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Continuous-time Markovian evolution appears to be manifestly different in classical and quantum worlds. We
consider ensembles of random generators of N-dimensional Markovian evolution, quantum and classical ones,
and evaluate their universal spectral properties. We then show how the two types of generators can be related
by superdecoherence. In analogy with the mechanism of decoherence, which transforms a quantum state into a
classical one, superdecoherence can be used to transform a Lindblad operator (generator of quantum evolution)
into a Kolmogorov operator (generator of classical evolution). We inspect spectra of random Lindblad operators
undergoing superdecoherence and demonstrate that, in the limit of complete superdecoherence, the resulting
operators exhibit spectral density typical to random Kolmogorov operators. By gradually increasing strength
of superdecoherence, we observe a sharp quantum-to-classical transition. Furthermore, we define an inverse
procedure of supercoherification that is a generalization of the scheme used to construct a quantum state out of a
classical one. Finally, we study microscopic correlation between neighboring eigenvalues through the complex
spacing ratios and observe the horseshoe distribution, emblematic of the Ginibre universality class, for both types
of random generators. Remarkably, it survives both superdecoherence and supercoherification.
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I. INTRODUCTION

Coherence is a characteristic feature of quantum mechan-
ics and it is now considered a valuable resource with many
potential applications [1,2]. Being valuable, it is also fragile
and the mechanism of decoherence, an inevitable effect of the
interaction of a quantum system with its environment, causes
loss of coherence. There is an agreement that decoherence
is the key mechanism responsible for the quantum-classical
transition [3–5].

Quantum coherence is defined with respect to a given or-
thonormal basis in the Hilbert space. Assuming that the basis
is distinguished as the eigenbasis of a given Hamiltonian, the
quantum coherences are encoded in the off-diagonal elements
of a density operator ρi j = 〈i|ρ| j〉. The simplest decoherence
process is realized by the action of the coarse-graining quan-
tum channel,

ρ → �(p)(ρ) =
∑
i, j

�i jρi j |i〉〈 j|, (1)

such that �ii = 1, and the role of off-diagonal factors �i j =
p < 1 is to suppress off-diagonal elements ρi j .

Assume now that a certain basis |i〉 in Hilbert space H is
distinguished by an interaction of a system with an environ-
ment. In the case of quantum maps (or channels, if the maps
are trace-preserving) [6–8], superdecoherence can be defined
as decoherence acting on the states related to quantum maps
by the Jamiołkowski-Choi isomorphism [9,10], also known as
the “channel-state duality” [11,12].

Any quantum map � acting on a system of size N can be
represented by a Choi matrix C of order N2,

ρ → �(ρ) =
∑
i, j

∑
k,l

Ci j,kl |i〉〈 j| ρ |l〉〈k|. (2)

The process of superdecoherence is similarly realized by
the action of a supermap �̃, which acts on maps [13,14] and
suppresses the off-diagonal elements of Ci j,kl ,

�(ρ) → �̃(p)[�(ρ)] =
∑
i, j

∑
k,l

�̃i j,kl Ci j,kl |i〉〈 j| ρ |l〉〈k|,

(3)

where diagonal elements remain unchanged, �̃i j,i j = 1, while
the off-diagonal entries become suppressed, �̃i j,kl = p � 1.
Clearly, in the limit p → 0 one arrives at a map which com-
pletely destroys coherence of any input state ρ

�(ρ) → �̃(0)[�(ρ)] =
∑
i, j

Si j |i〉〈 j| ρ | j〉〈i|, (4)

where Si j = Ci j,i j denotes a stochastic matrix representing
the completely decohered quantum channel �. By continuing
further along this line, as we show in this work, one can
define superdecoherence for generators of continuous-time
Markovian quantum evolution of the Gorini-Kossakowski-
Sudarshan-Lindblad (GKSL) form [15–17] (often called
Lindblad operators or simply Lindbladians [18]), which de-
cohere them into classical Kolmogorov operators, governing
classical evolution inside the probability simplex.
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Instead of analyzing a particular, well-specified physical
system, one can ask about properties of a typical system. It is
then advantageous to rely on the concepts of random matrix
theory (RMT) [19], which is capable of describing the behav-
ior of a typical quantum system under the assumption that its
dynamics is related to a classically chaotic system. Such an
approach emerged as a natural way to deal with many-body
problems in nuclear physics [20] and it was well established
by a series of works on statistical theory of spectra by Dyson
[21–24].

Due to a seminal monograph by Haake [25] and his collab-
orators [26], random matrices became a key theoretical tool
to study links between classical and quantum chaotic systems
(see also Refs. [27,28]). Random matrices found interesting
applications in the analysis of certain models of 2D quantum
gravity [29,30], gauge theories [31], theory of open quantum
systems [32]. Moreover, they played an essential role in tack-
ling key problems in quantum information theory [33,34].

In our recent work [35] we introduced an ensemble of
random Lindblad operators. We found universal spectral prop-
erties of typical, i.e., randomly sampled, Lindblad operators.
It was shown that, in the case of purely dissipative dynamics,
their spectral distributions exhibit a universal shape on the
complex plane.

Spectral properties of random Lindblad generators with
various types of randomness were also analyzed in recent
works [36–41]. The interest to this problem was sparked
by the idea to generalize the existing theory of Quantum
Chaos—which is based on spectral properties of generators of
unitary evolution, i.e., Hamiltonians [26]—to the case of open
many-body systems (see also recent works [42,43]). Spec-
tral properties of random purely dissipative Lindbladians, on
which some additional constrains were imposed, were studied
in a recent work [44], by implementing random, identity-
equivalent (in the unitary limit) circuits on the IBM Quantum
platform [45].

A similar problem can also be considered for generators
of classical Markovian evolution [46,47]. Spectra of random
Markov transition matrices were studied in Ref. [48]. Spec-
tra of random Kolmogorov operators were first analyzed in
Ref. [49] and later in Ref. [41]. Kolmogorov generators sam-
pled from an ensemble of random graphs and their spectral
properties were studied in Ref. [41].

The aim of this work is two-fold. On the one hand, we
extend the previous results which addressed the support of the
spectrum [35] only, and now focus on the universal spectral
density ρ(z, z̄).

On the other hand, using the tools of random matrix theory
[19], we analyze the quantum–to–classical transition at the
level of the spectrum of typical Lindblad operators, which
are decohered into Kolmogorov operators. This transition is
realized with the supermap �̃(p), Eq. (3). We demonstrate
that in the limit p → 0 one obtains an ensemble of random
Kolmogorov operators. However, to derive a universal pattern
for the transitions of the support of the spectrum of typical
generators acting on systems of an arbitrary size N , one has to
use a different scaling in the quantum (near p = 1) and in the
classical (near p = 0) regimes. Namely, in the quantum case
spectra have to be scaled with N/p, whereas in the classical
case with N3/2. We evaluate scaling characteristics of the

quantum to classical cross-over and demonstrate a kind of a
phase transition which occurs at the critical value ptr = N−1/2,
similar to a recently reported in the case of superdecoherence
of quantum operations.

This paper is organized as follows. In Sec. II we introduce
necessary concepts and notations. Spectra of random Lind-
bladians are studied in Sec. III, in which the spectral density
is also evaluated. In Sec. IV we analyze spectra of random
generators of classical Markovian evolution, while quantum-
to-classical transition on the level of generators is investigated
in Sec. V. In Sec. VI we introduce and discuss the procedure
of coherification that can be used to transform a Kolmogorov
operator into a Lindblad operator. The complex spacing ratio
statistics [39] of the spectra is considered in Sec. VII. Finally
we make concluding remarks in Sec. VIII. We present techni-
cal details in the Appendices, including a detailed derivation
of spectral densities, both for random quantum and classical
generators, obtained with methods of free probability.

