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Phononic properties of a periodic nanostructure including vacuum gap
in the presence of effective interatomic interactions
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Using the harmonic approximation and Green’s function technique, we investigate the contribution of phonons
to heat transport across a narrow vacuum gap by an extended mass-spring chain model. We base the investigation
on the van Beest–Kramer–van Santen potential that applies to two cases of simple and alternating mass
systems at a finite temperature. Employing this model, we show that in specific values of interaction strengths,
incoming phonon frequency, and gap distance, the phonon transmission across the vacuum gap can be improved.
Finally, the thermal conductance of the system is computed as a function of interaction strength, gap distance,
and temperature. These calculations reveal a suitable fitting function that can provide valuable insight into
determining the internal interaction strengths from this quantity or controlling it by variation of the gap distance.
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I. INTRODUCTION

The heat transfer between two bodies with different tem-
peratures placed in close proximity has attracted a great deal
of attention in recent years because of the drastically enhanced
heat flux between them. It is well known that the heat energy
exchanged between bodies at enormous distances follows the
Stefan-Boltzmann law [1]; however, this law is no longer valid
when the distance between them becomes smaller than the
thermal wavelength. In this near-field region, the radiative
heat transfer is dominant due to the tunneling of evanescent
waves. It has been shown both theoretically [2–7] and ex-
perimentally [8–12] that the near-field heat flux can increase
by several orders of magnitude compared to the conventional
black-body radiation.

When the separation distance between the two bodies lies
in the scale of their lattice constant, besides this near-field
radiative heat transfer, the thermal conduction mediated by
phonons becomes dominant in the heat transfer mechanisms
also [13–16]. Some recent investigations, using different tech-
niques and considering effects such as tunneling of acoustic
phonons [17–29], have shown that several orders of mag-
nitude of near-field radiative heat flux can further enhance
the heat transfer at distances of a few nanometers. This en-
hanced heat transfer has attracted much attention because of
the wide potential applications in thermal microscopy, imag-
ing [30–33], energy harvesting [34–36], and nanofabrication
devices [3,5]. Sellan et al. [17], based on lattice dynamics
calculations and Landauer theory [37], has investigated the
heat transfer via acoustic phonons between two silicon sur-
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faces and found that the heat flux would be four orders of
magnitude larger than the near-field heat transfer. However,
they only considered the interaction between surface atoms
via their electron clouds and ignored the long-range van der
Waals (vdW) interaction between the bodies. Altfeder et al.
[18], using ultrahigh vacuum inelastic scanning tunneling
microscopy, have reported a field-induced phonon tunneling
mechanism. They showed that the heat transfer due to the
phonon tunneling can be much larger than the value predicted
by the black-body radiation. Ezzahri and Joulain [13] demon-
strated that vdW and Casimir forces as new mechanisms can
also assist phonon tunneling in narrow vacuum gaps. They
found that for highly doped silicon, phonon-mediated heat
transfer prevails over radiative transfer. But they only con-
sidered the ballistic transport of phonons across the gap and
did not explain the role of different modes of elastic waves
that can excite in such medium. Chiloyan et al. [19] followed
the method introduced by Ezzahri et al. and modeled the
Coulombic interaction of atoms across the vacuum gap with
a springlike behavior to calculate phonon transmission. They
found that the contribution of low frequency acoustic phonons
is important in subnanometer gaps. However, the sinusoidal
variation of the surface topology of the solids because of the
presence of phonons was not considered. Pendry et al. [26]
considered these effects in the calculation of the transmis-
sion coefficient of phonons when two identical objects are
separated by small spacings. Later, Sasihithlu et al. [20] ex-
tended this work to objects of different materials. Xiong et al.
[14], using the phononic nonequilibrium Green’s function
technique, investigated the heat transfer between two silica
clusters. Within the investigated gap distances, they identified
three typical regions with different heat transfer behaviors and
emphasized the importance of acoustic phonon tunneling in
heat transmission.

