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Persistent homology of fractional Gaussian noise
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In this paper, we employ the persistent homology (PH) technique to examine the topological properties of
fractional Gaussian noise (fGn). We develop the weighted natural visibility graph algorithm, and the associated
simplicial complexes through the filtration process are quantified by PH. The evolution of the homology group
dimension represented by Betti numbers demonstrates a strong dependency on the Hurst exponent (H ). The
coefficients of the birth and death curves of the k-dimensional topological holes (k-holes) at a given threshold
depend on H which is almost not affected by finite sample size. We show that the distribution function of
a lifetime for k-holes decays exponentially and the corresponding slope is an increasing function versus H
and, more interestingly, the sample size effect completely disappears in this quantity. The persistence entropy
logarithmically grows with the size of the visibility graph of a system with almost H -dependent prefactors. On
the contrary, the local statistical features are not able to determine the corresponding Hurst exponent of fGn
data, while the moments of eigenvalue distribution (Mn) for n � 1 reveal a dependency on H , containing the
sample size effect. Finally, the PH shows the correlated behavior of electroencephalography for both healthy and
schizophrenic samples.
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I. INTRODUCTION

A powerful approach to study different types of data sets
ranging from point cloud data and scalar fields to a complex
network (graph), particularly high-dimensional data, is called
topological data analysis (TDA) [1–6]. TDA as an application
of algebraic topology [7–9] and a branch of computational
topology [10]; it analyzes the shape of high-dimensional com-
plex data in terms of global features (number of connected
components, loops, voids, etc.) of topological space underly-
ing the data set. In the persistent homology (PH) technique, as
the main part of TDA, the topological approximation of phase
space of any type of data set which is called the simplicial
complex is assigned to the underlying data, and then topolog-
ical invariants are computed.

The PH aims to capture topological evolution of data set by
varying scale (parameter), and extracts topological invariants
of the data set in each scale summarizing them in different
representations, e.g., persistence barcode (PB) [11,12], per-
sistence diagram (PD) [13], persistence landscape (PL) [14],
persistence image (PI) [15], persistence surface (PS), and β-
curve, which reveal topological information of the data set.
Being robust to noise, PH can clarify the essential features
of the systems with high internal degrees of freedom and is
capable of classifying data sets [16,17]. The PH technique
has attracted much attention due to its vast applications in
analyzing complex networks [18–20]. Also it has been used
in various systems (see, e.g., [21–29] and references therein).
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A mathematical model containing correlation tuned by one
parameter (the Hurst exponent H [30]) is the fractional Brow-
nian motion (fBm) and its increment is known as fractional
Gaussian noise (fGn) [31]. It is also used to model self-similar
phenomena of various types ranging from meteorology, en-
gineering, econophysics, and astronomy to biology (see, e.g.,
[32,33] and references therein). To quantify the properties of a
given self-similar data set whose power spectrum behaves as a
power law in the frequency (wavelength) domain, many meth-
ods have been proposed. A well-studied method is multifractal
detrended fluctuation analysis (MFDFA) [34–36]. Taking into
account the higher-order detrended covariance, the multifrac-
tal detrended cross-correlation analysis (MFDXA) has been
introduced [37]. Despite many advantages brought by the
mentioned methods, the impact of more complicated trends
and finite-size effects have not been diminished completely
in many previous approaches [38–41]. On the other hand, the
finite size of time series affects the accurate estimation of the
Hurst exponent by some of previous methods [42].

Although different methods can be found in the literature
to determine the scaling exponent of fBm or fGn series, very
little attention has been paid to deal with the topological
properties and the probable capability of TDA for estimation
of the Hurst exponent. In this regard, knowing a given time
series belongs to an fGn class, some relevant questions can be
raised: (i) Does the topological aspect of time series depend
on the Hurst exponent? (ii) What are the effects of sample
size, trends, and irregularity of fGn signal on the PH of topo-
logical motifs generated from the data set? (iii) How is the
multifractality expressed by PH? Motivated by the mentioned
questions, in this paper, we concentrate on the topological
properties (homology group) of fGn.
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A way to construct the higher-dimensional manifold from
a typical time series in order to evaluate the evolution of
k-dimensional holes through the filtration process is assign-
ing a weighted graph to the underlying time series. There
are various methods to assign a network to a typical time
series, e.g., the proximity network, cycle network, visibility
graph, correlation network, recurrence network, and transition
network (see, e.g., [43] and references therein). The idea of
the visibility graph (VG) is a complex network constructed by
considering the visibility algorithm, proposed by Lacasa et al.
as a novel way to analyze time series in terms of complex
network language [44] proposed as an alternative method to
estimate H for fBm and fGn series [45].

In this paper, we rely on statistical and topological prop-
erties (homology group) of natural VGs (NVGs) associated
with such signals. First, we propose a weighted version of
natural VGs (WNVGs) by defining a well-defined weight
function to quantify the quality of visibility between data
points of the signal for extracting nonsensitive (robust) fea-
tures in the presence of possible noises in the signal. Then,
we apply the filtration process on the weighted clique sim-
plicial complex corresponding to WNVG by considering the
weight (visibility value) of links as a threshold parameter and
higher-order connections (k-cliques; k > 2) as building blocks
of such higher-order structure. Accordingly, we figure out the
evolution of robust topological features explaining the global
structure of WNVG. Considering other techniques for making
networks from time series and applying PH could provide
interesting results, but is time consuming from computational
points of view; the possibility of distinguishing the nonsta-
tionary and stationary series, the sensitivity of corresponding
results to the value of the Hurst exponent, and the robustness
of results with sample size are some of our criteria for taking
VG in its weighted version.

Our research presented in this paper has the following
advantages.

(1) Inspired by network science and a self-similar process
characterized by a scaling exponent called the “Hurst expo-
nent,” we implement the weighted natural visibility graph
(WNVG) to make a network from fractional Gaussian noise
(fGn). In this approach, the topological motifs survive; con-
sequently, their evolution concerning self-similar exponents
can be examined. Our results approve that such evolution is a
robust feature for determining the Hurst exponent.

(2) We will demonstrate that the statistical analysis of
WNVGs such as probability distribution functions of eigen-
vectors, betweenness, and closeness centralities are almost
H-independent, and therefore, they cannot recognize the type
of correlation of fGn series.