II. SETTING THE SCENE

Consider a linear map � : L(H) → L(H), where L(H) de-
notes the vector space of linear operators acting on the Hilbert
space H. We assume that dim H = N . In this work we con-
sider only Hermiticity preserving maps, i.e., �(X )† = �(X †)
for all X ∈ L(H). There are several ways to find matrix repre-
sentation of �. Fixing an orthonormal basis {|1〉, . . . , |N〉} in
H, one can define Choi operator C [9,10]

C =
N∑

i, j=1

|i〉〈 j| ⊗ �(|i〉〈 j|), (5)

and the corresponding N2 × N2 Hermitian matrix

Ci j,kl := 〈i ⊗ j|C|k ⊗ l〉 = 〈 j|�(|i〉〈k|)|l〉. (6)

The map � is completely positive if and only if C � 0.
Another useful representation is defined as follows: Any ma-
trix X ∈ L(H) may be mapped to a vector |X 〉〉 ∈ H ⊗ H as
follows:

|X 〉〉 =
N∑

i, j=1

Xi j |i ⊗ j〉, (7)

where Xi j = 〈i|X | j〉. Operation X → |X 〉〉 is often called “vec-
torization” [8,50]. It allows one to define a superoperator
�̂ ∈ L(H ⊗ H) via

�̂|X 〉〉 := |�(X )〉〉, (8)

and the corresponding matrix reads

�̂i j,kl := 〈i ⊗ j|�̂|k ⊗ l〉. (9)

These two matrix representations are related by the reshuffling
operation [7]

C = �̂R, Ci j,kl = �̂ik, jl . (10)

Note that �̂i j,kl , contrary to Ci j,kl , is not Hermitian. If � is
completely positive and

�(X ) =
∑

α

KαXK†
α (11)
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FIG. 1. Superdecoherence acting on a completely positive map for N = 2. The map is specified with superoperator matrix �̂, Eqs. (8) and
(9). Next, reshuffling operation, Eq. (10), is performed on �̂ and Choi matrix C is obtained. A tunable decoherence, Eq. (3), then acts on the
Choi matrix and diminishes its off-diagonal elements. In the limit of complete decoherence, p = 0, only the diagonal elements survive, so after
the second reshuffling and projecting out two central rows and columns, which describe the evolution of coherences, one arrives at the matrix
M of order 2 with nonnegative entries. If the original quantum map �̂ is stochastic (bistochastic), then the transition matrix M is stochastic
(bistochastic).

denotes its Kraus representation, then

C =
∑

α

|Kα〉〉〈〈Kα| (12)

and

�̂ =
∑

α

Kα ⊗ Kα. (13)

Interestingly, the spectrum of the map � coincides with a
spectrum of the superoperator �̂, that is, �(X ) = λX if and
only if �̂|X 〉〉 = λ|X 〉〉.

A third useful representation is provided by the following
real N2 × N2 matrix: let τα (α = 0, 1, . . . , N2 − 1) denote a
Hermitian orthonormal basis in L(H), that is, Tr(τατβ ) = δαβ ,
and let τ0 = 1l/

√
N . Define

�̃αβ = Tr[τα�(τβ )], (14)

which is by construction a real matrix. Note, that if � is trace-
preserving, then �̃αβ has the following structure

�̃αβ =
(

1 0
x T

)
, (15)

where x ∈ RN2−1, and T is a real square matrix of order
N2 − 1. In this case the spectrum of � consists of the leading
eigenvalue equal to 1 and the spectrum of T . It is well known
that the spectra of �, �̂ and �̃ coincide. On the one hand,
the form of Eq. (15) is called the “Liouville representation”
[51] of map �. It can be also related with the Fano form
[52] of the bi-partite state representing the map through the
Choi-Jamiołkowski isomorphism.

Now, when we related every completely positive map � to
unique Choi state C, the superdecoherence acting on the maps
can be defined in the manner summarized on Fig. 1.

Various ensembles of quantum states analyzed in Ref. [53]
proved to be useful for constructing ensembles of random

channels [54]. It was shown that spectral properties of super-
operators corresponding to random quantum channels [55],
acting on a system of size N , describe universal features of
spectra of interacting quantum chaotic systems. The spectrum
of a typical random superoperator consists of the leading
Frobenius-Perron eigenvalue, λ1 = 1, and the bulk of com-
plex eigenvalues located on the origin-centered disk of radius
R ∼ 1/N [56]. The spectrum of generic stochastic matrices
has a similar structure [48], but the radius of the eigenvalue
disk depends on the measure used for generating the ensemble
[54].

III. SPECTRA OF RANDOM LINDBLAD OPERATORS

In this section we discuss universal spectral features of
typical (random) Lindblad operators.

A. Ensembles of random Lindbladians

Consider a generator L of quantum dynamical semigroup
[18]. It has the well-known Gorini-Kossakowski-Sudarshan-
Lindblad form [15,16]

L(ρ) = −i[H, ρ] +
∑

k

γk

(
LkρL†

k − 1

2
{L†

k Lk, ρ}
)

, (16)

where H† = H stands for the system Hamiltonian, Lk are
Lindblad (jump) operators, and all rates are positive, γk > 0.
In what follows, we keep h̄ = 1. The above representation is
not unique. In particular, the splitting into the Hamiltonian
part and dissipative parts can be performed in many equiv-
alent ways. Fixing orthonormal basis Fk in L(H) such that
F0 = 1l/

√
N , one finds the following representation [15]:

L(ρ) =−i[H0, ρ]+
N2−1∑

m,n=1

Kmn

[
FnρF †

m − 1

2
(F †

m Fnρ+ ρF †
m Fn)

]
.

(17)
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FIG. 2. Probability density functions P[Re(�′), Im(�′)] of the rescaled eigenvalues, �′ = N (� + 1), of random Lindblad operator L for
N = 100 and N = 300 (a single sample), sampled according to the (a) Gorini-Kossakowski-Sudarshan, Eq. (17), and (b, c) Lindblad, Eq. (19),
representations. Densities for N = 100 were sampled with 103 realizations. Bright contour corresponds to the spectral boundary, Eqs. (34) and
(35). Note that eigenvalue �1 = 0 is excluded from the plots and the bin area of the histogram shown on panel (c) is four times smaller than the
one on panels (a) and (b).

Note that Fk are in general non-Hermitian and TrFk = 0
for k = 1, . . . , N2 − 1. Moreover, by requiring that H0 is
traceless, the representation Eq. (17) is made unique. The
Kossakowski matrix K = {Kmn}, which specifies the dissipa-
tive part of L, is positive semidefinite. Since the form of
Eq. (17) was proposed by Gorini, Kossakowski, and Sudar-
shan in their seminal paper [15]; henceforth, we refer to it as
GKS-representation.

In recent paper [35] we analyzed spectral properties of
random Lindbladians. For the purely dissipative case, i.e.,
H0 = 0, Lindbladian L is fully determined by Kossakowski
Kmn matrix. The latter can be sampled in many ways [35].
A particular choice is not so important (provided that it is
not pathological) because spectral features of the correspond-
ing Lindbladian ensembles are universal and for N � 100
typicality emerges, i.e., a single sample yields a spectrum
reproducing the universal distribution.

The most intuitive idea is to sample K from the ensemble
of complex Wishart matrices [53]

K = NGG†/TrGG†, (18)

where G is a complex square Ginibre matrix with independent
identically distributed (i.i.d.) complex Gaussian entries. Due
to the unitary invariance of K , a particular choice of basis {Fn}
is irrelevant. For instance, in Ref. [35] we used generators of
the SU (N ) group [18].

As it was demonstrated [35], after the scaling transfor-
mation L′ = N (L + I ), where I is the identity superop-
erator, this sampling results in a universal, asymptotically
N-independent spectral distribution (probability density func-
tion) with a characteristic lemonlike shape of its support; see
Fig. 2(a). We present a detailed RMT-based evaluation of the
universal distribution in the next section.

From the computational point of view, a realization of the
sampling based on the representation Eq. (17) is a resource
demanding procedure [57]. By using a parallelization tech-
nique and implementing an optimized algorithm on a cluster,
it is possible to obtain samples for N = 200 [58]. This limit
is determined by the complexity of the “wrapping” of the
Kossakowski matrix K into the elements of a Hilbert-Schmidt
basis {Fn}.