The contribution of phonons to heat transfer can be me-
diated by interatomic potentials such as van Beest, Kramer,
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FIG. 1. (a) Two semi-infinite bodies containing alternating crys-
tal planes with different masses separated by a narrow vacuum gap.
The structure is divided into three parts: center wire, and left and right
leads. The crystal planes only in the center part are assumed to have
equally positive and negative charges, alternatively. (b) A scheme of
the extended mass-spring model with the masses and springs that
correspond to masses and the constant forces of interplane bonds,
respectively. In fact, the center wire is supposed to be ionic including
long-range Coulomb interaction. Here, the arrows show the corre-
sponding force constants.

and van Santen (BKS) [26,38]. Generally, the phonons cannot
propagate in the bulk vacuum [17], while, thanks to this poten-
tial, they can tunnel across a nanometer vacuum gap from one
surface to another. Such a mechanism can be interpreted by
different microscopic theories such as the ab initio approach,
scattering boundary method, and Green’s function technique
[39–41].

With attention to the importance of this enhanced en-
ergy transfer for both the fundamental interest and practical
value, we follow the work done on silica clusters by Xiong
et al. [14] and present a simple model to study the phonon
tunneling between two semi-infinite bodies separated by a
narrow vacuum gap based on the BKS potential and using
the harmonic approximation and Green’s function technique.
The BKS potential includes long-range Coulomb, vdW, and
short-range repulsive interactions. We see that this model as
an alternative superlattice, which is reduced to the correspond-
ing mass-spring chains, analytically enables us to compute
the self-energies as functions of incoming phonon frequency
and force constants of springs in leads and contacts. Given
this and taking into account the simplicity of our model, an
increase in the speed of numerical calculations occurs, and
we can get an estimation and overview of the problem in a
short time with a small effort. In this manner, we can easily
calculate phonon transmission and the thermal conductance
for two cases of simple and alternating mass chains. This also
provides the ability to understand the nature and the strength
of the interaction from the behavior of thermal conductance.

This paper is organized as follows. In Sec. II, we propose
a mass-spring harmonic model to study heat transfer between
two semi-infinite bodies. In Sec. III, the numerical results are
discussed. We finish the paper with conclusions in Sec. IV.

II. MODEL AND FORMALISM

We consider a setup consisting of two semi-infinite bodies
separated by a narrow vacuum gap with distance d [Fig. 1(a)]
and propose an extended mass-spring model to simulate the

contribution of phonons to heat transfer, as displayed in
Fig. 1(b). Indeed, each atomic layer is supposed to be a mass
and the atomic force between them is followed by Hooke’s
law. We define the center wire (W ) by N/2 masses at the left
and the same numbers at the right of the gap (N is the number
of masses in this part). The other masses belong to two semi-
infinite left (L) and right (R) leads. Let us assume that the
layers in the center wire and leads have alternative masses m
and M, while their charges are supposed to be, alternatively,
q and −q in the center wire, and zero in leads. The force
constant between the nearest-neighbor masses, C0, exists in
the entire system except in the vacuum gap. In the center wire,
there is also the force constant between the next-neighbor (ith
and jth) masses, Ci j , derived by the BKS potential as

Ci j

C0
= λC (−1)i+ j

|i − j|3 + λE e−|i− j| − λV

(i − j)8
, (1)

where i and j are both in the same nongap regions. Similarly,
this formula can calculate the force constants by replacing
j → d/a + j in the denominators of Eq. (1) when i and j
are in the different regions around the gap. Here, a is the
lattice constant and d is the gap width (concerning the dis-
tance between the nearest masses). To distinguish these two
cases, we use the notation Cd

i j for the latter case. Here, λC ,
λE , and λV are the strengths of the Coulomb, exponential,
and vdW potentials, respectively. The first term in Eq. (1)
refers to the Coulomb interaction and the others originate
from the Pauli exclusion principle and the vdW energy. To
define the vacuum gap, the nearest-neighbor force constant C0

between the masses N/2 and N/2 + 1 is taken at zero. With
these definitions and under the assumption of the harmonic
approximation, the elements of the dynamic matrix of this
mass-spring system, C, can be written as

