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Stochastic resetting and first arrival subjected to Gaussian noise and Poisson white noise
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We study the dynamics of an overdamped Brownian particle subjected to Poissonian stochastic resetting in a
nonthermal bath, characterized by a Poisson white noise and a Gaussian noise. Applying the renewal theory we
find an exact analytical expression for the spatial distribution at the steady state. Unlike the single exponential
distribution as observed in the case of a purely thermal bath, the distribution is double exponential. Relaxation
of the transient spatial distributions to the stationary one, for the limiting cases of Poissonian rate, is investigated
carefully. In addition, we study the first-arrival properties of the system in the presence of a delta-function sink
with strength «, where k = 0 and k = oo correspond to fully nonreactive and fully reactive sinks, respectively.
We explore the effect of two competitive mechanisms: the diffusive spread in the presence of two noises and the
increase in probability density around the initial position due to stochastic resetting. We show that there exists
an optimal resetting rate, which minimizes the mean first-arrival time (MFAT) to the sink for a given value of
the sink strength. We also explore the effect of the strength of the Poissonian noise on MFAT, in addition to
sink strength. Our formalism generalizes the diffusion-limited reaction under resetting in a nonequilibrium bath
and provides an efficient search strategy for a reactant to find a target site, relevant in a range of biophysical

processes.
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I. INTRODUCTION

In the mesoscopic world, diffusion refers to the random
motion of Brownian particles in a fluid at thermal equilibrium.
In this case, the detailed balance as well as congruent features
such as the fluctuation-dissipation theorem (FDT) and zero
heat flux are maintained [1]. In other words, diffusion is a
passive process as it takes place in thermal equilibrium. In
recent years, there has been growing interest in studies of
active particles, which are self-driven due to the consumption
of energy from their surroundings and therefore away from
equilibrium [2—4]. Models such as active Brownian particles
(ABPs) and run-and-tumble particles (RTPs) have been used
extensively for their dynamical descriptions incorporating the
persistence in their motion [5-7]. Evidently, when a passive
molecule such as colloid or polymer is immersed in a bath
containing active particles, the molecule behaves differently
from a thermal (or equilibrium) bath [8—10]. Apart from the
thermal noise, it experiences additional nonequilibrium fluc-
tuations (active noise) which drives the system away from
equilibrium [10-17]. The peculiarities of its dynamics are of-
ten encoded in its distribution function which, in some cases,
is found to be non-Gaussian in nature [18—20]. For instance,
the motion of a tracer particle inside the cytoskeleton network
has been found to be non-Gaussian consisting of two parts:
the Gauss-like central region followed by an exponential tail
[18]. Such tail occurs due to the athermal noise stemming
from the power stroke generated by motor proteins, and the
noise can be conceived as the Poisson one. In practice, the
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Poissonian noise has been widely used as an effective model
for non-Gaussianity in biological systems, for instance, to ex-
plain membrane undulations [21,22], neuron dynamics [23],
swelling of a polymer [24], etc. If the system does not have
any memory effect, or roughly speaking, the dynamics is
Fickian, not necessarily, one should invoke a finite correlation
time in the noise statistics to describe it. Sometimes mem-
oryless fluctuations can render an out-of-equilibrium state
[15,17,25-28]. For this matter, the Poissonian shot noise is
an ideal choice for characterization of an athermal bath to
study Markovian, non-Gaussian dynamics [9,29]. Note that
such noise has been previously employed for modeling sev-
eral physical cases such as ATP hydrolysis in the context
of movement of motor proteins [30], nonperiodic oscillatory
distortion of a lipid interface coupled with actomyosin [31],
and dynamics of a granular rotor in an environment containing
low-density granular gases [26,32].

Search processes are very much intertwined with diffusion
for small systems, particularly ones involved in diffusion-
limited reactions. For example, during gene expression, a
protein molecule (transcription factor) searches for a pro-
moter site on the DNA chain to initiate transcription. Along
with others, two main routes it adopts to find the target are
three-dimensional excursions in the surroundings and one-
dimensional diffusive search (sliding) along the DNA track
[33-35]. A major goal in investigating such processes is to
find a strategy for which the rate gets minimized. Along these
lines, a lot of attention has rightfully been paid these days
to the stochastic resetting, a mechanism for which a system
undergoing a stochastic process is reset back at random times
to a prescribed position and restarts the process all over again
[36]. Two key features of diffusion processes with resetting
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are that (i) the system always achieves a nontrivial nonequi-
librium steady state, and (ii) in the presence of a target, there
exists an optimal rate for which the search time is finite and
minimum [37,38]. No wonder the occurrence of such intrigu-
ing characteristics triggers exploring its different variants,
namely, resetting with several processes such as continuous-
time random walks [39], fractional Brownian motions [40],
Lévy flights [41], underdamped diffusion [42], velocity-jump
processes [43], and others [44,45]. Furthermore, the effect
of various confining potentials [46—48] and diffusivities [49]
on the resetting mechanism has been investigated thoroughly
over the past few years.