Equation (16) can be equivalently rewritten in the follow-
ing compact form:

L(ρ) = −i[H, ρ] + �(ρ) − 1
2 [�‡(1l)ρ + ρ�‡(1l)], (19)

where � is a completely positive (CP) map, �(ρ) =∑
k γkLkρL†

k , and �‡ denotes the dual map (Heisenberg pic-
ture of �) defined via

Tr[A�(B)] = Tr[�‡(A)B], (20)

for any A, B ∈ L(H). If additionally map � is trace-
preserving (TP), i.e., it is a quantum channel [59], then one has
L(ρ) = −i[H, ρ] + �(ρ) − ρ. Assuming H = 0, the entire
generator is uniquely defined by �. Yet, such L is not purely
dissipative. Indeed, one has

�(ρ)X = X
N2−1∑
m,n=0

KmnFnρF †
m

= K00ρ + 1√
N

N2−1∑
k=1

(Fnρ + ρF †
n ) +

N2−1∑
m,n=1

KmnFnρF †
m

(21)

and hence L can be represented by Eq. (17) with the residual
Hamiltonian

H0X = X
i

2
√

N

N2−1∑
l=1

(Kl0Fl − Kl0F †
l ). (22)

Note, however, that in the large N limit the above Hamiltonian
vanishes and hence any purely dissipative random Lindbla-
dian can be (for N large enough) represented by a completely
positive map �. In what follows we refer to

L(ρ) = �(ρ) − 1
2 [�‡(1l)ρ + ρ �‡(1l)], (23)

as the Lindblad representation. Again, in the Lindblad repre-
sentation, the generator L is fully specified by an auxiliary CP
map �.

A random CP map � can be obtained from a random
Choi state. A random Choi matrix can be sampled as Wishart
matrix [53], C = N · GG†/TrGG†, where G is a complex
N2 × N2 square Ginibre matrix with i.i.d. complex Gaussian
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entries. This Hilbert-Schmidt ensemble induces the Lebesgue
measure in the space of quantum states [53] and defines an
ensemble of CP maps, through the standard reshuffling oper-
ation [6,7], �̂ = CR (note that the reshuffling operation is an
involution). Since the trace preservation is not imposed on the
map, this procedure is simpler than the one used to sample
random channels [54,55].

For N � 100, the sampling results in the same universal
lemon-shaped distribution as the previously considered algo-
rithm based on the GKS-representation; see Fig. 2(b). In this
case N is limited only by the diagonalization cost and memory
size, so it is possible to sample Lindbladians for larger values
of N [60]; see Fig. 2(c).

B. Random matrix model

Important spectral properties of random Lindbladians can
be studied with the help of a random matrix (RM) model,
derived as follows.

While the generation of random Lindbladians from random
Choi states, Eq. (23), is more convenient for numerical anal-
ysis, RM model easily follows from the GKS-representation,
Eq. (16). If the normalization of the trace of the Kossakowski
matrix is relaxed from TrK = N to 〈TrK〉 = N , then the ele-
ments of G, Eq. (18), are i.i.d. Gaussian random variables with
the variance

〈GabG†
cd〉 = 1

N3
δadδbc. (24)

Introducing set of operators

Yk =
N2−1∑
l=0

GklFl ,

where Tr(FkF †
l ) = δkl , one can represent map � in the follow-

ing Kraus form:

�(ρ)X = X
N2−1∑
k=0

YkρY †
k . (25)

Note that

〈XTrYkY
†

l 〉 = 1

N
δkl , (26)

and entries of Yk are independent, thus in the large N limit
eigenvalues of Yk cover uniformly the disk of radius r, where

r2 =
〈

1

N
TrYkY

†
k

〉
= 1

N2
. (27)

Matrices Yk allow us to rewrite the Lindblad superoperator as
follows:

L̂ = �̂ − 1l ⊗ 1l − 1
2 (X ⊗ 1l + 1l ⊗ X ), (28)

with

�̂ =
N2−1∑
k=0

Yk ⊗ Y k, (29)

and the Hermitian operator

XX = X�‡(1l) − 1l = −1l +
N2−1∑
k=0

Y †
k Yk. (30)

All N2 eigenvalues of Yk ⊗ Y k have the form λiλ j for i, j =
1, . . . , N , where λi are eigenvalues of Yk , thus their density is
supported on a disk of radius 1/N2. The operator �̂ is a sum
of N2 independent matrices Yk ⊗ Y k , and hence, according to
the central limit theorem for non-Hermitian matrices [62], its
spectral density is uniform on the disk of radius 1/N . As a
consequence, in the large N limit, �̂ can be modeled as a
Ginibre matrix with the spectral radius 1/N . Note that

X =
N2−1∑
k=0

Xk,

with Xk = Y †
k Yk − 1l

N2 being a shifted Wishart matrix. One
finds that

〈TrXk〉 = 0,

and for the variance

σ 2 =
〈

1

N
TrX 2

k

〉
= 1

N4
.

Now, since X is a sum of N2 such independent matrices, then,
according to the central limit theorem for Hermitian matrices
[19], its spectral density is the Wigner semicircle supported
on [−2/N, 2/N],

ρX (x) = N2

2π

√
4

N2
− x2. (31)

The above reasoning correctly predicts the 1/N scaling and
unit shift L̂ = −I + 1

N L̂′ and justifies the following approxi-
mation [35]

L̂′ ≈ GR − (C ⊗ 1l + 1l ⊗ C) = GR − B, (32)

where B = B† and the spectral density of C is the Wigner
semicircle on [−1, 1]

ρC (x) = 2

π

√
1 − x2. (33)

While the matrix representation of L̂ is not real, Eq. (14) pro-
vides another representation, which is real. Therefore, one can
take GR as a real Ginibre matrix and C as a symmetric GOE
matrix so that C = C. Spectral distribution on the complex
plane for a wide class of random matrix models composed of
a non-Hermitian, Ginibre part plus an independent Hermitian
part, was investigated in Ref. [63].

C. Spectral densities of random Lindblad generators

Spectral properties of the random matrix model Eq. (32),
designed to mimic behavior of random Lindblad operators
Eq. (28), can be studied with the help of analytical tools of
free probability [64–69]. Detailed derivation is presented in
Appendix A. Here we outline the main results.

Since the matrix model is real, eigenvalues are either real
or come in complex conjugate pairs. The eigenvalue density
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FIG. 3. Probability density functions P[Re(�′), Im(�′)] of the rescaled eigenvalues, �′ = N (� + 1), of random Lindblad operators L for
N = 100 (a, b) and random matrix model (c). The cross-section indicated with lines are addressed with Fig. 4. Densities on panels (a, b)
are sampled with 103 realizations. Bright contours on the complex plane correspond to the spectral boundary, Eqs. (34) and (35). Note that
eigenvalue �1 = 0 is excluded.

P[Re(�′), Im(�′)], which we also denote as ρ(z, z̄) follow-
ing the RMT literature, consists of the density of complex
eigenvalues ρc(z, z̄) and the density of purely real eigenval-
ues ρr (x). Typically in RMT, the number of real eigenvalues
grows proportionally to the square root of the matrix size
[70], thus the latter density is negligible in the large N limit.
Nevertheless, their presence markedly affects the spectra of
finite matrices; see Fig. 3(a).

The boundary of the lemonlike bulk of complex eigenval-
ues is characterized by the solution of the following equation:

Im[z + G(z)] = 0, (34)

with

G(z) = 2z − 2z

3π

[
(4 + z2)E

(
4

z2

)
+ (4 − z2)K

(
4

z2

)]
,

(35)

where K (z) and E (z) are the complete elliptic integrals of the
first and second kind, respectively. Results of a sampling for
N � 50 are in a perfect agreement with numerical solutions
of Eq. (35); see Fig. 2.