(3) We rely on TDA and implement the PH, which is a
robust method to examine the evolution of global properties
during the filtration process. Almost all relevant results are
sensitive enough to the Hurst exponent of the underlying
data set and it is also possible to check whether the data are
stationary or not. More precisely, irrespective of either station-
arity or nonstationarity of underlying times series, to capture
the homology generators, the constructed network should be
weighted. It is worth noting that the nonstationary behavior
may be produced due to the various types of trends superim-
posed on the intrinsic fluctuation; therefore, in the presence

of any prior information regarding trends, the preprocessing
procedure including at least one of the following algorithms
must be employed to produce clean series, e.g., the singular
value decomposition algorithm [46], the adaptive detrending
algorithm [47], and empirical mode decomposition [48].

(4) Finally, we emphasize that the behavior of the local
(statistical) observables depends weakly on H , whereas the
coefficients of global (topological) observables are almost
strongly H-dependent and even for a part of measures, the
size effect is almost diminished. We notify that TDA provides
a new type of measure to quantify the Hurst exponent, and
therefore, the scaling exponents of the correlation function,
power spectrum, and fractal dimension can be specified with
reliable approaches.

The rest of paper is organized as follows: In the next
section, our methodology is introduced briefly. The construc-
tion of VGs for a time series and the key idea of topological
network analysis are clarified in Sec. II. The numerical results
of synthetic fGn time series, which are covered in two sub-
sections, local statistical properties and topological properties,
are presented in Sec. III. The implementation of realistic data
is described in Sec. IV. We give some ideas for applying the
proposed method to various problems in Sec. V, and close
the paper with a conclusion. More details on synthetic data
generation, statistical network analysis, algebraic topology,
and persistent homology are explained in appendices.

II. METHODOLOGY

In this research, we aim to analyze the complex network
of the visibility graph constructed from a fractional Gaussian
noise (fGn) (see Appendix A for more details of generating
a synthetic fGn series), with an emphasis on the topological
aspects. Besides this, we also compute some conventional
statistical properties of the mentioned signal.

A. Visibility graph method

Among growing applicability of complex networks in
many fields and interdisciplinary branches in science [49], a
technique has been suggested which converts a time series to a
network, the so-called visibility graph method [44]. Generally,
suppose {x} : {x(ti ), i = 1, . . . , N} represents a real-valued
time series. One can construct a network, the so-called visibil-
ity graph, denoted by G = (V, E ,w), V ≡ {vi}N

i=1 is the node
(vertex) set, E is link (edge) set, and w is a map from E to
the real numbers. The VG is defined by using the bijection as
follows,

f : V ≡ {vi}N
i=1 ↔ T ≡ (ti )

N
i=1 , f (vi ) = ti , (1)

and the connections are constructed according to the visi-
bility condition between the nodes, i.e., the nodes vi and
v j are connected if the node v j is visible from the node vi

and vice versa, and therefore the resulting graph is undirected
(for more details on the properties of VGs, see [44]). In
general, there are two ways to construct a network (graph)
from a time series: the horizontal visibility graph (HVG)
[50–52] and the natural visibility graph (NVG) [53–55]; the
former is more sparse than the latter case and in this work
we focus on the NVG. In Fig. 1, we show how an HVG
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FIG. 1. The schematic representation of making a network for a typical data set using VG algorithm. (a) The HVG and (b) NVG of a
synthetic fGn with H = 0.5 (white noise). To make more sense, we took the sample size equal to N = 32.

[panel (a)] and an NVG [panel (b)] for a synthetic fGn se-
ries can be constructed. In a binary setup, the corresponding
visibility graph chooses the range of the weights from a binary

set, w(B) : E → Z2 ≡ {0, 1}; e.g., for a binary NVG (BNVG)
the weight function can be written according to following
relation,

w
(BN )
i j ≡

⎧⎪⎨
⎪⎩

1, | f (vi ) − f (v j )| = 1,
j−1∏

k=i+1

�(si j − sik ), | f (vi ) − f (v j )| > 1,
(2)

where � is the step function, and si j ≡ x( f (v j ))−x( f (vi ))
f (v j )− f (vi )

. The
argument of the � function being positive guarantees that
the node v j is visible from the node vi and vice versa. Since
the edge in a BNVG has the weight 0 or 1, it is unsuitable

for continuous filtering. To take into account the quality of
visibility between nodes, we suggest the weighted version
of the natural visibility graph (WNVG), by considering the
weight function as follows:

w
(W N )
i j ≡

⎧⎪⎨
⎪⎩

|si j |, | f (vi) − f (v j )| = 1,

{
j−1∏

k=i+1

�(si j − sik )[si j − sik]}1/( j−i−1), | f (vi) − f (v j )| > 1.
(3)

There are two factors inside the product. In the second branch
of Eq. (3), one is the step function just like the binary graph,
and the other is the weight which is proportional to “how
visible is the site j from i and vice versa”; i.e., the more
distinguishable the data points are in the original time series,
the higher the corresponding weight is in the constructed
network. The term 1

j−i−1 is necessary to make the weights
reasonable numbers for comparison reasons. In the absence
of this exponent, the more the distance between the nodes is,
the higher the corresponding weights are. For both statistical
and topological analysis, we use this weight function which
admits continuous filtering.

B. Topological network analysis

A conventional approach to quantify the properties of a
typical network is determining degree, the number of nodes
straightly connected with the underlying node by nonzero

weight, and centrality measures such as betweenness cen-
trality, the number of shortest paths between any pair of
nodes going through a distinct node, closeness centrality,
eigenvector centrality, etc. (see Appendix B for more details).
Besides the mentioned approach, other formalisms have been
proposed in which not only the pairwise connections (links)
are examined but also a systematic pipeline is considered
to incorporate higher-order connections (k-cliques), including
the simplicial complex and hypergraph [56–58].

To analyze such higher-order structures, one can generalize
the well-known statistical quantities based on higher-order
connections. On the other hand, for global analysis of these
structures newly born topological tools are proposed. By the
term “global,” we mean the essential features of the object
which are not affected by geometric transformations. The
well-known topological quantities describing global proper-
ties of the space (or any object mapped to a topological space)
are Betti numbers. The kth Betti number of an object (βk) is a
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topological invariant. The dimension of the k-homology group
of the topological space corresponding to the object counts
the number of k-dimensional topological holes (k-holes) of
the object. Intuitively, β0 indicates the number of connected
components, β1 is the number of topological (unshrinkable)
loops, and β2 counts the number of topological (unshrink-
able) voids (see Appendix C for more details). According
to the mentioned properties of the topological measures and
weight-based analysis of weighted complex networks, the
applied algebraic topology tool, known as the persistent
homology (PH) technique, is useful to study global struc-
tures of the weighted complex network in higher dimensions
[10,59,60].

