of E (x0) is shown in Fig. 13 for z = 4 and z = 6.

Table I shows the values of ν, ν ′, and λ obtained numeri-
cally for the short ranged and mean field Ising models. Note
that for the short ranged systems, ν ′ = 2ν. These results are
discussed in the last section.

FIG. 13. (a) Data collapse of E (x0) is shown for different system
sizes using ν ′ = 2 where z = 4. (b) shows the data collapse of E (x0)
for different system sizes with ν ′ = 2 for z = 6. Mean field approxi-
mation is used in these simulations where number of different initial
configuration was 5000. Data are fitted to the functions as mentioned
in the key.
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TABLE I. ν, ν ′, and λ obtained for Ising model using numerical simulations.

Nearest neighbor (NN) interaction Mean field

Quantity Square Triangular z = 4 z = 6

ν, ν ′ (ν ′ = 2ν for NN models) ν = 1.307(1) ν = 1.204(1) ν ′ ∼ 2 ν ′ ∼ 2
λ 1.111(1) 0.857(1) ∼0.48 ∼0.58

V. GENERALIZED VOTER MODEL

We have considered next the generalized voter model. We
first describe the model on a square lattice where a spin
variable σi = ±1 is associated with every site of the lattice.
The time evolution is governed by a single spin flip stochastic
dynamics; the spin flip probability wi(σ ) for the ith spin is
given by [25],

wi(σ ) = 1
2 [1 − σi fi(σ )], (16)

where fi(σ ) = f (�δ σi+δ ), a function of the sum of the near-
est neighbor spin variables. The model is defined taking
f (0) = 0, f (2) = − f (−2) = z1, and f (4) = − f (−4) = z2,
where z1 and z2 are restricted to z1 � 1 and z2 � 1. The
original voter model corresponds to z1 = 0.5 and z2 = 1, and
the Ising model is recovered for z1 = 1, z2 = 1.

In the mean field approximation to obtain the master equa-
tion, the above dynamical rule is followed which means that
z = 4 is taken and the parameters defined as above. For an
up spin, flipping probabilities Pi (i = 0 to 4), when there are i
neighboring spins in the up state, are given by

P1 = 1
2 (1 − z2)x4, P2 = 2(1 − z1)x3(1 − x),

P3 = 3x2(1 − x)2, P4 = 2(1 + z1)x(1 − x)3,

P0 = 1
2 (1 + z2)(1 − x)4.

The total probability P+ that an up spin flips is P+ =∑4
i=0 Pi such that

P+ = 1
2 (1 − z2)x4 + 2(1 − z1)x3(1 − x)

+ 3x2(1 − x)2 + 2(1 + z1)x(1 − x)3

+ 1
2 (1 + z2)(1 − x)4. (17)

Similarly the probability P− that a down spin flips is

P− = 1
2 (1 − z2)(1 − x)4 + 2(1 − z1)x(1 − x)3

+ 3x2(1 − x)2 + 2(1 + z1)x3(1 − x) + 1
2 (1 + z2)x4.

(18)

Therefore, the master equation dx
dt = (1 − x)P− − xP+ re-

duces to
dx

dt
= x3(−4z1 + 2z2) + x2(6z1 − 3z2)

+ x(−2z1 + 2z2 − 1) + 1

2
− z2

2
. (19)

Putting the values z1 = 0.5 and z2 = 1 in Eq. (19), one gets
dx
dt = 0, consistent with the voter model result that there is
conservation in any dimension. On the other hand, by taking
z1 = 1 and z2 = 1 in Eq. (19), Eq. (4) is recovered for the Ising
model with z = 4.

For general values of z1 and z2, the steady state condition
leads to three fixed points x1, x2, x3 where x1 = 0.5, x2 =
1
2 + 1

2

√
2z1+z2−2

2z1−z2
, and x3 = 1

2 − 1
2

√
2z1+z2−2

2z1−z2
. Now, let us take

x(t ) = x1 + δ(t ), i.e., the behavior close to the fixed point
x1 = 0.5. Considering up to linear term in δ only, δ(t ) is found
to be

δ(t ) = δ0 exp
(
z1 + 1

2 z2 − 1
)
t, (20)

where δ0 ≡ δ(t = 0). The exponent is thus z1 + 1
2 z2 − 1.