Density of complex eigenvalues can be expressed in a
rather complicated form that involves solutions of Eq. (34).
Its main feature is that the distribution is constant in the
imaginary direction inside the lemon. This form, given in
Appendix A [see Eq. (A19)], can be numerically evaluated
and compared with the sampled spectral distribution. We find
a perfect agreement between the two results, see Figs. 3(a)–
3(c).

As we mentioned earlier, since the Lindblad operator has
a real representation, the spectral density near the real axis
deserves special interest for large but finite matrices. There
is a concentration of eigenvalues at the real line Im(z) = 0
[see Fig. 3(a)] which repel complex eigenvalues causing their
depletion for small, but nonzero values of Im(z).

Numerical evaluation of the density involves the difference
of the Green’s function evaluated at the opposite sides of the
spectral boundary, G(z) − G(z̄), and the division by its width,
z − z̄. This procedure becomes numerically unstable close to
the tip of the lemon, where G(z) needs to be evaluated at the
opposite sides of its branch cut in the vicinity of the branch

point. Being aware of this issue, we truncate the curve before
the numerical instability region; see Figs. 3(b) and 3(c).

While free probability provides tools for analyzing com-
plex eigenvalues, it does not provide a prescription for the
density of real eigenvalues. However, it turns out that
the density of real eigenvalues can be obtained directly from
the asymptotic density of complex eigenvalues, which is given
by Eq. (A19). More specifically,

ρr (x) ∼
√

ρc(x, ε), (36)

that is, the density of real eigenvalues is proportional to the
square root of the density of complex eigenvalues z = x + iε
evaluated along the real direction. This remarkable relation
has a geometric origin and it stems from the Jacobians of ap-
propriate change of variables [71]. This prediction is perfectly
verified by the results of the numerical sampling; see Fig. 4.

IV. SPECTRA OF RANDOM KOLMOGOROV OPERATORS

Now we consider random generators of classical time-
continuous Markovian evolution. Namely, we consider an

FIG. 4. Sampled density of real eigenvalues (red) juxtaposed
with the square root of the theoretical density of complex eigenvalues
evaluated at the real line (green), Eq. (36). Blue and violet lines
present square root of the complex density evaluated along the lines
z = x + iε with ε = 0.035 and 0.2, depicted on Figs. 3(a) and 3(b).
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N-point probability vector p = [p1, p2, ..., pN ]T , belonging to
the simplex in RN−1, and its time evolution governed by a
master equation, ṗ = Kp. Henceforth, we address K as “Kol-
mogorov operator” (it is also known as “transition rate matrix”
[46,47]). Kolmogorov operator K generates semigroup St =
etK and has to satisfy the following condition [46,47]:

Ki j � 0 (i �= j),
N∑

i=1

Ki j = 0, ( j = 1, . . . , N ).

Similar to the quantum case, this continuous-time evolution
can be contrasted with a discrete-time Markovian evolution,
p′ = Sp, where stochastic matrix S (also called “transition
matrix” [47]) fulfils standard requirements:

Si j � 0 ∀i, j,
N∑

i=1

Si j = 1, ( j = 1, . . . , N ).

The two types of evolution are closely related, e.g., St is a
stochastic matrix for any t . The spectrum of a random stochas-
tic matrix S consists of eigenvalues χ1 = 1 while the rest of
eigenvalues fills the characteristic Girko disk of radius 1/

√
N

[48].
Any Kolmogorov generator may be represented in terms

of a real matrix Mi j � 0 via Ki j = Mi j − δi jm j , with mj =∑
i Mi j . Note that the diagonal elements Mii are not essential

since they cancel out.
We assume that elements Mi j > 0 are i.i.d. sampled from

distribution with first two moments m1 = ∫
xp(x)dx = μ

N and∫
(x − m1)2 p(x)dx = σ 2

N . The underlying distribution should
not play essential role and one could expect, similar to the
quantum case, a high degree of universality. For example, a
random N × N stochastic matrix Mi j may consists of N ran-
dom positive vectors, Mi j = |zi j |2 where zi j are i.i.d. Gaussian
complex variables.

We write K = M − J , where Ji j = δi j
∑

k Mk j . Having this
decomposition, we now inspect closer these two matrices.
The elements of the matrix M are i.i.d., thus, according to
the circular law, its spectral density is uniform on the disk
of radius σ , located at 0. There is also a single eigenvalue
located around μ. The elements of J are sums of independent
random variables, so the diagonal elements in the large N limit
are Gaussian with mean μ and variance σ 2. We can therefore
write

K = −μ1l + σ (GR + D), (37)

where GR is real Ginibre with radius 1 and the eigenvalues of
D follow the normal distribution. In the same spirit as with the
Lindblad generators, we decomposed the Kolmogorov gener-
ator into a shift (by μ) and a scaling (by σ ). The nontrivial
part, K′ = GR + D is given by a free convolution of a Girko
disk and a Hermitian Gaussian distribution.

We notice that, in the full analogy with random Lindbla-
dians, K′ is a sum of a real Ginibre matrix and a Hermitian
matrix, thus the same formalism of free probability described
in Appendix A applies here. The only difference is that
in Eq. (A14) one needs to use the normal distribution of

FIG. 5. Probability density functions P[Re(χ ′), Im(χ ′)] of the
rescaled eigenvalues,χ ′ = √

N (χ ′ + 1), of random Kolmogorov op-
erator K for N = 2000. Bright green contour is the spectral border,
Eqs. (34) and (38). Total number of samples is 103.

eigenvalues as ρB. We get

GK′ (z) = 1√
2π

∫ ∞

−∞

e−x2/2

z − x
dx

=
√

π

2
e−z2/2

[
Erfi

(
z√
2

)
− isgn(Imz)

]
, (38)

where Erfi(z) = −iErf(iz) and Erf(z) = 2√
π

∫ z
0 e−t2

dt is the
error function. The boundary of K′ can be calculated with
Eq. (34) in which we now substitute GK′ (z).

In the classical regime the support of the spectra of random
Kolmogorov generators has a spindlelike shape, as it has cusps
along the real axis that are more pronounced than the cusps of
the lemonlike contour characteristic to the spectra of random
Lindbladians. Within the RMT framework, this is a result of
the free convolution of the Girko disk with the Gaussian dis-
tribution which does not have a compact support, as opposed
to the Meijer G-function in the quantum case (see Fig. 13 in
Appendix A). The comparison with the results of a numerical
sampling for N = 2000 is presented in Fig. 5.

It is noteworthy that our result is in a full agreement with
the results obtained by Timm in his first work on the subject
[49] and recently extended in Ref. [41]. Spectra of random en-
sembles of Kolmogorov operators have also been studied with
the apparatus of free probability in Ref. [72], but in a different
context since the operators were sampled by using random
graphs. Nevertheless, Fig. 1(bottom) in Ref. [72] reveals the
spectral distribution resembling the spindle presented in our
Fig. 5.

Similar to the quantum case, the spectral density can be
evaluated with free probability. Figure 6(b) presents analytical
results which we compare with sampled probability density
functions [Fig. 6(a)]. Similar to the case of Lindblad opera-
tors, the numerical procedure becomes unstable as the width
of the spectrum decreases, so we truncate the analytical distri-
bution on Fig. 6(b) near the cusps.

To evaluate the density of real eigenvalues, we again apply
Eq. (36) stating that this density is proportional to the square
root of the density along lines Im(χ ′) = ε, |ε| > 0. This con-
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FIG. 6. Probability density functions P[Re(χ ′), Im(χ ′)] of the rescaled eigenvalues, χ ′ = √
N (χ + 1), of random Kolmogorov operators

K for N = 2000 (a) and Random Matrix model (b). Bright contours on the complex plane correspond to the spectral boundary, Eqs. (34) and
(38). Densities on panel (a) are sampled with 103 realizations. The analytically obtained distribution is truncated near the cusp regions where
the numerical evaluation experienced instability. (c) Juxtaposition of the density of the real eigenvalues (red) with the square root of the density
of complex eigenvalues (green). Blue line is the square root of the eigenvalue density W (x) = P[x, ε], ε = 0.035.

jecture is confirmed by the results of the numerical sampling;
see Fig. 6(c).