(C)i,i = C0
(
2 − δi, N

2

) +
N/2∑
j=1

Ci j +
N∑

j=N/2+1

Cd
i j,

(C)N+1−i,N+1−i = (C)i,i, where i � N/2 and j �= i, (2a)

(C)i,i+1 = C0(1 − δi,N/2) + Cii+1, (2b)

(C)i, j = Ci j, i = 1, · · · , N
2 − 2;

j = i + 2, · · · , N
2 ,

and i = N
2 + 1, · · · , N − 2; j = i + 2, · · · , N,

(2c)

(C)i, j = Cd
i j, i = 1, · · · , N

2 ; j = N
2 + 1, · · · , N,

and j �= i + 1, (2d)

(C)i, j = (C) j,i. (2e)

Therefore, the phononic Green’s function G of the center
wire in the presence of leads is obtained by

G = 1

Mω2 − C − �
, (3)

where M stands for a diagonal mass matrix with alternative
elements m and M; ω is the input phonon frequency; and � is
the phononic self-energy diagonal matrix whose first and last
elements only, corresponding to the left (�L ) and right (�R)

034121-2



PHONONIC PROPERTIES OF A PERIODIC … PHYSICAL REVIEW E 104, 034121 (2021)

self-energies, are nonzero. They read [42–44]

�L = �R = C0
(
2 − ω2/ω2

0

)
1 + ξ +

√
ξ 2 − 1

, (4)

where

ξ =
(

1 − ω2

2ω2
0

)(
2 − Mω2

mω2
0

)
− 1.

Here, ω0 = √
C0/m is the natural phonon frequency of the

system with the value of the order of ∼1012-1013 Hz. By
substituting Eqs. (2) and (4) into Eq. (3), the elements of
the inverse Green’s function matrix are obtained. Therefore,
by the inversion of this matrix, we can calculate the phonon
transmission coefficient as a function of phonon frequency,
T (ω), according to the following formula [37]:

T (ω) = 4 Im �LIm �R |G1,N |2, (5)

where G1,N is the leftmost entry of the center part Green’s
function. We also introduce the local phonon density of states
at the sites around the vacuum gap N/2 and N/2 + 1 as [42]

LDOS = −2ω

π
Im(GN/2,N/2 + GN/2+1,N/2+1). (6)

Moreover, the thermal conductance can be computed by [45]

κ = kBβ2h̄2

2π

∫ ωc

0
T (ω)

ω2eβ h̄ω

(eβ h̄ω − 1)2
dω, (7)

where ωc is the cutoff phonon frequency, h̄ is the reduced
Planck’s constant, and β = 1/kBT , in which T is the tem-
perature and kB is the Boltzmann constant. Now, we are in a
position to investigate the phonon transport properties of two
semi-infinite bodies.

III. RESULTS

In this section, we examine the model for a lengthy polar
mass-spring nanowire that includes two types of alternating
positive and negative ions with different masses (AB chain),
i.e., an existing subnanometer vacuum gap in the nanowire.
Three types of interactions, i.e., the Coulomb, the vdW, and
the short-range repulsive interactions, can influence the ther-
mal properties of the system. Here, we calculate the phonon
transmission coefficient of the system as a function of phonon
frequency, the gap space distance, and the strength of these
interactions. The thermal conductance is computed in terms of
temperature, the gap space distance, and the strength of these
interactions. We report our results in dimensionless quantities.
For example, the phonon frequency, temperature, and gap dis-
tance are expressed in units of ω0, h̄ω0/kB, and a, respectively.
To make the effect of leads and contacts in the model under
study negligible, the number of ions in the center part of the
chain, N , should be chosen as a big enough number. A part
of the wire where there are interactions defines the center
wire. According to our calculations, N = 120 is an optimum
number which we use in drawing the following plots. Before
describing the results, it is better to discuss the typical strength
values of two main interactions, namely, λC and λV . Assume
the energy scale ratio of the vdW and Coulomb potentials to
be ε. Therefore, the second derivative of this potential gives