In the PH-based analysis of a weighted complex network,
the weighted network is mapped to a weighted clique sim-
plicial complex as a higher-order structure containing any
(k + 1)-clique of the network as the k-simplex. Therefore, PH
creates a nested sequence of the clique simplicial complex, so-
called filtration, by considering the weight as the parameter,
such that any link (1-simplex) presents in the complex at a
distinct weight if the weight of the link is less than the distinct
weight. Accordingly, the k-holes of the complex appear and
disappear when the weight (threshold) varies. To summarize
the evolution of these k-dimensional topological features of
the system, PH assigns an ordered tuple, the so-called per-
sistence pair (PP), to this global descriptor to visualize the
topological variation of the system in the birth-death space.
This kind of visualization for the evolution of k-holes is called
the persistence diagram (PD) for the k-homology group. PD
for the k-homology group includes hidden topological infor-
mation of the k-holes in the weighted complex. For example,
one can compute the population of birth, death, and lifetime of
k-holes using the distribution of PPs in PD for the k-homology
group. Persistence entropy (PE) for the k-homology group is
another quantity defined by the Shannon entropy of topologi-
cal persistence (lifetime) of PPs of the k-homology group (see
Appendix D for more details).

III. RESULTS

To evaluate the statistical and topological features for the
constructed VG from a series, at first, we focus on the syn-
thetic fractional Gaussian noise (fGn) as a self-similar series.
There are some exact and approximate algorithms for gener-
ating a self-similar time series. The Hosking [61], Cholesky
[62], and Davies-Harte methods [63] are the examples of exact
approach to generate fBm and fGn series. Throughout this
paper, we implement the Davies-Harte method to generate
fGn series with different self-similar exponents and sizes. To
reduce any bias in the nominal Hurst exponent as much as pos-
sible, all relevant results are determined by doing an ensemble
average over 104 realizations generated by the Davies-Harte
method for each H . To ensure the correctness of the Hurst
exponent value associated with each simulated time series,
we have computed again the value of H by our code based
on the detrended fluctuation analysis (DFA) method [36] and
compare the expected and computed Hurst exponents. Our
results show that both Hurst exponents are in agreement with
each other.

Now we turn to the statistical and topological properties of
the VGs constructed from the fGn time series and investigate
their behavior concerning the Hurst exponent. The networks
of sizes N = 27, 28, 29, 210, 211, and 212 (for which a desk-
top with 128 GB memory is capable of performing matrix
operations) are considered. The Python toolbox NetworkX
[64] is employed for the matrix operations on the graphs. In
the topological analysis, we especially focus on the Betti-0
(represented by the β0 defined as the number of connected
components of the network) and Betti-1 (represented by β1

defined as the number of loops) features, which are extracted
by using the “Dionysus” Python package [65]. The persistence
statistics, containing the lifetime (the interval between birth
and death) of the topological features, and its Shannon entropy
are also analyzed.

Each exponent has been estimated by Bayesian statis-
tics accordingly; the {D} and {ϒ} reveal the data and
model free parameters, respectively. The posterior function is
defined by

P (ϒ |D) = L(D|ϒ)P (ϒ)∫
L(D|ϒ)P (ϒ)dϒ

, (4)

where L is the likelihood and P (ϒ) is the prior probability
function containing all information concerning model param-
eters. Here we adopt the top-hat function for the prior function
whose window’s size depends on the expected range of the
corresponding exponent. Taking into account the central limit
theorem, the functional form of likelihood becomes multi-
variate Gaussian, i.e., L(D|ϒ) ∼ exp(−χ2/2). The χ2 for
determining the best-fit value for the scaling exponent reads
as

χ2(ϒ) ≡ �† · C−1 · �, (5)

where � is a column vector whose elements are determined by
difference between computed value and theoretical form for
each measure, and C is the corresponding covariance matrix.
Finally, the best fit value of the considered exponent is com-
puted by maximizing the likelihood probability distribution,
and the associated error bar is given by

68.3% =
∫ +σϒ

−σϒ

L(D|ϒ)dϒ. (6)

Subsequently, we report the best value of the scaling exponent
at a 1σ confidence interval as ϒ

+σϒ−σϒ
.

A. Local statistical properties

By local properties, we mean the properties which are
node-dependent and are not necessarily globally defined. It
has been confirmed that the distribution function of the node
degree of VGs of the fBms and fGns is power law p(k) ∝
k−γ with the exponent γ (H ) = 3 − 2H and γ (H ) = 5 − 2H ,
respectively [44,45]. In this subsection, we perform our com-
putation for the WNVG, introduced in this paper.

The probability distribution function of eigenvector (cE )
and betweenness (cB) centralities are indicated in panels (a)
and (b) of Fig. 2 in log-log scale, in terms of H for WNVGs.
The scaling behavior of mentioned distributions has been
checked by the Kolmogorov-Smirnov test (KS test) and the
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FIG. 2. Probability distribution function of local features of WNVGs constructed from fGns for various Hurst exponents. Panel (a) is the
p(cE ) while panel (b) shows the probability distribution of betweenness centrality for N = 210 in log-log scale. Panels (c) and (d) respectively
illustrate the p(cC ) and corresponding moments, Mn, for n = 2 (solid line) and n = 3 (dashed line) versus H . Different symbols are taken for
various sizes.

results confirm that the power-law behavior of the computed
p(cE ) and p(cB) is highly H- and size-dependent [see panels
(a) and (b) of Fig. 2]. The probability distribution of closeness
centrality and corresponding moments Mn for n = 2 and n =
3 are illustrated in panels (c) and (d) of Fig. 2, respectively.
This part depicts that not only the Hurst dependency is not
confirmed but also the overall shape of probability distribution
functions of statistical measures depends on the size of the un-
derlying fGn series. Subsequently, such distributions cannot
discriminate between different fGn series.