V. SUPERDECOHERENCE: FROM LINDBLAD TO
KOLMOGOROV OPERATORS

Now we demonstrate how the two types of generators,
quantum and classical, can be related—in a continuous
way—by superdecoherence. In particular, one could obtain
an ensemble of random Kolmogorov operators by subject-
ing an ensemble of random Lindblad operators to complete
decoherence.

Consider Lindbladian L defined in Eq. (23) in terms of
a completely positive map �. In its turn, map � ban be
represented in terms of its Choi matrix C as

�(ρ)X = X
N∑

i, j,k,l=1

Ci j,kl |i〉〈 j| ρ |l〉〈k|. (39)

Now, let us perform a superdecoherence with parameter p ∈
[0, 1] via the following Hadamard product

C → C(p) = �̃(p) ◦ C, (40)

where �(p) is defined as

�̃
(p)
i j,kl =

{
1, if (i j) = (kl ),
p, otherwise. (41)

One has therefore

C(p)
i j;kl =

{
Ci j;kl , if (i j) = (kl ),
p · Ci j;kl , otherwise, (42)

that is, the off-diagonal matrix elements of C are suppressed
by a factor p (superdecohered). Evidently, C(p) � 0. There-
fore, it corresponds to a CP map �(p) which can be used to
construct a new Lindbladian via

L(p)(ρ) = �(p)(ρ) − 1
2 {�(p)‡(1l), ρ}. (43)

In the limit p → 0, the evolution of the diagonal elements of
density operator ρ under the action of L(p) decouples from
the evolution of the off-diagonal elements and for diagonal
elements we thus obtain Kolmogorov generator K. The evo-
lution of the off-diagonal elements is governed by a generator

with pure real negative N-fold degenerate spectrum. We ob-
serve that the spectrum of random generator L(p=0) recovers
the universal structure of the spectra of random Kolmogorov
generator if the former is rescaled by N

3
2 . Recall that the

universal structure of quantum Lindbladian L(p=1) requires
the scaling by N . Results of the sampling for N = 200 are
shown in Fig. 7. Interestingly, if the superdecoherence with
p > 0.3 is switched on, then we still observe the universal
“lemon” structure provided it scaled with N/p; see Fig. 8.

These two principally different scalings, for p values close
to one and close to zero, provide an evidence that there must
be a sort of a phase transition. To inspect the continuous
transition, from p = 1 (quantum) to p = 0 (classical), we
need to quantify the distance from the actual spectral distri-
bution to the two limiting shapes, the quantum “lemon” and
classical “spindle.” The immediate choice would be one the
standards metrics used to quantify difference between two

FIG. 7. Probability density function P[Re(�′), Im(�′)] of the
rescaled eigenvalues, �′ = N

3
2 (� + 1), from the spectrum of Lp=0,

Eq. (42). The distribution for N = 200 was sampled with 102 real-
izations. Bright green contour is the spectral boundary of random
Kolmogorov generators, Eqs. (34) and (38). N − 1 real N-fold de-
generated eigenvalues, corresponding to the decoupled evolution of
the off-diagonal elements of the density matrix, contribute to the
white line on the real axis.
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FIG. 8. Probability density function P[Re(�′), Im(�′)] of the
rescaled eigenvalues, �′ = w(N )(� + 1), of Lp, Eq. (43), for different
values of p, N = 100. For p = 0.8, 0.5, 0.3, distributions were scaled
with w(N ) = N/p while for p = 0.1 the scaling factor w(N ) = N

3
2 .

Bright (cyan) contours (a)–(c) corresponds to the spectral boundary
of random Lindblad generators, Eqs. (34) and (35), while bright
(green) contour (d) corresponds to spectral boundary for random
Kolmogorov generators, Eqs. (34) and (38). Densities were sampled
with 103 realizations each.

probability density distributions, like Kullback-Leibler diver-
gence or total variation distance [73]. However, in the realm of
two-dimensional, statistically sampled, distributions (his-
tograms), characterized by high irregularities, these standard
theoretical tools perform badly. A more reasonable choice in
this situation is to use spectral boundaries which remain—as
we observe—sharp for all values of p if N � 50.

To quantify the difference between the two contours, we
use the Jaccard distance [74], a standard tool to gauge the
similarity and diversity of two geometric sets. In our case
the index reduces to the normalized (by the total joint area)
overlapping area enclosed by two contours; see Appendix B
for more details. In the case of planar geometric objects, it
is also known as “Intersection over Union” (IoU) [74,75]. In
words, it is the overlap area divided by the join area of two
figures. The distance between the two contours A and B can
be defined as d (A, B) = 1 − IoU(A, B). Before calculating
IoU for the sampled distribution and one of the contours, we
scale the first with factor w(N ) = N/p (to compare with the
lemon contour) or w(N ) = N3/2 (spindle contour). The two
corresponding IoUs are shown on Fig. 9(a) as functions of N .

Next, we define the value ptr (N ), at which the two IoU
curves intersect each other, as the transition point. We find
that, remarkably, ptr(N ) follows near exactly the dependence
N− 1

2 ; see Fig. 9(b). Already starting N = 100, the values ptr

obtained with the sampling based on GKS- and Lindblad-
representations are identical (within the numerical accuracy)
and so we use the last one to be able to sample for N > 100.
Even though with the Lindblad-representation we are able
to sample Lindbladians for N = 300, one such sample takes
almost 18 h of computations on several cluster nodes. So,
for every value of p, presented on Fig. 9 (five altogether),

FIG. 9. Quantum-to-classical transition. (a) Intersection over
Union of the sampled distribution with the lemonlike contour,
Eqs. (34) and (35), (solid lines) and spindle-like contour, Eqs. (34)
and (38), (dashed lines) as functions of p and N . When IoU equals
one, the two spectral contours are identical. The transition point
ptr (N ) is defined as the value of p at which IoUs with both limiting
contours are equal. (b) Scaling of the transition point with N . Line
corresponds to p(N ) = 1/

√
N .

we take one sample for N = 300. However, it is enough to
determine the boundary of the corresponding spectrum with
high accuracy; see Fig. 10. Note that in the opposite limit
of small N’s, the distance from the lemon is substantially
nonzero even at the limit p = 0. That is because for small
systems the corresponding spectral distributions deviate from
the asymptotic universal density.

The transition point can be understood with the following
observation: Starting from p = 1, spectral distributions scale
∼N

p , while on the “classical” end, near p = 0, the spindle does
not depend on p at all, and scaling goes as N

3
2 . The two scal-

ings meet at the point N/ptr = N
3
2 . From this follows ptr =

N− 1
2 . A similar scaling behavior describes the quantum-to-

classical transition induced by superdecoherence on the level
of quantum channels, as was reported recently in Ref. [54].

The classical-to-quantum transition is sharp already from
N = 50; note the logarithmic scale of the p axis on Fig. 9(a). It
becomes sharper upon the further increase of N and therefore
bears features of a phase-transition at p = 0 [76]. While a
more detailed investigation of the transition is an interesting
task, it goes beyond the scope of this work and therefore is
reserved for further studies.

There is another feature that cannot be captured with IoU,
i.e., by using the spectral contours only. Upon the decrease
of the value of p, the spectrum first is acquiring the shape of
the classical spindlelike contour, without a visible separation
between the two classes of eigenvalues, corresponding to the
evolution of diagonal and off-diagonal elements of the density
matrix. The condensation of the latter on the real axis happens
at the very last stage, see Fig. 10.

VI. SUPERCOHERIFICATION: FROM KOLMOGOROV TO
LINDBLAD OPERATORS

Decoherence shapes quantum state, density operator ρ,
expressed in a certain basis, into diagonal matrix diag(ρ) rep-
resenting classical probability vector q = (q1, . . . , qN ). Given
classical state q, one can ask the following question: What are
quantum states that can be decohered into it?
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FIG. 10. Probability density function P[Re(�′), Im(�′)] of the rescaled eigenvalues, �′ = w(N )(� + 1), of Lp, Eq. (43), for different values
of p, obtained from a single sample for N = 300. In the upper row the distribution is scaled with w(N ) = N

3
2 , while in the lower one it is

scaled with w(N ) = N/p. Bright (green) contours in the top row is the spectral boundary of random Kolmogorov generators, Eqs. (34) and
(38), while bright (cyan) contour in the bottom row is the spectral boundary of random Lindblad generators, Eqs. (34) and (35).

