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We study the heat statistics of a multilevel N-dimensional quantum system monitored by a sequence of
projective measurements. The late-time, asymptotic properties of the heat characteristic function are analyzed
in the thermodynamic limit of a high, ideally infinite, number M of measurements (M → ∞). In this context,
the conditions allowing for an infinite-temperature thermalization (ITT), induced by the repeated monitoring
of the quantum system, are discussed. We show that ITT is identified by the fixed point of a symmetric
random matrix that models the stochastic process originated by the sequence of measurements. Such fixed
point is independent on the nonequilibrium evolution of the system and its initial state. Exceptions to ITT,
which we refer to as partial thermalization, take place when the observable of the intermediate measurements is
commuting (or quasicommuting) with the Hamiltonian of the quantum system or when the time interval between
measurements is smaller or comparable with the system energy scale (quantum Zeno regime). Results on the
limit of infinite-dimensional Hilbert spaces (N → ∞), describing continuous systems with a discrete spectrum,
are also presented. We show that the order of the limits M → ∞ and N → ∞ matters: When N is fixed and M
diverges, then ITT occurs. In the opposite case, the system becomes classical, so that the measurements are no
longer effective in changing the state of the system. A nontrivial result is obtained fixing M/N2 where instead
partial ITT occurs. Finally, an example of partial thermalization applicable to rotating two-dimensional gases is
presented.
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I. INTRODUCTION

Quantum monitoring refers in general to the action of per-
forming a sequence of quantum measurements on a system or
a portion of it [1–4]. As the single quantum measurement is a
dynamical process with probabilistic nature, it is customary to
associate to any sequence of measurements a stochastic pro-
cess obeying, over time, to a specific probability distribution
[2,5]. Such distribution usually depends on properties that rely
on both the system and the measured observable, and also
external sources of noise [6,7].

The study of sequences of quantum measurements, espe-
cially projective ones, is present in several physical systems
and applications, ranging from fundamental quantum physics
and quantum Zeno phenomena [8–18] to quantum metrology
and sensing [19–26] to quantum thermodynamics [27–40] at
the theoretical and experimental levels. In particular, proto-
cols implementing repeated measurements have been already
successfully applied to investigate the quantum Zeno effect or
dynamics [15,16,32]. Instead, in quantum metrology repeated
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measurements can be used to probe the phase evolution of
an atomic ensemble thanks to interleaved interrogations and
feedback corrections, see for example Refs. [20,23] and, re-
cently, also to carry out quantum noise sensing, as shown, e.g.,
in Refs. [24–26]. In addition, an active line of research focuses
on the characterization of the thermodynamics principles that
rule the statistics of the measurement outcomes, with several
contributions making use of quantum fluctuation theorems
and Jarzynski relations [41–47]. Within this framework, since
each measurement entails a sudden energy variation with a
given probability, one can also analyze the probability distri-
bution of the heat exchanged by a monitored quantum system
with its surroundings, as done in Refs. [35,39] for two- and
three-level quantum systems. Moreover, also the monitoring
of local observables in quantum many-body systems have
been recently investigated [48,49]. Specifically, in Ref. [48]
it has been observed that the measurement outcomes of a
macroscopic observable may evolve by following a Brow-
nian diffusion dynamics, while in Ref. [49] the interplay
between unitary Hamiltonian driving and random local pro-
jective measurements is analyzed at the quantum transition
point of a quantum lattice spin systems by showing that local
measurement processes generally tend to suppress quantum
correlations.

In this paper, we study the asymptotic behavior of a N-level
quantum system subjected to a randomly distributed sequence
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of quantum projective measurements. As figure of merit, we
consider the statistics of the heat distribution exchanged by
the system with its surroundings. Our main motivation is
threefold. (i) There is an inherent difference in the response of
a quantum system to a sequence of projective measurements
depending whether it has a finite number of levels (say, N) or
it is continuous; thus, we aim to investigate how the limit of
large N affects the results found for finite N such as the ones
presented in Refs. [35,39]. (ii) For spin-s systems, the classical
limit is retrieved for s → ∞, so a natural question is to study
how the effects of quantum measurements change by varying
or increasing the quantum spin label s counting the possible
projections sz, whose number is 2s + 1 that plays the role of
the number of levels N [in the sense that the observables,
including the ones measured in the monitoring process, are
operators with dimension (2s + 1) × (2s + 1)]. (iii) We are
also motivated by recent experimental results obtained on
negatively charged nitrogen-vacancy (NV) centers [38]. An
NV center is a localized impurity in diamond lattice based on
a nitrogen substitutional atom and a nearby vacancy. In the NV
experiment in Ref. [38], it has been possible to locally address
the impurity and perform a sequence of quantum projective
measurements along the z axis, not commuting in such case
with the energy eigenbasis of the system. In Ref. [38] a ten-
dency of the quantum system toward an equilibrium thermal
state with infinite temperature has been observed, which can
be seen as an instance of an infinite-temperature thermaliza-
tion (ITT) process.

Similar behaviors can be also observed in periodically
driven quantum systems, especially those used in Floquet
engineering [50,51]. The reason for the analogy with the effect
provided by repeated measurements as studied here is that the
measurement apparatus could be seen as a periodic drive and
may transfer energy to the measured system, similarly to what
the periodic drive may do. As discussed in Ref. [35], it not
very important whether the time intervals between subsequent
measurements are fixed or random obeying a certain distri-
bution. In addition, for a periodically driven system with a
convergent Magnus expansion, the drive allows for the system
to relax toward a steady state that is locally indistinguishable
from the microcanonical ensemble of the Floquet Hamiltonian
[52]. In particular, as argued in Refs. [53,54], if a periodically
driven quantum system is nonintegrable, then it is expected to
naturally evolve toward the infinite-temperature state, locally
indistinguishable from almost all the other quantum states.
Therefore, the question that naturally arises is as follows:
What is the interplay between the number of levels of the
analyzed system and the value associated to the independent
parameters of the quantum monitoring protocol, i.e., the num-
ber of measurements and the time interval between them?

To our knowledge, in the literature there are no works
that systematically discuss how internal energy fluctuations
distribute over time in a N-level quantum system subjected
to M projective quantum measurements. Our paper aims at
filling this gap by predicting the nonequilibrium behavior of
the monitored system in the thermodynamic limits of large
M and N , both ideally infinite. The projective measurements
are defined by a generic Hermitian observable and separated
by a nonzero time interval τ . Note that although we will
mostly consider the case in which the time intervals τ are

randomly chosen with average value τ , the obtained results
do not depend on the randomness in such time intervals.