The full spectrum of the eigenvalues [Eq. (B2)] is illus-
trated in panel (a) of Fig. 3. We see that the impact of H
is changing the range of the spectrum, and by increasing
the Hurst exponent, the range of the spectrum for WNVGs
becomes tight. This phenomenon can be understood by recall-
ing that correlations (obtained by increasing H) smooth the
underlying time series, causing the corresponding network to
have more links at low weight. For more smoothed time series,
the typical slopes for the associated WNVG become down,
leading to lower weights according to Eq. (3), and equiva-
lently making a shorter range for the distribution of λ’s. Panel
(b) of Fig. 3 indicates different moments for p(λ). The solid

and dashed lines correspond to M2 and M3, respectively. The
nth moment of this distribution behaves as an H-dependent
quantity. The higher the order of moments, the stronger the
dependency on sample size is.

B. Topological properties

For any given value of Hurst exponent, the associated
BNVG of fGn is a topological tree; therefore, the BN-
VGs are topologically equivalent to each other. In other
words, various BNVGs are homeomorphic for different H
according to the homeomorphism theorem. The loopless-
ness of BNVGs indicates that these networks do not contain
some classes of network motifs corresponding to topologi-
cal loops, so-called topological motifs [52]. To make more
sense, suppose 4 successive data points as {x j}i+3

j=i, ( j =
1, . . . , N − 4) from a given time series {xi}N

i=1 to make a
minimal topological loop. From a network perspective, the
necessary (not sufficient) condition to construct a topolog-
ical loop is that wi,i+1 = wi,i+3 = wi+1,i+2 = wi+2,i+3 = 1
and the sufficient condition is wi,i+2 = wi+1,i+3 = 0. The
weights here are determined by Eq. (2). Geometrically, the
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FIG. 3. (a) The probability distribution function of eigenvalue for
N = 210 when the vertical axis is plotted in log scale. (b) The corre-
sponding moments, Mn, for n = 2 (solid line) and n = 3 (dashed line)
versus H . Different symbols are taken for various sizes.

necessary condition is equivalent to the case where data
points have upward concavity. The visibility condition does
not satisfy the sufficient condition, such that either wi,i+2 = 1
(creating two 2-simplices [vi, vi+1, vi+2] and [vi, vi+2, vi+3])
or wi+1,i+3 = 1 (making two 2-simplices [vi, vi+1, vi+3] and
[vi, vi+2, vi+3]) or even wi,i+2 = wi+1,i+3 = 1 (constructing a
3-simplex [vi, vi+1, vi+2, vi+3]) killing the topological loop
and leads the binary network to be topologically tree. There-
fore, the BNVG does not contain a certain class of network
motifs equivalent to topological holes, whereas in the WNVG
case these local patterns can be captured as topological loops.
Also mentioned loops are extracted through the filtration of
the corresponding weighted simplicial complex. According to
the PH language, the sufficient condition can be treated as
wi,i+1,wi+1,i+2,wi+2,i+3,wi,i+3 < wi,i+2,wi+1,i+3; therefore,
the associated topological motifs now remain. Subsequently,
we only focus on the topological aspects of WNVGs. Using
this terminology, we can analyze local behaviors of a generic

fGn using the statistics of corresponding patterns (topological
motifs) in WNVGs which are presented as PPs in PD.

Now, we are going to evaluate topological measures for
WNVG constructed from a generic time series. Since in this
paper, we are interested in examining the capability of the
PH technique in determining the Hurst exponent of a typical
self-similar process, therefore we take fGn which is an in-
crement of fBm. Classifying the stationary and nonstationary
series is in principle possible when the weighted network is
constructed from time series in our approach. Intuitively, by
increasing the value of the Hurst exponent, the underlying
series becomes more smooth and the statistics of weights grow
for lower values of weight. For an fBm data set which is
the profile set of fGn [36,66], the maximum value of dis-
tribution function of weights occurs at lower weight values.
Subsequently, the PH of WNVG which is represented by topo-
logical curves can recognize the stationary and nonstationary
series. The constructed networks according to the visibility
graph possess the footprint of the Hurst exponent empirically
demonstrated in [45]. The higher value of H causes making
the denser network. Also, the number of k-simplices at lower
value of threshold increase in the weighted version of the
visibility graph; on the other hand, such simplices influence
the evolution of k-holes in associated simplicial complexes.
Therefore, the coefficients of topological curves depend on
Hurst exponent. Hereafter, we consider fGn as our case study.
Panel (a) of Fig. 4 indicates the β0 as a function of filtration
parameter (threshold) for clique complexes of WNVG pro-
duced for various time series with different values of Hurst
exponent. To reduce the effect of sample size, we divide the
Betti numbers by the sample size and call these normalized
Betti numbers. By increasing the value of the Hurst exponent,
the normalized β0 versus threshold decreases. Namely, the
number of connected components in the network decreases
with increasing H (the graphs become steeper). Interestingly,
the slope of normalized β0 as a function of w is different for
different H ; consequently, the WNVG of fGn sets reaches to
the connected regime (path-connected), β0 = 1 [in panel (a)
of Fig. 4, we take N = 210], by different rates and at different
thresholds, w0. Panel (b) of Fig. 4 represents the value of w0

as a function of Hurst exponent for different network sizes. As
depicted in the mentioned panel, the value of w0 behaves as
a sample-size-dependent quantity and by increasing H , such
dependency becomes negligible.

We define the β
(birth)
k (w) and β

(death)
k (w) as the number of

k-dimensional holes that are born and die at a given threshold,
w, respectively. It turns out that β

(birth)
0 = 0 for w > 0, since at

w = 0 the underlying network has N connected components;
therefore, all connected components are born at w = 0. Panel
(c) of Fig. 4 illustrates the β

(death)
0 /N as a function of w2.

As shown in this plot, one of the proper fitting functions
to describe the normalized β

(death)
0 is given by β

(death)
0 (w) ∼

exp[−α
(death)
0 w2] for 2 � w2 � w2

max, where the value of wmax

depends on the H value. The α
(death)
0 depends on the Hurst

exponent as increasing function and it behaves as an almost
independent function on size of series [panel (d) of Fig. 4].