The majority of the studies on resetting mentioned above
have been carried out for diffusive systems in the thermal bath.
Recently, a number of groups have explored the possibility of
incorporating the activity in the resetting mechanism [50-53].
A charged ABP subjected to a spatially nonhomogeneous
magnetic field has been found to have a nonmonotonic den-
sity profile and a higher mean first-passage time compared
to its passive counterpart [54]. Further developments have
witnessed implications of stochastic resetting in the dynamics
of RTPs which serves as the standard model for bacterial
motion [51,53]. However, to the best of our knowledge, very
little is known about the role of nonthermal fluctuations on a
passive particle under a resetting mechanism. In this paper,
our interest is to fill the existing gap in the literature, and
try to provide a comprehensive study on the dynamics and
first-passage properties of an activity-driven stochastic reset-
ting process. To do so, here we consider a situation where a
passive Brownian particle is diffusing in a nonthermal bath
characterized by the Poissonian white noise. The particle
is brought back randomly at a constant rate r to its initial
position xg, from where it restarts its journey following the
underlying stochastic equation. Note that in our model, the
epochs at which the particle returns to xy are drawn from
a Poissonian distribution; that is to say, the waiting time
distribution is given by v, () = re~". However, it may be
possible to generalize the resetting mechanism by considering
a generic form of v, (¢); e.g., see Ref. [55]. In Sec. II we
illustrate the effect of resetting on dynamical behaviors of the
particle diffusing in an unbounded domain. At large times
the particle relaxes to a stationary state, and the relaxation
mechanisms for two limiting cases are discussed in Sec. III.
Further we investigate the first-arrival properties of the system
in the presence of a sink (or target) at some position xg.
When the particle meets the target, either it binds to the target
instantaneously, i.e., it gets fully absorbed at x = xg, or it
may not identify the target with certainty, which is referred
to as the partial absorption [56]. One common interest in
such study is to find the rate and efficiency of the process.
The efficiency is generally determined by the time it takes on
average to reach the sink for the first time, which is called
the mean first-arrival time (MFAT), and the distribution of
MFAT known as the first-arrival time density (FATD) is a
measure of the instantaneous rate. By finding those quantities,
we demonstrate how first-arrival properties depend on the
interplay between activity and resetting mechanism, as dis-
cussed in Sec. IV. It should be noted here that our theoretical
model can be realized experimentally by mimicking the recent
experimentation on the stochastic resetting [57] to corroborate

the results. Finally, the summary of our findings is given in
Sec. V.

II. STOCHASTIC RESETTING IN A FREE SPACE

Suppose a Brownian particle is moving in a free space
in the nonthermal bath. It is subjected to the thermal noise
nr(t) and an athermal noise &4(¢). nr(¢) is usually given by
the symmetric, delta-correlated Gaussian noise which obeys
the fluctuation-dissipation theorem (FDT): (nr(t))nr(t2)) =
2D76(t; — tp), where Dy is the diffusivity of the particle in
the thermal bath. On the other hand, the noise &, (¢) violates
the FDT and so the bath can no longer be described by the
equilibrium properties. Here we do not take into account
the memory effect, and so &4(¢) is taken as the Poissonian
white noise. It can be realized as a sequence of delta pulses
occurring at random times over a time interval [0, ¢], viz.,
E4(t) = >, a;8(t —1;). The occurrence of pulses follows the
Poisson statistics with a Poisson rate w, and the jump length
associated with ith pulse denoted by a; is drawn from the

Laplace distribution of the form P(a) = —e ‘“0 , Where aq is
the average jump length. It is easy to see that (éa (t)) =0, and
(£a(t)Ea(t")) = 2D48(t —t"), where the diffusivity due to the
nonthermal noise is given by Dy = paj [9].

Let us consider that the particle is initially at position x,
and the probability density at position x after time 7 is Py(x, £).
The density, or the propagator Py(x, f|xg), evolves according
to the following Kolmogorov-Feller equation [28,58]:

2 62
—Py(x,t) 4+ Dy 1ﬁPo()c t). (1)
Ay 5.2

a
—Py(x, 1) =
o7 0(x, 1) e

For an alternative derivation of the above equation, see
Appendix A. In Eq. (1), the first term on the right-hand side
(RHS) is given by a second-order derivative which describes
the normal diffusion. In contrast to this, the final term contains
anonlocal differential operator which corresponds to the Pois-
sonian noise. If one consider the limit ag — 0 and u — oo in
such a way that D4 remains constant, the nonlocal property
vanishes so that one recovers the normal diffusion case [59].
In general, an exact analytical solution of Eq. (1) is difficult
to obtain. However, it can be treated analytically using the
Fourier transform, defined as Py(p, 1) = 5= [ dx e P*Py(x, 1).
On doing the transform, Eq. (1) becomes

—Drp*t—Dyt

/’2
Py(p,t)=e g )

With this result, one can find several limiting cases for the
spatial density. For more details, the reader is referred to
Ref. [8].