The paper is structured as follows. In Sec. II we describe
the nonequilibrium dynamics to which a monitored N-level
quantum system is subjected, while in Sec. III the asymptotic
behavior of the quantum system dynamics, as well as of the
its heat statistics, are analyzed in the thermodynamics limit
of a large (ideally infinite) number of intermediate projective
measurements. In such a limit, ITT can occur. Exceptions to
ITT are then addressed in Sec. IV, while in Sec. V our the-
oretical findings are tested on a spin-s particle in a magnetic
field. Then, in Sec. VI we show results in the thermodynamic
limit of large N , and an example of partial thermalization in a
rotating two-dimensional gas is discussed in Sec. VII. Finally,
our conclusions are presented in Sec. VIII.

II. NONEQUILIBRIUM DYNAMICS

Let us consider a quantum system defined in an N-
dimensional Hilbert space whereby the Hamiltonian H ,
assumed to be time independent, admits the following spectral
decomposition:

H =
N∑

k=1

Ek|Ek〉〈Ek|. (1)

At time t = 0− the system is supposed to be in an arbitrary
quantum state described by the density operator ρ0. We then
apply the two-point measurement scheme [55], where a pro-
jective measurement of energy is performed both at the initial
and at the final time of the protocol. Therefore, at time t = 0+
a first projective energy measurement is carried out, with
the result that the state of the system after the measurement
is one of the projectors |Ek〉〈Ek| with probability ck (where
ck > 0 ∀k = 1, . . . , N and

∑N
k=1 ck = 1), while the energy of

the system is Ek .
Afterwards, the system undergoes a number M of consec-

utive projective measurements of the generic observable

O ≡
N∑

k=1

αk|αk〉〈αk|, (2)

where αk and |αk〉 are the outcomes and eigenstates of O,
respectively. We suppose [H,O] �= 0.

The monitoring protocol is detailed as follows. Between
the energy measurement at time t = 0+ and the first mea-
surement of O, the system does not evolve apart from a
trivial phase, since only the Hamiltonian acts in this time
interval. After each measurement of O the state of the system
is given by one of the projectors |αk〉〈αk| with probability
πk = Tr[ρ0|αk〉〈αk|] [56]. During the time interval between
the ( j − 1)th and the jth measurement of O, the system
evolves according to the unitary dynamics generated by H ,
i.e., U (τ j ) = e−iHτ j , where h̄ is set to unity and the waiting
times τ j denote the interval between two consecutive mea-
surements. The latter may not be deterministic quantities,
since also τ j can be random variables distributed by following
the joint probability density function p(τ1, . . . , τM ). The nu-
merical simulations in the considered cases show that taking
the waiting times τ j as random variables or fixed does not
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alter the results and the late-time dynamics of the system.
The probability of finding the system in |αk〉〈αk| after the
Mth measurement is denoted as π̃kM . Finally, a second energy
measurement is performed immediately after the last, the Mth,
measurement of O. We denote by Em the outcome of the
second and final energy measurement, whereby the final state
of the system is |Em〉〈Em|, and by pm the corresponding proba-
bility. It holds that pm = ∑

k π̃k|〈αk|Em〉|2. Before proceeding,
it is worth observing that the number of measurements M and
the waiting times τ j depend each other through the relation
tfin = ∑M

j=1 τ j , with tfin denoting the final time of the monitor-
ing protocol. Thus, M and τ j are independent variables if we
do not fix the value of tfin. This assumption will be maintained
throughout the paper.

The variation of the system internal energy �U is defined
as [55]

�U ≡ Em − En, (3)

which is thus a random variable. By considering each projec-
tive measurement as a random exogenous genuinely quantum
process, one can identify the internal energy variation �U as
heat Q, absorbed or emitted by the system [35].

In the following, we will denote by τ ≡ (τ1, . . . , τM ) the
sequence of waiting times and k ≡ (k1, . . . , kM ) the sequence
of the outcomes obtained by measuring O in the single proto-
col realization. As we are going to observe, the most important
contribution to the variation of the system dynamics occurs
during the application of the M measurements of O. For this
purpose, let us introduce the conditional probability PkM |k1 to
get the outcome αkM from the Mth measurement of O, pro-
vided that the first intermediate-measurement outcome was
αk1 . The conditional probability PkM |k1 obeys the relation

π̃kM =
∑

k1

PkM |k1πk1 . (4)

As all the M measurements are projective, one can check that

PkM |k1 =
∫

dMτ p(τ )
∑

k1,...,kM−1

Tr[νk,τ |αk1〉〈αk1 |ν†
k,τ], (5)

where we have introduced the quantities

νk,τ ≡ ∣∣αkM

〉〈
αkM

∣∣U (τM−1) · · · ∣∣αk2

〉〈
αk2

∣∣U (τ1)

=
M∏

j=3

〈
αk j

∣∣U (τ j−1)
∣∣αk j−1

〉∣∣αkM

〉〈
αk2

∣∣U (τ1). (6)

It is worth noting that Eq. (5) can be rewritten, in matrix
notation, as:

PkM |k1 =
∫

dMτ p(τ )
〈
αkM

∣∣ M∏
j=2

L(τ j−1)
∣∣αk1

〉
(7)

with 〈
αk j−1

∣∣L(τ j−1)
∣∣αk j

〉 ≡ ∣∣〈αk j−1

∣∣U (τ j−1)
∣∣αk j

〉∣∣2. (8)

This expression has a clear physical interpretation in terms
of the formalism of stochastic processes. As a matter of fact,
the quantity |〈αk j−1 |U (τ j−1)|αk j 〉|2 is the conditional prob-
ability to obtain the outcome αk j from the jth projective
measurement once measured the outcome αk j−1 from the

( j − 1)th one. Then, each L(τ ) can be seen as the transition
matrix pertaining to a discrete-time Markov chain in which the
eigenstates of the observable O play the role of the states of the
Markov chain. Consequently, the operator L(τ ) is a stochastic
matrix with rows or columns summing to 1. This property of
L(τ ) can be easily verified by observing that

N∑
k=1

〈α�|L(τ )|αk〉 =
N∑

k=1

〈α�|U (τ )|αk〉〈αk|U †(τ )|α�〉

= 〈α�|U (τ )U †(τ )|α�〉 = 1 (9)

∀� = 1, . . . , N .
This being said, the fluctuation profile of the heat Q can

be characterized by means of the characteristic function G(u)
(with u ∈ C) associated to the probability distribution P(Q).
By construction, the characteristic function is defined as

G(u) ≡ 〈eiQu〉 = 〈ei(Em−En )u〉, (10)

where the average 〈·〉 is performed over a large number of
realizations of the underlying nonequilibrium dynamics.

In the following, the M-large behavior of a monitored N-
level quantum systems is analyzed by studying the asymptotic
properties of the transition matrix L(τ ) as well as the corre-
sponding expression of G(u).