Panel (a) of Fig. 5 is devoted to β1/N for various Hurst
exponents. As we expect, for a trivial threshold, w = 0, we
have N connected components (β0 = N) and therefore the
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FIG. 4. (a) The normalized β0 curve in log scale for clique complexes of WNVGs associated with fGns of various Hurst exponents versus
threshold. (b) The w0 as a function of H . (c) The normalized β

(death)
0 in log scale as a function of w2 (see the text) for various Hurst exponents

as a function of threshold. (d) The value of α
(death)
0 as a function of Hurst exponent.

number of loops is identically zero (β1 = 0). By increasing
the threshold, the higher value of the Hurst exponent leads
to a more rapidly increasing rate of β1. On the other hand,
for a high enough value of the threshold, again the underlying
data set behaves like a topological tree without any topological
loops. Therefore, the normalized β1 goes asymptotically to
zero, and such descending is more rapid for higher H . We
also determine the lowest nontrivial threshold for which there
is no loop in the underlying network denoted by w1, and
depict this threshold versus H for different samples size in
panel (b) of Fig. 5. The w1 is also a size-dependent quantity.
Comparing the β0/N and β1/N demonstrate that by increas-
ing threshold value, the WNVGs of the fGn series reach
the loopless regime (β1 = 0) before appearing in the con-
nected regime (for which β0 = 1), irrespective of the Hurst
exponent, i.e., w0(H ) > w1(H ). The quantities β

(birth)
1 ∝

exp[−α
(birth)
1 w], β

(death)
1 ∝ exp[−α

(death)
1 w] versus thresholds

and corresponding coefficients are illustrated in panels (c)–
(f) of Fig. 5, respectively. The α

(birth)
1 and α

(death)
1 are almost

size-independent and they grow by increasing H . The local
upward concavity behavior of time series satisfying the loop
condition and associated topological motifs (1-holes) appears

and disappears earlier as the Hurst exponent of the time series
increases.

Another interesting property to assess is the probability
distribution of lifetime for 1-holes which is the difference
between the death and birth thresholds of a typical measure in
a 1-homology class. Panel (a) of Fig. 6 shows the probability
distribution of topological 1-dimensional hole lifetime, �1,
for various synthetic data sets with different values for the
Hurst exponent when the vertical axis is plotted in log scale.
Our results confirm that p(�1) ∝ exp[−α

(lifetime)
1 �1]. The H

dependency of α
(lifetime)
1 for various systems sizes is depicted

in panel (b) of Fig. 6. This result confirms that α
(lifetime)
1

can be considered as a robust measure for determining the
Hurst exponent of the fGn signal which is not affected by
sample size even compared to α

(death)
0 , α

(birth)
1 , and α

(death)
1 .

The increasing behavior of the lifetime coefficient α
(lifetime)
1

versus the Hurst exponent also indicates that the anticorre-
lated signals (H < 0.5) contain more persistent topological
motifs (1-holes). This behavior also demonstrates a consid-
erable difference between the amount of visibility between
the inner and the outer nodes which are corresponding to
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FIG. 5. (a) The normalized β1 curve for clique complexes of WNVGs associated with fGns of various Hurst exponents versus threshold.
(b) The w1 as a function of H for different lengths of data set. (c) The distribution of the persistence diagram in log scale versus the birth axis
as a function of threshold. (d) The corresponding coefficient of β

(birth)
1 in terms of threshold known as α

(birth)
1 as a function of Hurst exponent.

Panels (e) and (f) are the same as panels (c) and (d), respectively, just for dying 1-hole statistics. In this plot for computing β1, we took N = 210.

the local upward concavity behaving data points in these
signals.

Figure 7 indicates the persistence diagram (PD) and per-
sistence barcode (PB) for three types of fGn signals for (a)
H = 0.2 (anticorrelated), (b) H = 0.5 (uncorrelated), and (c)

H = 0.8 (correlated). The open circle and triangle symbols
correspond, respectively, to the 0- and 1-homology groups in a
persistence diagram for WNVGs of fGn. Each symbol depicts
a pair (wbirth,wdeath ) of a k-dimensional hole. As expected, all
0-holes are born in wbirth = 0, and also always wdeath > wbirth.
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FIG. 6. (a) The probability distribution of lifetime for 1-dimensional holes. Different symbols correspond to various H . This diagram has
been obtained by doing an ensemble average. We set the vertical axis in log scale. (b) The α

(lifetime)
1 coefficient for different sizes represented

by different symbols.

In the barcode representation (inset plot), the horizontal lines
(blue lines for k = 0 and orange lines for k = 1) start and end
on the threshold values on which k-dimensional holes are born
and die, respectively.

The associated persistence entropies (PEs) defined by
Eq. (D4) are obtained using the persistence diagram. Panels
(a) and (b) of Fig. 8 depict the PE0 and PE1, as a function of
sample size, respectively. We compute persistence entropy for
all available Hurst exponent values represented by different
symbols. Our results demonstrate that PEk = Ak (H ) log10 N
for k = 0, 1. The behavior of prefactor Ak versus H is
represented in panel (c) of Fig. 8. The A0 is almost an increas-
ing function versus Hurst exponent, while the A1 becomes
constant.

IV. IMPLEMENTATION ON REALISTIC DATA

To illustrate the applicability of PH to characterize the
self-similar nature of real data, in this section, we use the
physiological data set studied in [67]. We implement the DFA

algorithm to verify the scaling behavior of their correlation
functions. Then, we apply our approach to the channel F8 of
the standard 10–20 electroencephalography (EEG) montage
recorded from 14 patients (7 males: 27.9 ± 3.3 years, 7 fe-
males: 28.3 ± 4.1 years) with paranoid schizophrenia and 14
healthy controls (7 males: 26.8 ± 2.9, 7 females: 28.7 ± 3.4
years). The EEG data were recorded in all subjects during
an eyes-closed resting-state condition for 15 minutes with
the sampling frequency of 250 Hz. We construct the WNVG
from the EEG signals and the evolution of topological motifs
through the filtration process is examined as depicted in Fig. 9.
To infer the statistical significance of the results, we carry
out the KS test and we obtain the exponential behavior of
results indicated in Fig. 9. Then, according to the likelihood
approach, we estimate the topological coefficients and corre-
sponding error bars. The value of coefficients α

(birth)
1 , α

(death)
1 ,

α
(lifetime)
1 and associated Hurst exponents for both healthy

and schizophrenic cases are reported in Table I. Comparing
the topological coefficients with our results for estimation of
the Hurst exponent (Figs. 5 and 6) enables us to compute
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FIG. 7. The persistence diagram and persistence barcode (inset) of weighted clique complex of WNVG corresponding to fGn with (a)
H = 0.2 (anticorrelated noise), (b) H = 0.5 (uncorrelated noise), and (c) H = 0.8 (correlated noise). The blue circle and orange triangle
symbols are considered for the 0-dimensional and 1-dimensional homology generators, respectively.
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FIG. 8. (a) The persistence entropy for the 0-homology group,
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exponent. (c) The prefactor of persistence entropy as a function of H
computed by the ensemble average.