The answer could be obtained with a procedure called co-
herification [77]. Intuitively, it could be think as the inverse of
decoherence defined with Eq. (1). Note that any classical state
q can be coherified into a pure quantum state Q = |ψ〉〈ψ |,
where |ψ〉 = (

√
q1eiα1 , . . . ,

√
qN eiαN ), with arbitrary phases

αk . Clearly, it is an extremal scenario and hence if we partially
decohere |ψ〉〈ψ |, then we can interpolate between a classical
state q and a pure quantum state Q. Let B > 0 be an arbitrary
(strictly) positive operator. Define a diagonal matrix

DB = diag(1/
√

B11, . . . , 1/
√

BNN ),

and let � = DBBDB. One has � > 0 and �kk = 1 for k =
1, . . . , N . Finally, define a density operator as ρkl = �klQkl .
Note, that ρkk = qk , that is, we constructed a partial coheri-
fication of the original classical state q. It should be stressed
that any quantum state ρ with a probability vector q on the
diagonal may be obtained this way.

The same procedure may be applied to maps or, equiva-
lently, to the corresponding Choi matrices. Now it is intuitive
how to coherify a classical Kolmogorov generator Ki j into a
quantum Lindbladian.

Starting with the given Kolmogorov generator K, see
Sec. IV, we can construct a fully decohered Choi matrix C(0)

in the form of a diagonal matrix with elements C(0)
i j,i j = Mi j .

Next step is a coherefication of the diagonal Choi matrix C(0).
The extreme coherfication [77], i.e., a construction of a pure
state CCOH, corresponds to CCOH

i j,kl = √
Mi jMklei(φi j−φkl ), where

phases φi j are randomly distributed over the interval [−π, π ].
The so obtained completely positive map � is of the form
�(X ) = KXK†, i.e., it of the Kraus rank one. This is a very
a typical map and it leads therefore to an atypical Lindblad
operator. The last step is to perform random superdecoherence
of CCOH by following Eq. (40), with a random decoherence
matrix �i j,kl defined as follows:

—sample N2 × N2 Wishart matrix W = GG†, where G
is drawn from the ensemble of complex N2 × N2 Ginibre
matrices;

—construct a diagonal matrix DW = diag(1/
√

W11, ...,

1/
√

WN2N2 );
—define � := DW W DW .
By construction � > 0 and �i j,i j = 1. Hence, Ci j,kl :=

�i j,klCCOH
i j,kl defines a random partially coherified Choi matrix

compatible (on the diagonal) with a classical matrix Mi j . Note,
that � is a Wishart matrix with all diagonal elements equal
to 1.

Equivalently, instead of random superdecoherence of CCOH

one may sample a Wishart matrix with the given diagonal
Wi j,i j = Mi j . Such procedure is known in mathematical liter-
ature [78,79] and it is essentially equivalent to the one based
on extremal coherification C0 → CCOH and then random su-
perdecoherence. Indeed, any M × M Wishart matrix W can
be represented as a product W = DV D, where D is a diag-
onal matrix, D = diag(

√
τ1, ...,

√
τM ) and V is a Hermitian

positive definite random matrix with units on the diagonal.
Variables τ j , j = 1, ..., M are mutually independent identi-
cally χ -square distributed random numbers, τ j ∼ χ2 [78].
Note that this is precisely our case, since, by the construction
introduced in Sec. IV, the diagonal elements (that are Mi j) are
χ -square distributed. Matrix D can also be represented as a
correlation matrix of a multivariate Gaussian distribution [79].

Figure 11 presents the spectrum of a Lindblad operator
obtained by performing the coherefication by using the DVD-
decomposition of a randomly sampled Kolmogorov operator.

VII. COMPLEX SPACING RATIO STATISTICS OF
RANDOM GENERATORS

So far we considered macroscopic spectral densities of
random Lindblad and Kolmogorov operators. Microscopic
spectral statistics, which allow to capture correlations between
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FIG. 11. Rescaled eigenvalues, �′ = N (� + 1), of a Lindblad op-
erator L obtained by performing the generic coherification (see text)
on a randomly sampled Kolmogorov operator K for for N = 100.
Bright (cyan) contours corresponds to spectral boundary of random
Lindblad generators, Eqs. (34) and (35).

eigenvalues at the scale of typical separation between them,
are also of interest here. More specifically, we ask the question
whether the universality, observed on the level of (macro-
scopic) eigenvalues distributions, extends to the microscopic
level, where local correlations between the eigenvalues are
accounted.

In RMT and Hamiltonian quantum chaos theory, the main
tool to quantify correlations between real eigenvalues (energy
levels) of Hamiltonian operators is distribution P(s) of spac-
ing between consecutive levels, s j = ε j+1 − ε j [19]. One of
the landmark results of RMT is the power-law level repulsion
P(s) ∝ s−β in the limit s → 0, with exponent values specific
to the three main Gaussian ensembles. In practice, when
dealing with spectra of model Hamiltonians, to eliminate the
dependence on fluctuating local energy density and compare
the obtained distributions with analytic results, a complicated
unfolding procedure [25] needs to be performed. It can be
avoided if we use ratios of consecutive spacing [80]. Analytic
expressions for spacing ratio (SR) distributions for different
RM ensembles were derived [81] and currently these distribu-
tions are popular tools to analyze many-body Hamiltonians;
see, e.g., Refs. [82,83].

Recently, the notion of spacing ratios was generalized to
the case of non-Hermitian operators [39]. Namely, for eigen-
value λk one has to find, by using the distance on the complex
plane as a measure, the nearest-neighbor, λNN

k , and next-to-
nearest-neighbor, λNNN

k , eigenvalues. The complex spacing
ratio (CSR) is then defined as

zk = λNN
k − λk

λNNN
k − λk

. (44)

CSR values are confined to the unit disk so that the cor-
responding probability density function PCSR[Re(z), Im(z)]
has the latter as a support. In Ref. [39] this distribution was
used to categorize different many-body Lindblad operators as
“chaotic” and “regular” ones. Namely, chaotic Lindblad oper-
ators yield CSR distributions similar to the one exhibited by
the Gaussian Ginibre Unitary Ensemble (GinUE) [84], while
regular Lindbladians exhibit CSR distributions characteristic

to diagonal matrices with complex Poisson-distributed entries.
In the former case the eigenvalues are correlated and this
leads to a distinctive horseshoe pattern with depletion regions
near z = 0 and z = 1 [see Fig. 12(a)], while in the latter case
the eigenvalues are independent and, in the asymptotic limit
N → ∞, PCSR is a flat distribution over the unit disk.

We followed the recipe from Ref. [39] and sampled CSR
distributions for different ensembles of operators. As sug-
gested, we only took eigenvalues from the bulk of the spectral
densities and avoided the region near the real axis. Fig-
ure 12(b) shows the CSR distribution obtained for random
Lindblad operators, λk ≡ �k in Eq. (44), sampled by using
L-representation, Eq. (19), for N = 100. It has a shape near
identical to the one obtained for an ensemble of Gaussian
Ginibre Unitary matrices of the size N2 = 104 [85]. A similar
structure is exhibited [see Fig. 12(d)] by the CSR distribution
obtained for an ensemble of Kolmogorov operators, λk ≡ χk

in Eq. (44). However, in this case the deviation from the CSR
distribution presented in Fig. 12(a) is more pronounced; we
attribute this to finite-size effects.