III. INFINITE-TEMPERATURE THERMALIZATION

In this paragraph, the asymptotic behavior of PkM |k1 is stud-
ied in the limit of M 
 1. The time intervals τ j are different
from zero and on average greater than the energy scale of the
analyzed quantum system for any j = 1, . . . , M. In this way,
the system dynamics is not “frozen” as an effect of the quan-
tum Zeno regime [10,12,15–17,57–59]. For a recent example
studying the large-time dynamics of a many-body system
(fermionic lattice) under the influence of a dephasing noise
refer to Ref. [60], while an investigation of the convergence
properties of the work distribution done by a quantum system
when the number of its degrees of freedom (along regularized
path integrals) goes to infinity is presented in Ref. [61].

Let us start observing that, as {L(τ j )}M−1
j=1 are transition

matrices (expressed as a function of conditional probabilities),
they are symmetric stochastic operators. In particular, since
each element of the transition matrix L(τ j ) is the square mod-
ulus of the corresponding element of a unitary matrix [see
Eq. (8)], the L(τ j )’s are unistochastic matrices. Thus, all its
eigenvalues λk are such that |λk| � 1 and at least one of them
is equal to 1. More formally, one can state that −1 � λk � 1
with k = 1, . . . , N . For the sake of simplicity, we also assume
that τ1 = · · · = τM ≡ τ . In the limit of large M, the product
of the transition matrices L(τ ) behaves asymptotically as a
proper combination of the projectors Pλ=1 and Pλ=−1 associ-
ated, respectively, to the eigenspaces identified by λ = 1 and
λ = −1. In other terms,

L(τ )M−1 → Pλ=1 + (−)M−1Pλ=−1. (11)

However, while we are guaranteed that the eigenvalue λ =
1 actually exists for any τ , the presence of the eigen-
value λ = −1 is not so obvious. For example, in the N =
2 case, the smallest eigenvalue of L is given by λ = 1 −
2 sin2(φ) sin2( �Eτ

2 ), where �E denotes the energy gap of the
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qubit, while φ is the angle that defines the rotation bringing
the eigenbasis of the Hamiltonian H over the eigenbasis of
the measurement observable O. In order to get λ = −1, not
only do we need to choose a very specific value of O (i.e.,
an observable O such that sin(φ) = ±1), but also we need to
assume τ ∗ = (2k+1)π

�E with k ∈ Z. It is clear that, apart from
fine-tuned cases, the concurrence of both these conditions in
a N-level system do not take place (especially if the time
intervals τ j are randomly distributed). As a result, one can
expect on physical grounds that Pλ=−1 = 0 such that

L(τ )M → Pλ=1. (12)

However, it is important to note that Eq. (12) does not
imply that in the single realization of the system dynamics
the effects originated by the presence of rare fluctuations are
absent. In such case, indeed, the evaluation of higher-order
statistical moments could be still required. For more details
on the analysis of the impact of rare fluctuations in the statis-
tics of quantum observables, the reader can refer, e.g., to
Refs. [7,32], which analyze the problem by means of the large
deviation theory.

What has been discussed so far holds for a generic stochas-
tic matrix. However, as L(τ ) is also symmetric, one can verify
that

|v〉 = 1√
N

N∑
k=1

|αk〉 (13)

is such that L(τ )|v〉 = |v〉 for all values of τ . This means that
|v〉 is invariant to the application of the stochastic matrix L(τ ),
or, in other terms, |v〉 is a fixed point of L(τ ). If we assume that
λ = 1 is nondegenerate, then L(τ )M−1 → |v〉〈v|. Thus, since
the eigevector |v〉 does not depend on the value of τ , we can
conclude that

L(τM−1) · · · L(τ1) → |v〉〈v| (14)

also for randomly distributed τ ’s, as long as the set of τ for
which λ = −1 is eigenvector, or λ = 1 is degenerate, has zero
measure. However, such a degeneracy of λ = 1 can occur and
the corresponding analysis is postponed to Sec. IV A. It is also
worth noting that, in the Markov chain language, the validity
of Eq. (14) means that the underlying process is ergodic and
admits a unique asymptotic configuration, i.e., the uniform
one whereby the probabilities that the final state of the system
is one of the eigenvectors |αk〉 of O are the same.

Let us explore the meaning of this property in our context.
In the M 
 1 limit, Eq. (7) becomes

PkM |k1 = 〈
αkM

∣∣v〉〈v∣∣αk1

〉 = 1

N
(15)

so that, regardless from the state of the system after the first
measurement of O, one has:

π̃kM =
∑

k1

PkM |k1πk1 = 1

N
. (16)

Thus, as expected, the information on the initial condition is
lost as M increases. Moreover, this result is also independent
on the form of the observable O, and all the possible outcomes
|αkM 〉〈αkM | are equiprobable. Accordingly, the state of the sys-
tem after the Mth measurement (with M 
 1) is described by
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FIG. 1. Comparison between the initial (dashed-line histogram
with blue area) and final (solid-line histogram with red area) heat
statistics for a 5-level (a) and 15-level system (b). The Hamiltonian
of the system and the initial density operator ρ0 are randomly chosen
on a basis in which O is diagonal. The number of realizations of
the nonequilibrium process is 5 × 106 in (a) and 15 × 106 in (b). In
both cases, in the thermodynamic limit of M large (in our numerical
simulations M = 20), each final energy value is equiprobable and
such effect can be explained as the thermalization of the system
toward a thermal state with β = 0 (infinite temperature). In this
figure and in the following ones, the parameter τ j = 1 is chosen.

the maximally mixed state

ρM = I

N
. (17)

Note that, as ρM is diagonal in every basis, the second energy
measurement (corresponding to the last measurement of the
whole nonequilibrium dynamics) has no effect, and also all
the final energy outcomes are equiprobable.

These findings are explicitly verified in Fig. 1, where we
plot for a 5- and 15-level quantum system the final energy
outcomes obtained at the end of the nonequilibrium dynamics
of Sec. II. Notice that in the figure τ j = 1, but we verified that
choosing τ j as random variables (e.g., uniformly distributed)
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the final state at the end of the monitoring protocol is unaf-
fected. The asymptotic behavior occurring in the limit of M
large can be effectively interpreted as a thermalization pro-
cess toward a thermal state with infinite temperature: T = ∞
(β = 0). This can be understood by thinking that the measure-
ment apparatus acts as a thermal reservoir with infinite energy
(being it classical), by which, through a sequence of repeated
interactions, a quantum system can reach the same equilib-
rium condition. In this respect, it is worth noting that the
state of Eq. (17) (maximally mixed state) maximizes the von
Neumann entropy and thus corresponds to the state associated
to the absolute maximum of the entropy. For this reason,
ρM = I/N has to be considered as the natural equilibrium
state for a quantum system to which no further constraints
are imposed.