TABLE I. The value of topological coefficients and correspond-
ing Hurst exponents for healthy and schizophrenic cases at 1σ level
of confidence.

Measure Healthy Schizophrenic

α
(birth)
1 4.85 ± 0.04 3.52 ± 0.05

H(birth) 0.84 ± 0.02 0.66 ± 0.03
α

(death)
1 3.96 ± 0.04 2.83 ± 0.04

H(death) 0.85 ± 0.02 0.68 ± 0.03
α

(lifetime)
1 7.03 ± 0.03 5.00 ± 0.03

H(lifetime) 0.89 ± 0.02 0.73 ± 0.03

the associated Hurst exponent. The value of the Hurst ex-
ponent for each coefficient is reported in Table I. Averaging
on three kinds of Hurst exponents for EEG signals leads to
H = 0.86 ± 0.02 and H = 0.69 ± 0.03 at the 1σ confidence
interval for healthy and schizophrenic cases, respectively. Our
results also reveal a correlated behavior in both data sets. It is
worth noting that the PH can classify different types of data.

V. SUMMARY AND CONCLUDING REMARKS

Applying the various tools developed in network science
on a network constructed from a typical time series reveals
nontrivial information. Particularly, some of the features of the
network for a generic fractional Gaussian noise (fGn), charac-
terized by Hurst exponent H , exhibit a promising relation to
the corresponding Hurst exponent. In this paper, we developed
a method to generate a WNVG from the fGn (an increment of
fBm) series which is a more general network compared to a
binary network class. According to the filtration process, the
evolution of topological holes in the associated WNVG can be
captured. To this end, we used the PH technique, to examine
the topological motifs.

The statistical properties of the WNVG were analyzed
using the standard network measures. Our main results are as
follows:

(1) The probability distribution functions of eigenvector,
betweenness, and closeness centralities computed for WN-
VGs constructed from fGn series [panel (b) of Fig. 1] do
not depend on H and even the overall shape of mentioned
distributions is highly size-dependent. The main message is
that such kinds of statistical measures are not proper measures
for determining the Hurst exponent of the fGn series (Fig. 2).

(2) Increasing the amount of correlation results in obtain-
ing more dense networks and shifts the weights of the links to
the lower values and, consequently, the width of the distribu-
tion function of the eigenvalues to be tighter. The nth moment
of this distribution behaves as an H-dependent quantity. The
higher the order of moments, the stronger the dependency on
sample size (Fig. 3).

In the second part, we considered the topological properties
of synthetic fGn. Our main results are summarized below:

(3) The corresponding BNVG of a typical fGn is a topo-
logical tree which means that all topological motifs have
identically vanished, while taking into account a weight func-
tion to construct the so-called weighted NVG (WNVG) leads
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FIG. 9. (a) The distribution of persistence diagram versus birth axis (β (birth)
1 ) in log scale for clique complexes of WNVGs associated with

EEG signals for healthy (blue circle symbols) and schizophrenic cases (orange triangle symbols) as a function of threshold. (b) The β
(death)
1 in

log scale as a function of threshold. (c) The lifetime distribution in log scale for 1-homology generator statistics.

to the survival of topological motifs and therefore their evolu-
tion with respect to self-similar exponents can be examined.
Such evolution reveals a robust feature for determining the
Hurst exponent reliably.

(4) The Betti-0 is a representative of the number of
connected components of the weighted clique simplicial
complex associated with the WNVG with respect to the
threshold (weight). The decreasing rate of Betti-0 in-
creases by increasing H . The threshold value for which
the underlying WNVG reaches the connected regime (path-
connected) indicates an H dependency [panels (a) and (b) of
Fig. 4].

(5) Our result also confirms that the coefficient correspond-
ing to the exponentially decaying function of the number of
connected components dying (merging), α

(death)
0 , as a function

of threshold, depends on the Hurst exponent and interestingly
it is almost size-independent [panels (c) and (d) of Fig. 4].

(6) The statistics of 1-holes (topological loops) show that
the vanishing threshold for the number of topological loops,
w1, is H-dependent and it contains the sample size effect.
The coefficients corresponding to the exponentially decaying
function of the number of topological loops appearing (α(birth)

1 )
and disappearing (α(death)

1 ) as a function of threshold reveal
the proper criteria for measuring the Hurst exponent (Fig. 5).
These coefficients also indicate that the topological motifs
(upward concavity behavior data points of time series satis-
fying loop condition) evolve (appear and disappear) in low
weights for correlated signals.

(7) The probability distribution of the lifetime of 1-holes
(�1) confirms that the corresponding coefficient (α(lifetime)

1 ) is
an increasing function versus H emphasizing that the sample
size effect is completely diminished in this quantity. Con-
sequently, for a self-similar time series in the absence of
trends, this coefficient can be a reliable measure for estimating
the Hurst exponent even for a small sample size irrespective
of the value of the H exponent (Fig. 6). This coefficient
also indicates that the fGn signals living in negatively cor-
related regimes incorporate more robust topological motifs
(1-holes) which shows a significant difference between the
quality of visibility of inner and outer nodes corresponding

to the local upward concavity behaving data points in these
signals.

(8) The persistence pairs (PPs) in the persistence diagram
(PD) and the persistence barcode (PB) for the weighted clique
complex of WNVGs which are indicators of persistent homol-
ogy have been computed and with increasing the value of the
Hurst exponent shrink to the origin of the coordinate (Fig. 7).
We also computed persistence entropies (PEs) for 0-homology
and 1-homology groups. Both quantities depend on sample
size as expected and the corresponding slopes in semilog
scale were almost H-dependent (Fig. 8). Implementing the PH
method on real data and computing the topological parame-
ters, we could determine the corresponding Hurst exponent.
Interestingly, PH admitted its capability for the classification
of various data sets.

(9) Employing PH on the constructed weighted network
from the realistic series confirmed the correlated behavior of
electroencephalography for both healthy and schizophrenic
samples.

Finally, we emphasize that the behavior of the local
(statistical) observables depends weakly on H , whereas the
exponents of global (topological) observables are almost
strongly H-dependent and even for the α

(lifetime)
1 , the size effect

is completely diminished. A take-home message is that the
TDA provides a new type of measure to quantify the Hurst
exponent and, therefore, the scaling exponents of the correla-
tion function, power spectrum, and fractal dimension can be
specified with reliable approaches.