It is not a surprise that random Lindblad and Kolmogorov
generators exhibit CSR distributions similar to the one ob-
tained for the GinUE ensemble. What is reamarkable is that
both procedures, superdecoherence (Sec. V) and supercoheri-
fication (Sec. VI), preserve this property. Figure 12(c) shows
PPCS sampled with an ensemble of Lindbladians obtained
from an ensemble of random Kolmogorov operators by per-
forming the DV D procedure (see Sec. VI). The so obtained
distribution is identical (within the sampling error) to the one
obtained with the straightforward sampling, Fig. 12(b). A sim-
ilar result is observed with Kolmogorov operators obtained by
decoherefying ensemble of random Lindbladians. Note that in
this case even the finite-size effects are reproduced (see, e.g.,
the shape of the depletion region near z = 0).

VIII. CONCLUSIONS

In this work we analyzed the spectra of random Lindblad
generators and their classical analogues, Kolmogorov gener-
ators. This work extends earlier results [35] on the support
of the spectrum of random Lindblad operators by evaluating
the probability density on the complex plane, which is one of
our main results. The second main results is the analysis of
the quantum–to–classical transition at the level of generators
of continuous time Markovian dynamics, induced by superde-
coherence. The strength of superdecoherence is characterized
by a single parameter p, interpolating between 0 (complete
decoherence) and 1 (zero decoherence).

In particular, we show that the quantum-to-classical transi-
tion is size-dependent. The transition is sharp and takes place
at ptr, which scales with N as ptr ∝ 1√

N
. In other words, as

the system size N increases, the transition to the classical
regime (at least in terms of the spectral density) happens
closer and closer to the point p = 0 (complete decoherence).
What happens to the eigen-elements of a random Lindbladian
during this transition, is an interesting question. Is their trans-
formation going faster or slower? If the latter, then a typical
Lindbladian, governing Markovian evolution in a very large
Hilbert space, is able to withstand very strong decoherence
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FIG. 12. Probability density function PCSR[Re(z), Im(z)] of complex level-spacing ratios, Eq. (44), obtained for different ensembles.
(a) 200 random 104 × 104 matrices drawn from the Gaussian Ginibre Unitary Ensemble; (b) ensemble of random Lindblad operators sampled
according to the L-representation, Eq. (19); (c) ensemble of random Lindblad operators obtained by coherifying an ensemble of random
Kolmogorov operators; (d) ensemble of random Kolmogorov operators; (d) ensemble of Kolmogorov operators obtained by decoherifying
an ensemble of random Lindblad operators. The dimension N = 100 is the same for all the ensembles; however, to have equal number of
eigenvalues, Lindblad and Kolmogorov operators were sampled with 200 and 20 000 realizations, respectively.

and remain a typical Lindblad operator without losing its
quantum features.

The results presented in our work is hardly applicable to
describe spectral properties of a particular physical system.
However, situation changes if one considers an ensemble of
quantum (or classical) systems, averaged over a suitably cho-
sen set of parameters. In such a case the distributions derived
in this work provides a fair approximation of average spectral
properties of such an ensemble of physical systems – if the
corresponding classical dynamics is strongly chaotic and the
coupling of the system with an environment is strong enough.

We did not consider random Lindblad operators with a
nonzero unitary part. Note, however, that term LH (ρ) =
−i[H, ρ] gives rise to the following Choi matrix,

CH
mn,kl = −i(Hnmδkl − Hklδmn), (45)

and hence the diagonal elements

CH
kl,kl = −i(Hlk − Hkl )δkl = 0, (46)

do not contribute to the Kolmogorov generator. Interestingly,
the super-decoherence of off-diagonal elements CH

mn,kl →
pCH

mn,kl corresponds to a simple scaling of the Hamiltonian,
H → pH , and therefore this operator vanishes in the classical
limit, p = 0. The effect of superdecoherence is different if
we first find the unitary evolution, etLH ρ = U (t )ρU †(t ) with
U (t ) = e−iHt , and then allow for superdecoherence. One finds
the diagonal elements of the Choi matrix,

CU
kl,kl = |Ukl (t )|2, (47)

which defines a unistochastic matrix [86]. This reasoning
clearly shows that the two operation, L → etL and superde-
coherence, do not commute.

Finally, complex spacing ratio statistics are also warrant a
further study. It is an interesting question whether superdeco-
herence (coherification) can modify the CSR distribution in a
such a way that the corresponding generator changes its type,
e.g., from “chaotic” to “regular.”
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APPENDIX A: EVALUATION OF THE SPECTRAL
DENSITIES

We start with a brief review on the quaternionic extension
of free probability to non-Hermitian random matrices, devel-
oped in Refs. [64–68] (see also Ref. [69]), focusing mostly
on the aspects relevant to our analysis. For a more detailed
introduction and explicit calculations we refer to Ref. [88].

The main object of our interest is the spectral density
ρ(z, z̄) = 〈 1

N

∑N
i=1 δ(2)(z − λi )〉 on the complex plane. Here

δ(2)(z) = δ(Rez)δ(Imz). The density is obtained via the Pois-
son law ρ(z, z̄) = lim|w|→0

1
π
∂zz̄�(z, z̄,w, w̄), where � is the

(regularized) electrostatic potential in two dimensions [89],

�(z, z̄,w, w̄) =
〈

1

N
ln det[(z − X )(z̄ − X †) + |w|2]

〉
. (A1)

To facilitate the calculations in the large N limit, we consider
the generalized Green’s function, which is a 2 × 2 matrix

G(Q) =
〈

1

N
bTr(Q ⊗ 1l − X )−1

〉
=

(
G11 G12

G21 G22

)
,

with

Q =
(

z iw̄
iw z̄

)
, X =

(
X 0
0 X †

)
, (A2)
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where we also introduced a block trace (partial trace)
operation

bTr

(
A B
C D

)
=

(
TrA TrB
TrC TrD

)
. (A3)

Note that Q is the matrix representation of a quaternion, thus
we refer to this approach as quaternionic free probability. The
upper-left element of G yields spectral density via ρ(z, z̄) =
lim|w|→0

1
π
∂z̄G11, while the product of off-diagonal elements

yields the correlation function capturing nonorthogonality of
eigenvectors [90], associated with left (〈Li|) and right (|Ri〉)
eigenvectors O(z, z̄) = − 1

π
lim|w|→0 G12G21, where [91,92]

O(z, z̄) = lim
N→∞

〈
1

N2

N∑
i=1

〈Li|Li〉〈Ri|Ri〉δ(2)(z − λi )

〉
. (A4)

An important fact is that the boundary of the spectrum can be
determined from the condition G12G21 = 0.

Knowing the Green’s function, we can define also the
Blue’s function as its functional inverse,

B[G(Q)] = Q, G[B(Q)] = Q. (A5)

Then, the quaternionic R-transform is defined as R(Q) =
B(Q) − Q−1, where the inverse is understood in the sense of
2 × 2 matrix inversion. When two non-Hermitian matrices A
and B are free, then the R transform of their sum is a sum of
corresponding R transforms:

RA+B(Q) = RA(Q) + RB(Q). (A6)

In that sense, it generalizes the logarithm of the Fourier trans-
form from classical probability to the noncommutative case.

We now consider a problem of finding the spectrum of
a matrix A + B, where A is a Ginibre matrix and B can be
arbitrary. Starting with Eq. (A6), we add Q−1 to both sides,
obtaining

BA+B(Q) = RA(Q) + BB(Q). (A7)

Then we make a substitution Q → GA+B(Q) and use the rela-
tion between Green’s and Blue’s function, Eq. (A5), obtaining

Q − RA[GA+B(Q)] = BB[GA+B(Q)]. (A8)

Next we evaluate the Green’s function of B on both sides of
the equation and by using Eq. (A5), obtain

GB{Q − RA[GA+B(Q)]} = GA+B(Q), (A9)

which is the non-Hermitian Pastur equation. In our case A is
Ginibre, the R transform of which reads

RA(GA+B) =
(

0 G12

G21 0

)
, (A10)

thus Eq. (A9) simplifies to

GB

[(
z −G12

−G21 z̄

)]
=

(
G11 G12

G21 G22

)
, (A11)

where we suppressed the index “A + B” when writing com-
ponents of GA+B. We also used the fact that all important
quantities are calculated in the |w| → 0 limit and took this
limit at the level of this algebraic equation.