A. Heat statistics

As previously discussed, in the M → ∞ limit the system
“forgets” the initial state, meaning that it cannot be inferred
by measurements of the system evolution. Thus, Em and En

are independent variables and G(u) factorizes in the product
of the characteristic functions of En and Em. The latter is given
by

GEm (u) = 1

N

N∑
n=1

eiuEn = 1

N
Tr[eiuH ],

since ρM = I/N and thus the values that Em can take are
uniformly distributed. Instead, the characteristic function of
En equals

GEn (u) =
N∑

k=1

〈αk|e−iHuρ0|αk〉 = Tr[e−iuHρ0]

with the result that

G(u) = GEn (u)GEm (u) = 1

N
Tr[eiHu]Tr[e−iHuρ0]. (18)

Consequently, by analyzing G(u) at u = iε with ε ∈ R, one
gets

G(ε) = 〈e−εQ〉 = Z (ε)

N
Tr[ρ0 eεH ], (19)

where Z (ε) ≡ Tr[e−εH ] is the partition function of the
Hamiltonian H evaluated by taking ε as reference inverse
temperature. As expected, if ρ0 is a thermal state with in-
verse temperature ε = β, then we recover the standard result
G(iβ ) = 1, stemming directly from the Jarzynski equality.

In Fig. 2 we show the comparison between the results
obtained by using Eq. (19) and the estimate of G(u) from
numerical simulations of the nonequilibrium process on the
same 15-level systems used for Fig. 1 with ρ0 random initial
state. Excellent agreement is found.

Finally, from the knowledge of the characteristic function
G(u), we can also derive the statistical moments of the heat
distribution. In doing this, let us compute the nth derivative of
G(u) with respect to u, since

〈Qn〉 ≡ (−i)n∂n
u G(0) =

∑
k

(
n

k

)
(−1)n−k〈Hk〉∞〈Hn−k〉0, (20)

-0.5 0 0.5
100

101

FIG. 2. Comparison between the expression (19) of the char-
acteristic function G(ε) = 〈e−εQ〉 (blue solid lines), plotted in
semilogarithmic scale, and the numerical values (red dotted lines)
computed for the 15-level system simulated in Fig. 1(b).

where 〈H �〉∞ ≡ Tr[ρ∞H �] and 〈H �〉0 ≡ Tr[ρ0H �], with � in-
teger number �1. Note that here the subscripts 0 and ∞
refer to the initial and asymptotic quantum states ρ0 and ρ∞.
Therefore, as expected, the first statistical moment 〈Q〉 and the
variance σ 2(Q) ≡ 〈Q2〉 − 〈Q〉2 are respectively equal to

〈Q〉 = 〈H〉∞ − 〈H〉0σ
2(Q) = σ 2

∞(H ) + σ 2
0 (H ). (21)

While the first moment 〈Q〉 of the heat distribution depends
on the sign of 〈H〉∞ and 〈H〉0, in the large-M limit the vari-
ance σ 2(Q) is an additive function summing the variance of
the initial and asymptotic energy distributions. Accordingly,
thanks to this property, the variance of the heat distribution
has to be preferred than the corresponding first moment to get
information on the onset of thermalization in the limit of a
large number of measurements.

IV. PARTIAL THERMALIZATION

In the previous sections, we have assumed that the largest
eigenvalue λ = 1 of L(τ ) is nondegenerate. Such assumption
is realistic for a generic choice of the observable O. However,
interesting properties arise also if this assumption fails. Thus,
in this paragraph we will analyze exceptions to Eq. (14),
leading to what we can refer to as partial thermalization.
Specifically, we will discuss the following cases: (i) L(τ j )
having a degenerate maximum eigenvalue; (ii) dynamics in
the quantum Zeno regime; (iii) [O, H] small. In the latter two
cases, L(τ j ) is close to the identity matrix, so that the differ-
ence between the largest and the second-largest eigenvalues
becomes small, allowing for a nontrivial interplay between
the large number of measurements and the closing gap of the
energy spectrum of the system.

A. Eigenvalues degeneracy

Let us assume that the largest eigenvalue λ = 1 of L(τ )
is degenerate. By construction, each element of L(τ ) is �0;
thus, if L(τ ) is a not reducible matrix (i.e., it cannot be put in
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a block diagonal form with a change of basis), then the Perron-
Frobenius theorem [62] guarantees that the largest eigenvalue
is nondegenerate. Therefore, we have to consider the case in
which O and H share a common nontrivial invariant subspace.
This implies that in the basis {|αk〉}N

k=1, which defines the
eigenstates of O, H reads as

H =

⎛⎜⎜⎝
H1

. . .

HR

⎞⎟⎟⎠, (22)

where R denotes the number of blocks of H and Hr , with
r = 1, . . . , R, are irreducible Hermitian matrices acting on the
subspaces Sr . Before proceeding further, it is worth observing
that having H diagonal on the basis of O is a particular case
of Eq. (22), where each subspace has dimension one. From
Eq. (22), one can get that also the matrices L(τ j ) are block
diagonal and can be written as

L(τ j ) =

⎡⎢⎢⎣
L1(τ j )

. . .

LR(τ j )

⎤⎥⎥⎦, (23)

where Lr (τ j ) are unistochastic irreducible matrices acting on
the subspaces Sr for r = 1, . . . , R and j = 1, . . . , M. In this
case, the Perron-Frobenius theorem ensures that no further
degeneracy is present in each matrix Lr (τ j ). Therefore, we can
introduce the set of eigenvectors, one for each subspace:

|vr〉 = 1√
dim Sr

∑
k:|αk〉∈Sr

|αk〉, (24)

corresponding to an R-order degeneracy of the eigenvalues
of L(τ ). As a result, the eigenspace associated to the largest
eigenvalue λ = 1 is R dimensional, and Eq. (17) is no longer
valid. Instead, one can find that PkM |k1 = 1

dim Sr
if |αk1〉 and

|αkM 〉 both belong to the same subspace Sr and PkM |k1 = 0
otherwise. In such a case, π̃kM keeps memory of the initial
state. Indeed, if |αkM 〉 ∈ Sr , then

π̃kM = 1

dim Sr

∑
k:|αk〉∈Sr

πk . (25)

Since the initial and final energy projective measurements
does not mix the eigenspaces linked to the eigenvalues of
L(τ ), one can also write that

pm = 1

dim Sr

∑
k:|Ek〉∈Sr

ck, (26)

with Sr such that |Em〉 ∈ Sr . In the case of R = N (namely H
commuting with O: [H,O] = 0), Eqs. (25) and (26) reduce,
as expected, to π̃kM = πk1 and pm = cm, since in that case the
evolution of the system is frozen and all the measurements
outcomes coincide.

Moreover, by still assuming the degeneracy of λ = 1, the
heat characteristic function G(u) can be written as the sum of
the characteristic functions relative to each subspace Sr :

G(u) =
R∑

r=1

1

dim Sr
Tr[ρ∞ eiHr u]Tr[ρ0 e−iHr u]. (27)

From Eq. (27), it can be observed that also the moments of the
heat distributions are provided by the sum of the correspond-
ing moments for each subspace Sr .