In this paper, we have not verified whether the persistent
homology technique is capable of recognizing that the un-
derlying time series is a self-similar set or not. Indeed, this
purpose is beyond the scope of this paper. To address the
capability of our method to discriminate between stationary
and nonstationary times series, more simulations for different
types of nonstationary cases should be performed; this is left
for our future study. Also, it would be interesting to examine
the effect of trends and irregularity which may occur in a
wide range of events in nature in the context of the TDA and
more precisely via the PH approach, and we leave this too
for future research. The above analysis can be done on dif-
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ferent phenomena ranging from cosmology, astrophysics, and
economics to biology [32,68,69] with different approaches to
make graphs from time series.
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APPENDIX A: SYNTHETIC FRACTIONAL
GAUSSIAN NOISE

To model the stochastic fractal processes, Mandelbrot and
Van Ness introduced the fractional Brownian motion (fBm)
and fractional Gaussian noise (fGn) [31]. The theory of
fBm is a mathematical generalization of the classical random
walk and Brownian motion [31,70]. A 1-dimensional fBm is
represented by B ≡ {B(t ) : t � 0}, with power-law variance,
for which Var[B(at )] � Var[aH B(t )] = a2H Var[B(t )], where
H ∈ (0, 1) is called the Hurst exponent. For this random force,
the Markov property and the stationarity are violated (note
that when we have domain Markov property, stationarity, and
continuity for a time series, then it should be proportional to
a 1-dimensional Brownian motion). A model for generating
fBm (denoted by BH to emphasize its Hurst exponent H) is a
generalization of the Brownian motion which is nonstationary
and non-Markovian [71], and is given by the Holmgren-
Riemann-Liouville fractional integral,

BH (t ) = 1

�(H + 1
2 )

∫ t

0
(t − s)H− 1

2 dB(s), (A1)

where � is the Gamma function, dB(s) ≡ B(s + ds) − B(s) is
the increment of 1-dimensional Brownian motion, and it has
the following covariance:

〈BH (t )BH (s)〉 = σ 2

2
(|t |2H + |s|2H − |t − s|2H ), (A2)

where σ 2 ≡ 〈B(0)〉 and also 〈BH 〉 = 0. The increments,
xH (t ) ≡ δt (BH (t + δt ) − BH (t )), are known as fractional
Gaussian noise (fGn). The power spectrum of fBm and fGn
behaves as S( f ) ∼ f −ξ , where ξ (H ) = 2H + 1 and ξ (H ) =
2H − 1 for fBm and fGn, respectively. For H > 1

2 (H < 1
2 )

the corresponding fGn is positively (negatively) correlated.
According to the results provided by detrended fluctuation
analysis (DFA), the relation between the scaling exponent
derived by the DFA method and associated Hurst exponent
of fBm is H + 1, while constructing the fGn series by making
the increment of fBm confirmed that the scaling exponent of
fluctuation functions computed by DFA is directly related to
the Hurst exponent [36,66].

APPENDIX B: STATISTICAL NETWORK ANALYSIS

Suppose that a network (graph) is represented by G =
(V, E ,w). Here, V ≡ {vi}N

i=1 is a node (vertex) set, E = V ×
V ≡{ei j = (vi, v j )|vi, v j ∈ V }

N

i, j=1 is a link (edge) set, and

w : E → R is a weight function (threshold). Subsequently,
the degree of ith node (vi) is the number of nodes straightly
connected with the underlying node by nonzero weight, and it
is denoted by ki ≡ ∑

j (1 − δ0,wi j ). The degree centrality (cD
i )

is defined by ki
N−1 , which is apparently related directly to how

important the underlying node is, since it is the number of
agents that have a connection with it. An important function
concerning this quantity is the degree distribution showing the
probability distribution function for degree of all nodes in the
network:

p(k) = 1

N

N∑
i=1

δk,ki . (B1)

The eigenvector centrality (cE
i ) is also defined via the eigen-

value equation

λcE
i =

N∑
j=1

wi jc
E
j , (B2)

where λ is the eigenvalue. The maximum value of the λ

spectrum, i.e., λmax plays the dominant role in the network
properties, the corresponding eigenvectors of which are de-
noted by cE

i,max revealing the importance of the nodes. Let us
denote the shortest distance between nodes vi and v j by di j

which is assumed to be N when there is no path connecting
them (disconnected graphs). Then the closeness centrality is
defined by

cC
i = N − 1∑N

j=1 di j

, (B3)

and the betweenness centrality is as follows:

cB
i = 2

(N − 1)(N − 2)

N∑
j=1, j 
=i

N∑
k=1,k 
=i, j

n jk (i)

n jk
, (B4)

where n jk is the number of geodesics from v j to vk , and n jk (i)
is the number of geodesics from v j to vk which pass through
node vi.

APPENDIX C: ALGEBRAIC TOPOLOGY

Topology generally refers to the global features in contrast
to the geometrical invariants of underlying objects or sets.
We have two spaces represented by X and Y , and they have
the same local (geometric) features if any relevant features
are invariant under congruence, while the mentioned spaces
are topologically equivalent if the associated features are
invariant under homeomorphisms. In other words, they are
homeomorphic. Homology theory plays a crucial role in the
mathematical description of the relevant building blocks of
a typical topological space and reveals the connectedness of
underlying space [10,59,60]. Based on such properties, for
the sake of clarity, we will give a brief review on the build-
ing blocks of algebraic topology which are useful to set up
homology groups.

Simplex. A k-simplex (σk) is a convex hull of any geometri-
cally independent subset, accordingly σk ≡ [v0, v1, . . . , vk] ⊆
RD. By this definition, a 0-simplex is a point, a 1-simplex is a

034116-12



PERSISTENT HOMOLOGY OF FRACTIONAL GAUSSIAN … PHYSICAL REVIEW E 104, 034116 (2021)

FIG. 10. Low-dimensional simplices: (a) 0-simplex (point),
(b) 1-simplex (line segment), (c) 2-simplex (filled triangle), and
(d) 3-simplex (filled tetrahedron).

segment of a line, a 2-simplex is a filled triangle, a 3-simplex
is a filled tetrahedron, and so on (Fig. 10).

Face. An l-simplex which is denoted by σl is a subset of the
k-simplex (σl ⊆ σk) and it is called the l-face of the k-simplex.