Equation (A11) holds for general (not necessarily random)
matrix B. In our case of Lindblad and Kolmogorov generators,
B is Hermitian, which simplifies the calculation of its quater-
nionic Green’s function. It reads [68]

G(Q) = γ (q, q̄)1l2 − γ ′(q, q̄)Q†, (A12)

with

γ (q, q̄) = qG(q) − q̄G(q̄)

q − q̄
,

(A13)
γ ′(q, q̄) = G(q) − G(q̄)

q − q̄
,

where q, q̄ are the eigenvalues of the 2 × 2 quaternion matrix
Eq. (A2) and G(z) is the Stieltjes transform of the spectral
density of B

G(z) =
∫ +∞

−∞

ρB(x)dx

z − x
. (A14)

We are now ready to solve Eq. (A11). The quaternion
matrix of our interest is now

Q =
(

z −G12

−G21 z̄

)
. (A15)

We denote its complex conjugate eigenvalues as q and q̄.
Focusing on the upper-right component of the matrix

Eq. (A11) and using Ḡ21 = −G12, which follows from the
definition of the quaternion, Eq. (A2), we obtain

−G(q) − G(q̄)

q − q̄
G12 = G12. (A16)

There is one trivial solution, G12 = 0, which corresponds to
vanishing of the eigenvector correlation function, Eq. (A4).
This solution is valid outside of the spectrum, simply because
there are no eigenvalues contributing to Eq. (A4). Inside the
spectrum G �= 0, thus one has

G(q) − G(q̄) = q̄ − q. (A17)

This equation for the complex variable q equates only imag-
inary parts, therefore solutions form a one-dimensional set
on the complex plane. Moreover, it is invariant under the
interchange q ↔ q̄, thus the solutions to Eq. (A17) come
in complex conjugate pairs. To relate them with the ac-
tual position on the complex plane, let us recall that q
and q̄ are the eigenvalues of the matrix in Eq. (A17), thus
q + q̄ = TrQ = z + z̄. Using the second matrix invariant, we
obtain |q|2 = det Q = |z|2 − G12G21. This immediately leads
us to the formula for the eigenvector correlation function
O(z, z̄) = 1

π
(|z|2 − |q|2). This correlation function vanishes at

the boundary of the spectrum, so we immediately conclude
that q = z at the boundary. Therefore, the boundary of the
spectrum can be derived from the condition

G(z) − G(z̄) + z − z̄ = 0. (A18)

To find the spectral density, we focus on the upper-left
component of Eq. (A11). Using Eqs. (A12) and (A17), we
find G11 = z̄ + γ (q, q̄). The spectral density is then given by
ρ(z, z̄) = 1

π
+ 1

π
∂z̄γ (q, q̄). It only remains to calculate the
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derivative of γ , which is given by Eq. (A13). As an intermedi-
ate step, derivatives of q and q̄ can be found by differentiating

the relation q + q̄ = z + z̄ and Eq. (A17). The spectral density
finally reads

ρ(z, z̄) = 1

π
+ [G(q) + qG′(q)][1 + G′(q̄)] − [G(q̄) + q̄G′(q̄)][1 + G′(q)]

π (q − q̄)[2 + G′(q) + G′(q̄)]
+ [qG(q) − q̄G(q̄)][G′(q) − G′(q̄)]

π (q − q̄)2[2 + G′(q) + G′(q̄)]
. (A19)

We recall that q and q̄ are the solutions of Eq. (A17) and are
related with the position on the complex plane by Re q = Re z.
There is no relation between q and the imaginary part of z,
thus the spectral density is independent of Im z inside the
region bounded by the solutions of Eq. (A18). These consid-
erations apply to any Hermitian matrix B, but in this work
we focus on two cases corresponding to Lindblad and Kol-
mogorov generators for which we explicitly calculate Green’s
functions.

In the case of purely dissipative Lindbladian B = 1 ⊗ C +
C ⊗ 1, where C is a GOE matrix, the spectrum of which
is the Wigner semicircle, ρC (x) = 2

π

√
1 − x2 [see Eq. (32)].

Note that each eigenvalue of B is of the form λ = μa + μb,
where μa,b are the eigenvalues of C, so the spectrum of B is
the (classical) convolution of two Wigner semicircles, which
can be calculated using standard tools from probability. The
Fourier transform of the Wigner semicircle reads ρ̃C (k) =
2
k J1(k), where J1 is the Bessel function of the first kind.
Therefore, the Fourier transform of B reads ρ̃B(k) = 4

k2 J2
1 (k).

The Fourier transform can be inverted, yielding the spectral
density

ρB(x) = |x|
π

G0,2
2,2

(
1, 2

− 1
2 , 1

2

∣∣∣∣ x2

4

)
χ(−2�x�2), (A20)

where Gm,n
p,q (a

b|x) is the Meijer G-function and χA = 1 when A
is true and 0 otherwise. The formula above is juxtaposed with
the numerical simulation and plotted in Fig. 13.

To evaluate the Green’s function, defined by Eq. (A14),
we use the following representation (z − x)−1 =
∓i

∫ ∞
0 e±ik(z−x)dk, which allows us to calculate the

Stieltjes transform directly from the Fourier transform

FIG. 13. Spectral density of the matrix B = 1l ⊗ C + C ⊗ 1l,
where C is a N × N GOE matrix and 1l is a N × N identity matrix.
Analytical asymptotic result, Eq. (A20) (black line) is in a good
agreement with the result of a sampling for N = 100 (blue circles).
Total number of samples is 103.

via G(z) = ∓i
∫ ∞

0 e±ikzρ̃B(∓k)dk, where we take the upper
signs for Im z > 0 and lower for Im z < 0. The final result
reads

G(z) = 2z − 2z

3π

[
(4 + z2)E

(
4

z2

)
+ (4 − z2)K

(
4

z2

)]
,

where K (z) and E (z) are the complete elliptic integrals of the
first and second kind, respectively.

In the case of Kolmogorov generators, the matrix B is
diagonal with Gaussian elements, thus the evaluation of the
Green’s function is straightforward

G(z) = 1√
2π

∫ ∞

−∞

e−x2/2

z − x
dx

=
√

π

2
e−z2/2

[
Erfi

(
z√
2

)
− isgn(Imz)

]
,

where Erfi(z) = −iErf(iz) and Erf(z) = 2√
π

∫ z
0 e−t2

dt is the
error function.

APPENDIX B: INTERSECTION OVER UNION AND
DISTANCE BETWEEN TWO SPECTRAL BORDERS

The Jaccard index [74,75] quantifies similarity between
finite sets and is defined as the size of the intersection divided
by the size of the union of the sets. In the case of two contours,
A and B (that are spectral borders in our case), size is given
by the corresponding area, and we have what is also called

FIG. 14. Comparison of the spectral borders with classical and
quantum contours for p = 0.1 and two different values of N , 100 and
150. The sampled eigenvalues are scaled, �′ = w(N )(� + 1), with
w(N ) = N/p (quantum) and w(N ) = N

3
2 (classical).
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“Intersection over Union” (that is a short-hand version of
“area of the intersection/overlap over the area of union”),

IoU(A, B) = area(A ∩ B)

area(A ∪ B)
. (B1)

If the contours are identical, then we have IoU(A, B) = 1.
In case they are so different that the overlap between them

is zero, we have IoU(A, B) = 0. Therefore, the distance is
d (A, B) = 1 − IoU(A, B).

Figure 14 illustrates the idea. The spectral boundaries for
sampled distributions were obtained by using MATLAB func-
tion convhull which constructs convex hull for the given
planar set of points. Before that, the sampled spectral dis-
tributions were scaled with classical and quantum scalings,
respectively (see Sec. V of the main text).
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Random quantum operations, Phys. Lett. A 373, 320 (2009).
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