These results have a simple physical interpretation. For
any realization of the introduced nonequilibrium process, after
the first measurement, the state of the system is described
by a vector belonging to Sr for some r ∈ {1, . . . , R}. Since
such subspaces do not mix each other, the subsequent system
evolution will take place within Sr . As a result, in the limit of
M → ∞, the monitored quantum system tends to reach the
completely mixed state in each Sr separately.

An example of partial thermalization clearly showing this
feature is presented in Sec. VII.

B. Quantum Zeno regime

Another possible exception to ITT can be observed when
the value of all the waiting times τ j , with j = 1, . . . , M, is on
average much smaller than the inverse of the energy scale of
the system [10,12,15–17,57–59]. In particular, let us consider
here the case in which the total time

∑M
j=1 τ j remains constant

in the limit of large M, thus ensuring that each waiting time τ j

is infinitesimal. In this limiting case, we expect to recover the
quantum Zeno regime that prevents the system to thermalize.

This effect can be shown by observing that in the quantum
Zeno regime the operators U and L are nearly close to the
identity matrix. In particular,

〈αk|U (τ j )|α�〉 = δk,� − iτ j〈αk|H |α�〉 + O
(
τ 2

j

)
, (28)

so that

〈αk|L(τ j )|α�〉 = δk,� + O
(
τ 2

j

)
. (29)

Since their sum is constant, in the large-M limit all the waiting
times τ j , j = 1, . . . , M, go to zero as M−1. Thus, O(τ 2

j ) =
O(M−2) such that the conditional probability PkM |k1 can be
read as

PkM |k1 = δk1,kM + (M − 1)O(M−2) = δk1,kM + O(M−1). (30)

This means that, in the limit M → ∞, the system is frozen in
one of the eigenstates of O, in accordance with the quantum
Zeno effect.

C. O and H quasicommuting observables

Here let us examine the case in which [H,O] is small.
Under this hypothesis, the eigenbases of both the observables
are close to each other, and the unitary matrix V with ele-
ments Vk,� ≡ 〈αk|E�〉 is close to the identity. As V is a unitary
matrix, we are allowed to parametrize V as V = eiRξ with R
Hermitian operator normalized such that ‖R‖2 = 1 with ‖ · ‖2

the usual L2 norm. In our case, being V � I, the parameter
ξ is �1. Moreover, by introducing the diagonal matrices
�(τ j ) = diag(e−iE1τ j , . . . , e−iEN τ j ), the propagator U (τ j ) can
be expressed in the O eigenbasis as

U (τ j ) = V �(τ j )V
† = �[I + iξ (�†R� − R) + O(ξ 2)],

(31)
or—by components—as

Uk,�(τ j ) = e−iE�τ j {δk,� + iξRk,�[e(Ek−E� )τ j − 1] + O(ξ 2)}.
(32)
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Accordingly, for k �= �, the (k, �) element of the transition
matrix L(τ j ) equals

Lk,�(τ j ) ≡ |Uk,�(τ j )|2

= 4ξ 2|Rk,�|2 sin
(Ek − E�)τ j

2
+ O(ξ 3). (33)

At variance, regarding the diagonal elements of L(τ j ), we do
not actually need to compute them, since they are are fixed
by the constraint

∑
k Lk,�(τ j ) = 1. This consideration is quite

useful, since the O(ξ 2) terms in Eq. (32), which we did not
compute, would have given rise in Lk,k (τ j ) to O(ξ 2) terms that
cannot be neglected. In conclusion, the transition matrix L(τ j )
can be put in the following form:

L(τ j ) = I − ξ 2�(τ j ) + O(ξ 3), (34)

where � is a real symmetric operator whose elements are
given by

�k,�(τ j ) = −4|Rk,�|2 sin2 (Ek − E�)τ j

2
, ∀ k �= �

�k,k (τ j ) = −
∑
k �=�

�k,�. (35)

By analyzing Eq. (34), one has that, for any finite small
value of ξ �= 0, the system thermalizes if it undergoes a
nonequilibrium process composed by M 
 ξ−2 projective
measurements. In particular, by taking a measurement observ-
able O allowing for a finite value of ξ , the system thermalizes
in the limit M → ∞, while by imposing from the beginning
that ξ → 0 one recovers the same findings observed in the
quantum Zeno regime also in the large-M limit. However, a
nontrivial result is obtained if the two limits are performed
at the same time with the constraint Mξ 2 = t̃ . In this case,
assuming for simplicity τ j = τ ∀ j = 1, . . . , M, we find that

L(τ )M → e−�(τ )̃t , (36)

mimicking a finite-time Euclidean evolution with effective
Hamiltonian �(τ ) for the effective time t̃ . Therefore,

π̃kM =
∑

k1

〈
αkM

∣∣e−�(τ )̃t
∣∣αk1

〉
πk1 . (37)

Moreover, since the bases of O and H coincide up to O(ξ )
terms, a similar relation also holds for the probability pm to
measure the energy Em after the second energy measurement
of the process:

pm =
∑

n

〈Em|e−�(τ )̃t |En〉cn. (38)

As final note, we also observe that, by construction, the opera-
tor �(τ ) has always a zero mode, namely an eigenvector with
vanishing eigenvalue. This entails that the ITT and quantum
Zeno regimes are recovered in the limits t̃ → ∞ and t̃ → 0,
respectively.

V. SPIN-S SYSTEMS

To test our theoretical findings, we consider a spin-s parti-
cle in a magnetic field taken directed along the z axis. In this
case the quantum number s play the role of N since the observ-
ables are described by (2s + 1) × (2s + 1) matrices. Thus,

the system Hamiltonian is H = −ωSz, whose spectrum (apart
from a constant) is given by Ek = ωk with k = 0, . . . , 2s.

A. Heat statistics

Given a spin-s particle in a magnetic field, let us assume
that initial state ρ0 of the spin is thermal, such that ck =
e−βEk /Z with Z = Tr[e−βH ] partition function. Under these
assumptions, it is possible to compute exactly the probabilities
associated to the heat distribution.

As the energy levels of the spin are evenly spaced, the
outcomes of Q are all the 4s + 1 values Q = ω� with � =
−2s, . . . , 2s. Since the spin operators Sx and Sy are noncom-
muting with Sz, if we choose to measure the spin component
along these directions, then we will have ITT in the limit
M 
 1. Then all the possible final outcomes Em will have the
same probability 1

2s+1 to occur. Hence, the probability p�(Q)
to get the outcome Q = ω� equals

p�(Q) = 1

Z (2s + 1)

{∑2s
k=� e−βω(k−�), 0 � � � 2s∑2s+�
k=0 e−βω(k−�), −2s � � � 0.