We will now analyze the sign of the exponent and thus
the stability of the fixed point x1 = 0.5 which corresponds to
a completely disordered state. Since the magnetization m is
given by 2x − 1, |m| = ( 2z1+z2−2

2z1−z2
)

1
2 for x2 and x3. m can have

nonzero values for x2 and x3, provided 2z1+z2−2
2z1−z2

� 0 and also
we require |m| � 1. The first criterion is satisfied (|m| > 0)
when either (i) 2z1 + z2 − 2 � 0 and 2z1 − z2 > 0 or when
(ii) 2z1 + z2 − 2 � 0 and 2z1 − z2 < 0. We note in the first
case the first condition implies the second and in the next
case the second condition implies the first one. Hence, for
|m| > 0, 2z1 + z2 − 2 and 2z1 − z2 can in principle be either
both positive or both negative. However, the condition that
|m| � 1 is violated for case (ii) since z1, z2 � 1 and hence
m = 0 is the only possible solution when 2z1 + z2 − 2 < 0.
Thus the only condition for an ordered region to exist is that
the quantity 2z1 + z2 − 2 must be positive. This is consis-
tent with the fact that the exponent (which is an identical
expression in z1, z2), has to be positive to make the x1 = 0.5
(i.e., m = 0) fixed point unstable. On the other hand, when
it is stable, i.e., 2z1 + z2 − 2 < 0, m = 0 is the only solution.
Figure 1(b) shows the flow diagram of the generalized voter
model.

Hence the phase boundary between the ordered and disor-
dered phases is given by 2z1 + z2 − 2 = 0. We have plotted
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FIG. 14. Magnetization |m| is shown as a function of z1 and z2.
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the phase diagram in Fig. 14, where the magnitude of the
magnetization is also indicated. Obviously, the mean field
phase diagram shows a larger region that is ordered compared
to the two dimensional case.

VI. SUMMARY AND CONCLUSIONS

We have studied the dynamics in zero temperature
Ising-like systems with up-down symmetry with different co-
ordination number z. Using the mean field approximation, it is
observed that the dynamics always lead to one unstable fixed
point which corresponds to the disordered state for z > 2. This
fixed point is precisely x = 0.5 where x is the fraction of up
spins. The stability of this fixed point has been considered by
introducing a small deviation δ0 from 0.5 in x. This essentially
means we have a biased initial condition in the system with
unequal fractions of up and down spins. The initial bias is
generally considered to be small such that the system does not
have any appreciable correlation.

For the unstable fixed points we obtain an initial expo-
nential growth of δ(t ) with time which strongly depends on
the coordination number z. The growth is characterized by
an exponent γ that increases with z. These results have been
checked by numerical simulations for the mean field Ising
model.

The simulations of the short ranged Ising model in two
dimensions on the other hand showed that the behavior of
δ(t ) is a power law with time. The power law exponent is
nonuniversal and depends on δ0. The exit probability has also
been calculated which for the two dimensional Ising model
shows the expected nonlinear behavior. The exponent ν and
the scaling factor λ related to the finite size behavior have been
calculated. It appears that ν shows a weak dependence on the
lattice structure (i.e., z) while for λ the values are appreciably
different (Table I). The exit probability study for the mean

field model on the other hand shows ν ′ is independent of z
while λ again shows strong dependence.

We have also conducted a similar study for the two pa-
rameter generalized voter model. In this case, we find that
the stability of the disordered fixed point depends on the
parameter values and it is possible to obtain a phase diagram
based on this analysis.

Our studies show that the behavior of δ(t ) which is related
to magnetization for the fixed point x = 0.5 is different in the
mean field case and the short range model. However, when
the number of neighbors z = 2, the mean field result that the
dynamics conserve the ensemble magnetization is the same as
that of the one dimensional Ising model or the voter model.
We have justified this result on the basis of the voter model
dynamics. Hence an important conclusion is that for z = 2,
the results are independent of the range of the interaction.

The instability of the x = 0.5 fixed point for the higher
values of z indicates the exit probability should be a step
function in the mean field case in the thermodynamic limit.
This behavior is found to be true for the short range models
as well in which the exit probability for larger lattice sizes
shows the tendency to approach a step function. However, the
exponents associated with the finite size scaling analysis are
quite different quantitatively. In particular, ν ′ is independent
of z in the mean field case and less compared to the value
obtained for the model on two dimensional lattices.
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