FIG. 2. Phonon transmission coefficient as a function of phonon
frequency and the strength of (a), (b) Coulomb, (c), (d) vdW, and
(e), (f) short-range repulsive interactions for a polar mass-spring
nanowire with gap space distance of d/a = 1. Two different values
for the mass ratio of alternating masses are chosen: (a), (c), (e)
M/m = 1 and (b), (d), (f) = 2. The other interactions are absent in
each pair of plots except in (e) and (f) where we take λC = 0.5.

the ratio of λV /λC = 21ε. Since the typical values of ε lie
in the range ∼0.002-0.05, we have λV /λC � 0.04 ∼ 1 [46].
Regarding λE , if we take its value in the magnitude of λC ,
then the short-range potential is expanded to one unit cell.

In Fig. 2, we present the phonon transmission coefficient of
the system as a function of phonon frequency and the strength
of the Coulomb [Figs. 2(a) and 2(b)], vdW [Figs. 2(c) and
2(d)], and short-range repulsive interactions [Figs. 2(e) and
2(f)] for the two cases of M = m (simple chain) and M = 2m
(AB chain). In each pair of the Figs. 2(a), 2(b), 2(c), and
2(d), the other interactions are absent, while in Figs. 2(e)
and 2(f), there is no vdW interaction and the strength of the
Coulomb interaction is fixed at λC = 0.5. In this figure, we
set the gap space distance in the system equal to the lattice
constant, d = a. The dispersion relation of the mass-spring
leads, i.e., ω = 2ω0| sin ka/2| wherein k is the phonon wave
number, determines the range of ω as [0, 2ω0]. The range of
λC(V,E ) is chosen as [0,1] in which the value of 1 corresponds
to the strength of an interaction creating a force constant
equal to C0. According to the counterplots of Figs. 2(a) and
2(b), despite the existence of a vacuum gap, T (ω, λC ) can
be nonzero due to the long-range nature of the Coulomb
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interaction. The maximum value of T (ω, λC ) occurs at the
middle values of ω and λC . The frequency range for nonzero
transmission is decreasing by increasing λC . Therefore, there
are some regions where the Coulomb interaction improves the
phonon transmission in the system. Comparing Fig. 2(a) with
Fig. 2(b), we can see that the effect of the Coulomb inter-
action on phonon transfer is more observable in the simple
mass-spring chain compared to the AB one. Moreover, it is
seen that in Figs. 2(a) and 2(b), the nonzero transmission
has been extended in the frequency window of [0,2] for the
simple chain, while for the AB case, it has a notable value
just in the range [0,1]. We mention here that the frequency
gap in the AB model for M/m = 2 lies in [1,2] [47]. We can
also observe this aspect in other figures related to the phonon
transmission coefficient. We find that only when the vdW
interaction exists in the chain [see Figs. 2(c) and 2(d)], there
is a nonzero transmission in a range at the phonon frequency
edge compared to the Coulomb case. Thus, for intermediate
values of λV , even in very low frequencies, the phonon can
transfer through the vacuum gap. Also, at most frequencies,
the phonon conductance turns on at the larger value of λV