(39)

In this way, by explicitly computing the summations in
Eq. (39), as well as the partition function Z , we obtain

p�(Q) = 1

η

{
1 − e−βω(2s+1−�), 0 � � � 2s

eβωn − e−βω(2s+1), −2s � � � 0
(40)

with η ≡ (1 − e−βω(2s+1))(2s + 1). Equation (40) well repro-
duces the results of the numerical simulations, as shown in
Fig. 3.

B. O and H as quasicommuting observables

Now, for a generic spin-s system with Hamiltonian H =
−ωSz, let us consider the measurement observable O = n̂ · Ŝ,
with n̂ ≡ sin ξ x̂ + cos ξ ẑ and Ŝ ≡ Sxx̂ + Syŷ + Szẑ.

On the one hand, it is worth noting that if ξ = 0, then
[O, H] = 0. Thus, by considering ξ � 1 (i.e., [O, H] small),
it holds that O = ξSx + Sz + O(ξ 2). On the other hand, we
know that the eigenvalues of the spin operator Sz are indexed
by m ∈ {−s,−s + 1, . . . , s} corresponding to the state vector
|m〉. Hence, from the application of the first-order perturbation
theory on the observable O, we have that in the limit of small
ξ the eigenstates |αm〉 of O are equal to

|αm〉 = |m〉 + ξ
∑
m′ �=m

〈m′|Sx|m〉
m − m′ |m′〉 + O(ξ 2). (41)

Since Eq. (41) contains only the matrix elements of Sx in the
Sz eigenbasis, it is now easy to compute the matrix V up to
higher-order terms in ξ by means of the expansion V = eiξR =
I + iξR + O(ξ 2). As a result, we find:

Rm,m′ = i

2

√
(s − m)(s + m + 1)δm,m′+1

− i

2

√
(s − m′)(s + m′ + 1)δm′,m+1. (42)

In this way, concerning the transition matrix L(τ ), the ef-
fective Hamiltonian �(τ ) (real symmetric operator) obeying
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(a)

(b)

(c)

FIG. 3. Comparison between the theoretical estimate (red solid
line) of the occurrence numbers to measure the heat outcomes ω�, as
provided by Eq. (39), and the corresponding histogram (blue areas).
The latter has been obtained by numerically repeating the nonequilib-
rium dynamics of sequential measurements over 106 realizations on
a spin s = 7

2 . In the three panels, the initial state ρ0 has been thermal
with inverse temperature, respectively equal to β = 0, β = 0.5, and
β = 1.

Eq. (34) is given by �(τ ) = A sin2 ωτ
2 , whose only nonzero

elements are

Am,m+1 = −s(s + 1) + m(m − 1)

Am,m−1 = −s(s + 1) + m(m + 1)

Am,m = 2[s(s + 1) − m2]. (43)

As shown in Appendix, the operator A can be diagonalized in
the limit s 
 1. The eigenvalues of A are equal to

ak = k(k + 1), (44)

with k = 0, . . . , 2s, while the 2s components vk (m) of the kth
eigenvector vk are given by

vk (m) =
√

2k + 1

2s
Pk

(m

s

)
, (45)

with m = −s,−s + 1, . . . , s. In Eq. (45), Pk denotes the Leg-
endre polynomial of order k.

This result suggests that, in the limit of s 
 1, the operator
A can be expressed in terms of the orbital angular momentum
L̂ ≡ Lxx̂ + Lyŷ + Lzẑ of a single quantum particle. By setting
m
s ≡ cos θ , the eigenvalues and eigenstates of A coincide with
the spectrum of L̂2 provided that we limit ourselves to the
sector HA of the particle Hilbert space such that LzHA = 0.
Notice that the latter, in standard notation, corresponds to the
part of the spectrum of A with m = 0. This means that A can
be written as

A � L2
x + L2

y + μL2
z , (46)

with μ → ∞. Under this limit, the euclidean evolution auto-
matically excludes all the states that do not belong to HA.

VI. LARGE-N LIMIT

In this paragraph we determine analytical expressions de-
scribing the behavior of a monitored quantum system in the
limit of an infinite-dimensional Hilbert space. Under this hy-
pothesis, the theses of the Perron-Frobenius theorem are no
longer valid [62], and, thus, it is not guaranteed that the largest
eigenvalue λ = 1 of L(τ ) is nondegenerate.

For simplicity, let us take a spin-s system, with Hamilto-
nian H = −Sz/s, and, as (intermediate) measurement observ-
able, the Hermitian operator O = Sx (not commuting with the
Hamiltonian). The scaling of the system Hamiltonian with
s has the usual purpose of maintaining finite the range of
the spectrum of H as s grows and of helping to retrieve the
classical limit of a unit spin for s → ∞.

Here we are interested in predicting the thermalization of
the analyzed spin-s system to the maximally mixed state, also
in the limit of large-s (s 
 1, ideally infinite).

In Fig. 4 we show the eigenvalues λk of the transition ma-
trix L(τ ), with λ0 = 1 > . . . > λk > . . . > λ2s, for different
choices of τ . From the numerical simulations, we observe that
the eigenvalues λk tend to accumulate around λ0 = 1. More-
over, it is also evident that, in the limit s 
 1, the behavior of
the highest eigenvalues is described by a universal function:

λk (τ ) ≡ f

(
τk

2s

)
(47)
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FIG. 4. Comparison between the spectra of the stochastic matri-
ces L(τ ) with s = 300 and different values of τ , expressed in terms
of the rescaled variable kτ

2s . The plotted values of τ belongs to the
set {1, 2, . . . , 7} and are respectively identified by the blue diamond,
orange circle, yellow X, and purple solid lines and green, cyan circle,
and red X dotted lines. We can observe that, for kτ

2s smaller than a
critical value (numerically determined to be ≈0.934), all the data
collapse on the same curve as predicted by Eq. (47). In turn, for
kτ

2s � 1 we observe the quadratic behavior provided by Eq. (51),
namely f ( τk

2s ) ≈ 1 − ( τk
2s )2.

with f (0) = 1. This scaling relation is valid up to the critical
value τk

2s in correspondence of which a transition occurs. No-
tice that we have checked this evidence also for larger values
of s. The critical value τk

2s is found to be ≈0.934 and it corre-
sponds to the eigenvalue λk (τ ) ≈ 0.3. As shown in Fig. 5, a
similar pattern is also present in the eigenvectors of the matrix
L(τ ). One can see that the eigenvectors, corresponding to
small values of the index k that labels them (so that τk

2s � 1),
are independent on τ . Indeed, from Fig. 5, one can observe
that the the eigenvalues of the stochastic matrix L(τ ), dur-
ing their time evolution, behave as a propagating wave-front
bouncing back and forth as time increases. In particular, each
bounce is in correspondence of vertical lines—identified by
specific labels of the eigenvalues of L(τ )—that moves closer
and closer to the central label of the matrix, by maintaining
“frozen” the eigenvalues with the largest value. Moreover,
the time instants, in which a bounce occurs, correspond to a
cusp in the eigenvalue distribution in Fig. 4. This evidence has
been observed in the numerical simulations implemented for
Figs. 4 and 5.