Simplicial complex. A simplicial complex (ψ) is a col-
lection of simplices such that any l-face of any k-simplex
of a typical complex (0 < l < k) is a member of the com-
plex. In addition, the nonempty intersection of any two
simplices, σk , and σm, from the complex is an l-face of both
simplices. The dimension of a complex is the maximum di-
mension of all simplices of the complex. According to the
definition of the complex, one can define its k-ordered sub-
collection of complexes ψ as follows:

�k (ψ ) ≡ {σ ∈ ψ | dim(σ ) = k}. (C1)

Chain. For a given simplicial complex, a k-chain (k-
dimensional chain) is a linear combination of k-simplices of
ψ , defined by

ck ≡
|�k (ψ )|∑

i=1

ai σ
(i)
k , σ

(i)
k ∈ �k (ψ ), (C2)

where |�k (ψ )| corresponds to the cardinality of the k-ordered
subcollection of complexes and the coefficients, ai, belong to
a field, which is usually considered as F = Z2 ≡ {0, 1}. The
collection of all possible k-chains in the simplicial complex is
called the k-chain group as

Ck (ψ ) ≡
{

ck

∣∣∣ ck =
|�k (ψ )|∑

i=1

aiσ
(i)
k ; σ

(i)
k ∈ �k (ψ ), ai ∈ F

}
.

(C3)

Boundary operator. For the simplices in any dimension,
the boundary operator ∂k is an operator mapping σk to its
boundary according to

∂k (σk ) ≡
k∑

j=0

(−1) j [x0, x1, . . . , x j−1, x j+1, . . . , xk] ⊆ σk .

(C4)

Boundary. A k-chain which is the boundary of a (k + 1)-
chain is called the k-boundary, denoted by bk . The k-boundary
group is the collection of all k-boundaries in complex ψ ,

Bk (ψ ) ≡ {ck ∈ Ck (ψ )|∃ck+1 ∈ Ck+1(ψ ); ∂k+1(ck+1) = ck}
≡ {

b(i)
k

}|Bk (ψ )|
i

⊆ Ck (ψ ). (C5)

FIG. 11. Betti numbers of some topological spaces: point, line,
circle, sphere, torus, 2-torus.

Cycle. A k-chain that has no boundary is called a k-cycle
denoted by zk as

∂k (zk ) = . (C6)

The k-cycle group is defined as the collection of all k-cycles
in complex ψ ,

Zk (ψ ) ≡ {ck ∈ Ck (ψ ) | ∂k (ck ) = }
≡ {

z(i)
k

}|Zk (ψ )|
i

⊆ Ck (ψ ). (C7)

Since “boundaries have no boundary,” therefore, we have

∂k (bk ) = ∂k (∂k+1(ck+1)) = ; (C8)

hence

Bk (ψ ) ⊆ Zk (ψ ) ⊆ Ck (ψ ). (C9)

Homology group. The k-homology group is defined by the
quotient group of the k-cycles group by the k-boundary group,

Hk (ψ ) ≡ Zk (ψ )/Bk (ψ ). (C10)

The kth Betti number of a simplicial complex, denoted by
βk (ψ ), is a topological invariant which counts the number
of k-homology classes corresponding to the number of k-
dimensional holes of complex ψ (Fig. 11),

βk (ψ ) ≡ dim[Hk (ψ )]. (C11)

The clique (flag) simplicial complex of an unweighted
(binary) network, G = (V, E ,w ∈ {0, 1}), is a simplicial com-
plex, denoted by ψ (G), such that any k-simplex of each
dimension in the complex corresponds to a (k + 1)-clique in
the network and vice versa (Fig. 12). A binary network is a
topological tree if and only if it is topologically holeless in all
dimensions. Namely, the associated clique simplicial complex

FIG. 12. (a) Clique complex of (b) a typical network.
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has the following property:

βk (ψ (G) ) = min(βk ) =
{

1, k = 0,

0, k > 0.
(C12)

APPENDIX D: PERSISTENT HOMOLOGY

In the context of topological data analysis (TDA), we are
interested in statistical analysis of the structure in data. Gen-
erally, in TDA-based analysis, data of any type (point cloud
data, scalar field, time series, network, etc.) when mapped to
a weighted simplicial complex are worked out topologically in
terms of the parameters present inherently in the original data,
e.g., the weight of links in a weighted network, or the pairwise
distance between data points in point cloud data. More pre-
cisely, TDA maps parameter-dependent data, X (w), (where
w is a typical parameter, like the threshold value for any
weighted network) to a weighted simplicial complex, ψX (w).
Such approach produces the chain group, the cycle group, the
boundary group, the homology group, and particularly, the kth
Betti number [7,10].

Persistent homology (PH) as a powerful tool of TDA exam-
ines the creation (birth) and destruction (death) of topological
invariants associated with homology classes during a mathe-
matical process called filtration [10]. Filtration, φ, is a nested
sequence of weighted complex ψ (w) in which any complex
with a distinct weight is a subcollection of any complex with
higher weight,

φ(ψ (w)) ≡ (ψ (w) | ∀w′ < w′′ : ψ (w′) ⊆ ψ (w′′))wmax
wmin

.

(D1)

More precisely, the PH technique enumerates the kth
Betti number of any subcomplex in φ and assigns an

ordered tuple w(hk ) ≡ (w(hk )
birth,w

(hk )
death ) to the existing k-

dimensional topological hole. Here w
(hk )
birth and w

(hk )
death are

the thresholds for which hk appears (birth) and disap-
pears (death), respectively. Since w

(hk )
birth < w

(hk )
death, we can

define the positive-value quantity �(hk ) ≡ w
(hk )
death − w

(hk )
birth as

persistency (lifetime) of a k-dimensional hole. The persis-
tence barcode (PB) and equivalently the persistence diagram
(PD) are the famous representations of PH. As an illus-
tration, the k-dimensional persistence diagram of weighted
complex ψ (w) is a multiset PDk (φ(ψ (w))) ≡ (M,N ),
where

M ≡ {
w(hk ) | hk ∈ Hk (ψ (w)), ψ (w) ∈ φ

}
,

(D2)

and N : M → N is the count function. Inspired by Shan-
non entropy for a typical state probability, one can define
the persistence entropy (PE) of the kth PD (PB). To this
end, we construct the probability for lifetime of homology
classes as

p
(
�(hk )) ≡ �(hk )

L , L ≡
∑

w(hk )∈M(PDk )

�(hk ). (D3)

Therefore, the PE for the k-dimensional topological hole is
defined by [72,73]

PEk = −
∑

w(hk )∈M(PDk )

p
(
�(hk )

)
log10 p

(
�(hk )

)
. (D4)
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