[Figs. 2(c) and 2(d)] with respect to the value of λC [Figs. 2(a)
and 2(b)]. Furthermore, in the higher ω region, T (ω, λV )
exists at lower λV . For the short-range repulsive interaction,
there is no notable phonon transfer through the system. There-
fore, we examine this effect together with a constant strength
of the Coulomb interaction, λC = 0.5, in Figs. 2(e) and 2(f).
It is seen that by increasing the value of λE , the frequency
range that the phonon can transfer through the system shifts to
higher frequencies. The maximum value of T (ω, λE ) is almost
independent of the value of λE . A gap region has been created
at frequencies around ω = 1.6ω0 in the mass-spring simple
chain in Fig. 2(e). This gap has been extended for the AB
chain in Fig. 2(f) by adding to its intrinsic frequency gap. The
existence of semi-infinite phononic leads limits the frequency
of the incident phonon in the common band frequencies. In
addition, the frequency channels (or quasilevels) in the cen-
ter wire are determined by parameters such as interaction
strengths, distance gap, and so on. Therefore, the incident
phonons coming from leads with frequencies corresponding
to channel frequencies of the center part can easily transmit
through the system and the transmission coefficient takes its
maximum value. Whatever the number of these frequency
channels lying in the common range of band frequencies of
the leads decreases, the value of the transmission coefficient
decreases. Therefore, the variation of the values of interaction
strengths shifts the frequency channels “in” or “out” of the
band frequency of leads, resulting, respectively, in increasing
or decreasing the transmission coefficient. Since the peaks of
the total density of states (DOS) of the system correspond to
the conductance channels and the contribution of local DOS
of vibrating atoms around the vacuum gap, which are more
affected by the creation of new channels, we present the local
DOS (LDOS) corresponding to the transmission of Figs. 2(a)–
2(d) in Fig. 3. We observe that by increasing the Coulomb
and vdW interaction strengths, some new peaks appear in the
LDOS(ω) curve.

Figure 4 displays the phonon transmission coefficient as a
function of phonon frequency and gap space distance when
the strength values of the interactions are fixed for the two

FIG. 3. The local phonon density of states in arbitrary units at the
sites around the vacuum gap as a function of phonon frequency for
some different strength values of (a), (b) Coulomb and (c), (d) vdW
interaction, and the polar mass-spring nanowire whose transmission
is plotted in Fig. 2. Here, the mass ratio of alternating masses is
chosen: (a), (c) M/m = 1 and (b), (d) = 2. In each plot, the other
interactions are absent.

cases of simple [Figs. 4(a), 4(c), and 4(e)] and AB [Figs. 4(b),
4(d), and 4(f)] chains. It is evident that by increasing the
value of d , the phonon transmission frequency tends to zero.
In Figs. 4(a) and 4(b), only the Coulomb interaction with
strength λC = 0.5 is presented. In this case, only in a nar-
row window of frequencies is the phonon allowed to transfer
through the system. This window is narrower in the AB chain
than in the simple one, which means that the ratio of alter-
nating masses, M/m, would determine the allowed width of
transferring phonon frequency band. The next plots, Figs. 4(c)
and 4(d), respectively, belong to the simple and the AB chains
in the presence of the vdW interaction (λV = 0.5) when other
interactions are absent. Here, despite Figs. 4(a) and 4(b), the
allowed frequency windows begin from zero for the values
of d near a, although the beginning frequency moves to the
higher frequencies with increasing d . However, the values of
the cutoff frequencies in Figs. 4(c) and 4(d) correspond to
the ones in Figs. 4(a) and 4(b), respectively. As explained
before, to understand the effect of the short-range repulsive
interaction, we have to consider the Coulomb interaction also.
Figures 4(e) and 4(f) are plotted for the parameters λE = 0.5
and λC = 0.5. As expected, the general aspect of the trans-
mission spectra is determined by the Coulomb interaction and
therefore these plots are very similar to Figs. 4(a) and 4(b).
However, a shift in the frequency window can be seen when
both interactions are present. For the simple chain [Fig. 4(e)],
the short-range repulsive interaction creates a new narrow
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FIG. 4. Phonon transmission coefficient as a function of phonon
frequency and gap space distance for a polar mass-spring nanowire.
The strength values of the Coulomb, vdW and short-range repulsive
interactions are fixed as follows: (a), (b) λC = 0.5, λV = λE = 0, (c),
(d) λV = 0.5, λC = λE = 0, and (e), (f) λC = λE = 0.5, λV = 0. Two
different values for the mass ratio of alternating masses are chosen:
(a), (c), (e) M/m = 1 and (b), (d), (f) = 2.