Independently of the nature of such transition, only the
eigenvalues of L(τ ) close to 1 can affect the ITT. Thus, for
our purposes, we will just focus on the spectrum of L(τ ) that
obeys to the scaling relation (47), and we will analyze how the
function f behaves if its argument τk

2s is small.
In doing this, let us consider the case τ � 1 (for

which of course τk
2s � 1). In this limit, the scaling rela-

tion (47) is valid for every k = 0, 1, . . . , 2s. Moreover, for
small τ , 〈αk|U (τ )|α�〉 = δk,� − i τ

s 〈αk|Sz|α�〉 + O(τ 2), so that

-4

-3

-2

FIG. 5. Color plot of the matrix of eigenvectors of L(τ ) for dif-
ferent values of τ (i.e., τ = 1, 2, 3, 4, 6, 7 from the top to the bottom
and from left to right), with s = 300. For visualization purposes, we
plot on the y axis of each panel the logarithm of each matrix element,
while on the x axis there is the index k that labels each eigenvalue
(the larger k, the larger the eigenvalue). We can observe that, in spite
of the structures developed for the larger values of τ , the eigenstates
on the right of each panel, corresponding to the higher part of the
spectrum, are practically the same as long as τk/2s � 1.

for k �= �

〈αk|L(τ )|α�〉 = τ 2

s2
|〈αk|Sz|α�〉|2 + O(τ 3), (48)

while the diagonal elements are determined by imposing the
constraint that L(τ ) is a stochastic matrix. Thus, being {|αk〉}
the set of the eigenstates of Sx, we find that

L(τ ) = I − τ 2

4s2
A + O(τ 3), (49)

where A is the operator introduced in the previous paragraph
and defined by Eq. (43).

We conclude that in the limit s 
 1 the spectrum of L(τ )
is given by the eigenvalues

λk (τ ) = 1 − τ 2

4s2
k(k + 1) + O(τ 3) (50)
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with k = 0, . . . , 2s. In this regard, it is worth noting that k(k +
1) ≈ k2 up to higher orders in s−1 with the result that

λk (τ ) = 1 −
(

τk

2s

)2

+ O(τ 3), (51)

in agreement with Eq. (47) for f (x) = 1 − x2 + O(x3). Ac-
cordingly, supported by our numerical analysis, we have that
for large s the value of the greatest eigenvalues of L(τ ) (with
τk
2s � 1) is correctly described by Eq. (51), also for finite τ .
However, in the limit M 
 1 only the eigenvalues close to
λ0 = 1 actually matter, since all the others are exponentially
suppressed. Thus, when both M and s are large, one has that

L(τ )M ≈
[
I −

( τ

2s

)2
A
]M

≈ e−M τ2

4s2 A. (52)

A different result is obtained depending on the order of the
limits M → ∞ and s → ∞. Indeed, if we perform the limit
M → ∞ while s is finite, then only the null eigenvector
of A (corresponding to k = 0 and λ0 = 1) “survives” (is
propagated over time without being nullify by a repeated
sequence of products) and the system thermalizes to an
infinite-temperature state. Such finding is in accordance with
our results obtained with a finite Hilbert space dimension
and nonseparable Hamiltonian. Conversely, by performing the
limit s → ∞ with M finite, we get L(τ )M → I. This means
that the system becomes classical as s → ∞, so that the mea-
surements are no longer effective in changing the state of the
system. Quite remarkably, also in this case, a nontrivial result
is obtained if we perform the two limits keeping Mτ 2

4s2 = t̃ con-
stant. Indeed, one gets L(τ )M → e−At̃ that corresponds again
to a finite time Euclidean evolution with effective Hamiltonian
A, similarly to Eq. (36) for the case of O and H quasicommut-
ing observables.

VII. ROTATING TWO-DIMENSIONAL GAS

As example of partial ITT relevant for rotating two-
dimensional gases [63], let us consider a particle of mass
m ≡ 1 moving in the x-y plane and subjected to an anisotropic
harmonic potential with frequencies ω1 �= ω2, along the x and
y directions respectively. Thus, the Hamiltonian is given by

H = 1
2

(
p2

x + p2
y + ω2

1x2 + ω2
2y2)

= ω1
(
a†

xax + 1
2

) + ω2
(
a†

yay + 1
2

)
, (53)

where px, py denotes the momentum components of the par-
ticle in the x, y directions, and ax, ay are the annihilation
operators associated to the particle along x and y. The en-
ergy eigenstates are given by |nx, ny〉 to which correspond
the energy values E = ω1nx + ω2ny, being |nx〉 and |ny〉 the
1D harmonic oscillator states along x and y, respectively. As
measurement observable O, let us choose the pseudoangular
momentum

L̃ ≡ i

2
(a†

xay − a†
yax ) = 1√

ω1ω2
(ω2ypx − ω1xpy). (54)

L̃ is block diagonal on the eigenbasis of H . This can be seen by
noting that axa†

y |nx, ny〉 ∝ |nx − 1, ny + 1〉 and a†
xay|nx, ny〉 ∝

|nx + 1, ny − 1〉. Thus, the action of L̃ cannot generate any

state with a different value of nx + ny. In other terms, each
block with a given n ≡ nx + ny is invariant under the action
of the pseudoangular momentum. Moreover, by computing
the matrix elements of the pseudoangular momentum, we can
observe that, within each subspace with constant n, (i) L̃ acts
as (twice) the y component of a spin-s = n/2 operator in the
basis of the z component, and (ii) L̃ is not further reducible.

In conclusion, the thermalization process only involves
the energy eigenstates |nx, ny〉 spanning a subspace with a
fixed n = nx + ny, and the system behaves as a collection of
independent spin-s systems with 0 < s < ∞. Our findings
are no longer valid if ω1 = ω2 = ω. In such case, indeed,
L̃ becomes proportional to the angular momentum operator
ω(ypx − xpy) associated to an isotropic two-dimensional har-
monic oscillator that commutes with H . Thus, no evolution
is possible as well as ITT. It would be interesting to study
the effect of repeated measurements of the pseudoangular
momentum in the slightly anisotropic case, with the aim to
investigate in the interacting case whether and to what extent
it could be usefully employed to reach quantum Hall states for
two-dimensional rotating gases.

VIII. CONCLUSIONS

In this paper, the asymptotic behavior of a N-level quantum
system subjected to a sequence of M projective measurements
is analyzed in the limit of large M and N . Such behavior has
been put in relation with common properties of the Hermi-
tian operators H (system Hamiltonian) and O (intermediate
measurement observable) and peculiar characteristics of the
heat distribution exchanged by the system with the external
environment.