frequency gap at the end of the allowed phonon frequency
window which, by increasing d , shifts its position to the
lower frequencies. Similarly, in the AB chain [Fig. 4(f)], a
narrow new frequency window opens at higher frequencies.
In Figs. 4(e) and 4(f), we see that at high frequencies, it
can even enhance the phonon transmission by the increase
of the vacuum gap distance. It seems that some narrow fre-
quency channels are slowly created at high frequencies with
increasing the distance gap. In our model, we take a lengthy
interacting system between two phononic leads. When a fre-
quency channel of the center subsystem lies in the range of
band frequency of the leads, the resonance phonon transmis-
sion mechanism can occur. The creation of narrow frequency
channels can be attributed to the long-range aspect of the
Coulomb and the vdW interactions. We present, in Fig. 5,
the local phonon density of states as a function of phonon
frequency corresponding to the transmission of Figs. 4(e)
and 4(f), for some different values of gap space distance.
As we mentioned before, the arising values of the LDOS
in a frequency range corresponds to the creation of the new
channel in that domain. Indeed, some new peaks are observed
in LDOS at larger values of d .

FIG. 5. The local phonon density of states in arbitrary units at
the sites around the vacuum gap as a function of phonon frequency
for some different strength values of gap space distance for the polar
mass-spring nanowire whose transmission is presented in Figs. 4(e)
and 4(f). The value of M/m is (a) 1 and (b) 2. Note that here the vdW
interaction is absent. Also, the range of frequency axes in each plot
is chosen in a small domain in which the transmission is ascendant
vs d in Fig. 4.

Figure 6 shows the phononic thermal conductance as a
function of temperature and one of the interaction strengths
for the simple [Figs. 6(a), 6(c), and 6(e)] and AB Figs. 6(b),
6(d), and 6(f) mass-spring chains including a vacuum gap.
We express this quantity in terms of units of kBω0/2π . We
observe that there is a correspondence between the thermal
conductance and transmission plots at low temperatures (see
Fig. 2). Therefore, according to Eq. (7), the value of the
transmission coefficient directly influences the thermal con-
ductance. In general, the value of κ for the AB mass-spring
chain is smaller than for the simple one. In the absence of
other interactions and at a finite temperature, the best values
of the Coulomb interaction strength that creates the maximum
thermal conductance lies in ∼[0.3, 0.5] [for Fig. 6(a)] and
∼[0.3, 0.4] [for Fig. 6(b)]. This scenario works for Figs. 6(c)
and 6(d) where only the vdW interaction exists. But here, at
low temperatures and intermediate values of λV , the thermal
conductance also has nonzero values. In Figs. 6(e) and 6(f),
κ is plotted as a function of temperature and short-range
repulsive interaction when the value of λC is taken to be 0.5.
It is seen that at high temperatures, the maximum thermal
conductance occurs at small (large) values of λE for the simple
(AB) chain. This is due to the existence of a wider frequency
gap in the phonon conductance spectra of the AB chain, which
causes the role of acoustic phonons to fade.

The effect of gap space distance d on the thermal con-
ductance is considered in Fig. 7. Generally, by increasing
the temperature, κ increases, and by raising the value of
d , a decreasing behavior is observed. However, the in-
sets in Figs. 7(a) and 7(b) show that at an optimum
gap space distance, the thermal conductance takes a max-
imum value when the Coulomb interaction prevails in the
system.

In the end, we extract a suitable fitting function for thermal
conductance as a function of the Coulomb interaction strength
(in the range of 0 < λC < 1) and gap distance (in the range of
1 < d/a < 2) in Figs. 6(a) and 6(b) and Figs. 7(a) and 7(b) as
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FIG. 6. Thermal conductance as a function of temperature and
the strength of (a), (b) Coulomb, (c), (d) vdW, and (e), (f) short-
range repulsive interactions for a polar mass-spring nanowire with
gap space distance of d/a = 1. Two different values for the mass
ratio of alternating masses are chosen: (a), (c), (e) M/m = 1 and (b),
(d), (f) = 2. The other interactions are absent in each pair of plots,
except in (e), (f) where we take λC = 0.5.

follows:

κ (λC, d )

κmax
=

[
1 + α

(
1 + d0

d
− 2

d2
0

d2

)]
exp

[
− (λC − λ0)2

2σ 2

]
,

where κmax, α, d0, λ0, and σ are the maximum of the thermal
conductance, fitting parameter, optimum space gap, optimum
strength of the Coulomb interaction, and standard devia-
tion, respectively. All of these parameters are temperature
dependent except d0 and λ0, which are almost temperature
independent. Moreover, the κmax in terms of temperature can
fit on a Hill function. It is an important result because an
observable parameter such as the thermal conductance can be
related to the interaction strength by this relation. In other
words, the thermal conductance measurements can provide
an estimate of the Coulomb interaction strength. This relation
enables us to control and optimize this quantity by variation
of the gap space.

IV. CONCLUSION

We theoretically studied the phonon tunneling across an
alternating mass-spring chain including a vacuum gap in the
presence of the Coulomb, vdW, or short-range repulsive inter-
actions. We considered two cases of simple and AB chains,

FIG. 7. Thermal conductance as a function of temperature and
gap space distance for a polar mass-spring nanowire. The strength
values of the Coulomb, vdW, and short-range repulsive interactions
are fixed as follows: (a), (b) λC = 0.5, λV = λE = 0, (c), (d) λV =
0.5, λC = λE = 0, and (e), (f) λC = λE = 0.5, λV = 0. Two different
values for the mass ratio of alternating masses are chosen: (a), (c),
(e) M/m = 1 and (b), (d), (f) = 2. The insets in (a) and (b) show
the corresponding thermal conductivities as functions of gap space
distance at several fixed values of temperature.

respectively, corresponding to intrinsic gapless and gapped
systems. We based the presented model on the harmonic ap-
proximation and Green’s function technique. In this way, we
obtained the phonon self-energy for the AB mass-spring chain
and then calculated the phonon transmission coefficient as a
function of phonon frequency, the strengths of interactions,
and the gap space distance. We numerically investigated the
thermal conductance and found its dependence on tempera-
ture, the strengths of interactions, and the gap space distance.

The results show that the phonon can transfer through the
system in a determined frequency window and in a special
range value of the strength of the Coulomb and vdW inter-
actions. Especially for a weak Coulomb interaction and at
low phonon frequencies, the phonon transmission coefficient
has no significant value, while at the intermediate strength of
the vdW interaction, it takes nonzero values at low phonon
frequencies. Considering the short-range repulsive interaction
with the Coulomb one, the transferring region shifts into
higher frequencies by creating a narrow frequency gap inside.
The increase of gap space distance decreases the phonon tun-
neling, as expected. Only when the vdW interaction works
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is this decrease faster for low phonon frequencies. It may
be possible to create a narrow allowed frequency band by
selecting specific values of interaction strength and the gap
space distance in the AB mass-spring chain. The thermal
conductance of the simple chain is larger than the AB one
with the same parameters. At low temperatures and for both
cases, it vanishes except for intermediate values of the vdW
interaction strength that show a small value. There are optimal

values of strengths for the Coulomb and the vdW interactions
in which the thermal conductance behaves like a Gaussian
function. The measurement of the phononic contribution of
thermal conductance can provide useful information about
the strengths of internal interactions existing between ions
in the system. This model can also be used for superlat-
tice nanostructures to develop thermal switching and other
applications.
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