We have shown that if H and O do not share any common
nontrivial subspace, then the final state of a monitored quan-
tum system in the large-M limit coincides with the maximally
mixed state corresponding to a canonical thermal state with
infinite temperature. We have denoted this latter condition as
ITT. Assuming the largest eigenvalues of the transition opera-
tor L to be nondegenerate, we show how the ITT modifies the
heat distribution associated to the monitored quantum system.
Specifically, in the ITT regime, the initial and final energy out-
comes, {En} and {Em}, respectively, are independent random
variables and the corresponding characteristic function G(u),
with u ∈ C, can be factorized in two distinct contributions just
depending on the initial and final states.

Possible exceptions to ITT, to which we refer to as partial
thermalization, can occur when the largest eigenvalue of the
transition matrix operator L is no longer nondegenerate. Par-
tial thermalization has been determined in the following three
distinct cases.

(i) Whenever the Hermitian operators H and O have one or
more eigenvectors in common, as for example when [H,O] =
0. In such a case, the ITT occurs only in partial way, since
we no longer have the complete mixing of the intermediate
measurement eigenvectors |αk〉, k = 1, . . . , N , at the end of
the nonequilibrium quantum process. Indeed, what one can
observe is the mixing of the eigenvectors |vr〉 associated to
the subspaces Sr in which the Hamiltonian block matrices Hr

are defined. For the sake of clarity, we recall that the Hamil-
tonian blocks Hr are the operators that compose the global
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Hamiltonian H of the system, once expressed in the basis of
O. The presence of R block matrices Hr (and not just one) is
the reason under the onset of a degeneracy of the eigenvalue
λ = 1 of L(τ ), independently of the τ values. In this picture,
the special case of [O, H] = 0 is obtained for R = N .

(ii) ITT is not obtained when the value of the waiting
times τ j is on average much smaller than the inverse of the
energy scale of the system, such that during the application of
two consecutive measurements the quantum system does not
practically evolve and remains confined in its initial state.

(iii) Finally, analytical and numerical results in the large-
N limit, derived on a spin-s system with s 
 1, suggest that
ITT can occur in the limit of M → ∞ with τ � 1 and a
finite value of s. We found that the eigenvalues of L(τ ) are
the same for different values of τ as long as τk/2s is smaller
than a critical value that we estimated to be ≈0.934. Inter-
estingly, the matrix of eigenvectors displays a rich structure,
but nevertheless the eigenstates corresponding to the larger
eigenvalues are practically the same as soon as τk/2s � 1,
in agreement with the previously mentioned critical value.
When, at variance, the limit s → ∞ is taken with M finite, we
find that for τ � 1 the application of a sequence of quantum
projective measurements does not entail state changes within
the measured quantum system, as one would expect in the
classical limit.

Moreover, we also stress that, experimentally, it is not
necessary to perform an ideally infinite number M of mea-
surements to observe the theoretical results here exposed,
even those valid in the asymptotic limit of large M. In this
regard, one could refer again to Ref. [38], where a sequence
of quantum projective measurements has been performed on
a single NV center in diamond. In such experiments, indeed,
a tendency of the quantum system toward an equilibrium
thermal state with infinite temperature has been observed just
after the application of less than 10 projective measurements.
We thus expect that this could be recovered also in other
experimental platforms.

Our results are expected to pave the way for further in-
vestigations on monitored quantum systems, subjected to a
sequence of nonprojective quantum measurements [64] and
driven by time-dependent functions through Hamiltonian cou-
plings. In such contexts, the distributions of both the heat
and work, and their interplay according to the principles of
thermodynamics, will have to be evaluated, e.g., by taking
into account the cost of each applied projective measurement
[65,66]. Moreover, since we have adopted the more standard
the two-point measurement scheme, it would be interesting
to extend the obtained results by using different measurement
schemes, such as the one recently explored in Refs. [67–70].
Finally, in light of the similarities between systems sub-
jected to a repeated series of quantum measurements and
periodically driven systems, one could investigate both contin-
uous, single-particle systems and many-body systems under
repeated quantum measurements, possibly near a phase transi-
tion or in presence of an external dissipation [49], by using the
results in this paper. In this respect, a very interesting example
to be worked out in detail would be the Lipkin-Meshkov-Glick
model, whose dynamical and entanglement properties have
been intensively studied [71,72]. In this regard, for such a

model even the work and heat statistics and their relation
with ground and also excited state quantum phase transitions
have been recently addressed, as shown in Refs. [73,74] and
references therein. For the Lipkin-Meshkov-Glick model, the
thermodynamical limit N → ∞ and deviations from it was
thoroughly investigated [75–78]; therefore, if subjected to a
sequence of quantum measurements, then one could check
(especially, in proximity of its quantum phase transitions) how
the interplay between N and the number M of measurements
arises, and whether the results obtained in this paper in the
limit of large N and M apply.
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APPENDIX: SPECTRUM AND EIGENVECTORS OF A

In this Appendix we to derive the spectrum and the eigen-
vectors of the operator A. Let us start with the eigenvalues
equation ∑

m′
Am,m′v(m′) = av(m), (A1)

equivalent to the relation

av(m) = 2(s(s + 1) − m2)v(m)

−[s(s + 1) − m(m + 1)]v(m − 1)

−[s(s + 1) − m(m − 1)]v(m + 1), (A2)

with a and v arbitrary eigenvalue and eigenvector of A, re-
spectively. Equation (A2) can be written as

av(m) = [s(s + 1) − m2][2v(m) − v(m + 1) − v(m − 1)]

+m[v(m + 1) − v(m − 1)]. (A3)

In the limit s → ∞, we assume that v(m) is a smooth function
of the variable x = m

s ∈ [−1, 1]. Thus, we make the ansatz
v(m) = P(x) with P(x) continuous function, so that

v(m ± 1) = P(x) ± 1

s
P′(x) + 1

2s2
P′′(x) + O(s−3), (A4)

where P′(x) and P′′(x) denote, respectively, the first and sec-
ond derivatives of P(x) with respect to x. As a result, the
eigenvalue equation (A3), up to O(s−1) terms, is equal to

aP(x) = − 1

s2
[s(s + 1) − s2x2]P′′(x) + 2sx

s
P′(x), (A5)

whereby, by taking the limit s → ∞, we finally get

(1 − x2)P′′(x) − 2xP′(x) + aP(x) = 0. (A6)
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Equation (A6) is the well-known Legendre equation. In
order to have normalizable solutions of the Legendre equa-
tion in the interval x ∈ [−1, 1], one has to set that the
eigenvalue a belongs to the set {ak} with ak = k(k + 1)
and k integer �0. Thus, in this case, the eigenfunctions
are proportional to the k-order Legendre polynomials Pk (x).
In conclusion, by enforcing the normalization condition,

we find:

vk (m) =
√

2k + 1

2s
Pk

(m

s

)
, (A7)

where the variable s at the denominator of the normalization
factor is required to pass from the normalization in x to that
in m.
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