We now address the resetting problem for the above
stochastic process. Here we consider the Poissonian resetting
protocol; i.e., the waiting times between two successive re-
setting events follow the exponential distribution with rate r.
Also let us assume that the particle is reset to a resetting po-
sition which, for simplicity, is the same as the initial position
Xo. For this case, the probability distribution function (PDF),
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denoted by P, (x, t), satisfies the equation

2 82

%Pr(x,t) = 88 P.(x,t)+ Dy P.(x,t) —rP.(x,t)+ ré(x — xp). 3)

2 9?2
e
The last two terms account for the loss and gain of probabilities due to resetting, respectively. Taking the Fourier transform of
Eq. (3), one obtains

d -~ ~ - . .
—P.(p,t) = =Drp’P.(p,1) — D4 Pr(p.t) —rB(p.1) + re”'"™. “4)

ot 1 + a3 p?
Without loss of any generality, here we take xo = 0, which makes the initial condition to be P,(x, 0) = §(x). After performing
simple mathematical steps and rearranging the terms as shown in Appendix B, we obtain

P(p,t)y=e"Pyp,t)+ r/(;t dt’ e Py(p, 1). ®)
Upon doing the inverse Fourier transformation of the above, we have

P.(x,t)=e "Py(x,t)+r /OT dt’ e " Py(x, 1), (6)
where Py(x,t) is the solution of Eq. (1), and it can be expressed as the inverse Fourier transform of Eq. (2), i.e., Py(x,t) =
i ‘;—J’r’ e e el ‘*“0” . One can easily recognize Eq. (6) as the last renewal equation for this process.

Now our motive is to obtain the density P.(x, ). For that, we go back to Eq. (5), and writing the expression for By(p, t)
explicitly with the aid of Eq. (2), we have

2 t
~ _yy —(Drip*+Dat —E>) _ —(D ' PP 4+Dst’ —Lr )
B(p,t)=e e ! e + r/ dt' e T A l+u0 ) )
0

In the final term, the integration over time can be easily done, and it yields

—(Drtp*+Dat —5—)
5 2 2 0\[1 _ —rt 1+a2,;2
—(Drtp +DAtr%pz) r(l +agp )[1 e e ]

P(p,t)y=e"¢e 3
Dra3p* + (Do + Dy + dir)p* +r
Further rearranging the terms, we arrive at an analytically tractable form as
2 2
Bpty=e e TP L Ty PTG
Dr
o3(r) — o (r 1 ar(r) — as(r 1
x[( 3(r) 1()> ' +<2() 3( )) . :|’ )
Olz(r)—al(r) p~+o(r) o (r) —ai(r)) p> + ax(r)
where a3(r) = a3 = z,az(r) +a1(r) = D 54 &+ (Daa(r) = DLLZ which implies
a do T
- 1 D+1+a(2)r N 1 DA_'_I_’_a(Z)r2 4air
o(r) = —5 —_— —_— e _ — R
2 242 | Dr Dr | " 22\ | Dr Dr Dr
2
1 [ Dy agr 1 Dy ayr 4atr
=—|=—+l+—|—z5/|=—+1+—| — .
C(1(V) 2a(2) |:D7‘ DT 2a(2) DT DT DT
Now we can perform the inverse Fourier transform of Eq. (9), and it reads
_ —oeu (r)lx| — —Var(r)lx|
Pox.t) = e Py(x. 1) + _[(Ol3(r) Oll("))e <0l2(") 063(")>€ ]
Dy [\a2(r) —ai(r) ) 24/a(r) o (r) —ai(r) ) 24/aa(r)
T [ (BN ST ()
Dy o (r) —an(r) ) 24/a;(r) or(r) —ai(r) ) 2y/aa(r)

The moment of the displacement can be calculated from the Fourier transform (9), using the relation, (x"(¢)) =

o 9P, . . .
(—z)”aa’—lﬁf")l p=0- Since the process is symmetric in space, all odd moments are zero. The second moment or the mean square

displacement (MSD) is computed as

2
(1)) = ~(Da+ Dr)(1 — e Y
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FIG. 1. Plot of the probability distribution function of displacement at the steady state [given in Eq. (12)] for two different regimes of

Poisson rates: (a) r < w, where u =

10, and (b) r > p, where = 5.0. Here we have taken D4 = Dy = 1.0. The curves with point symbols

are the approximate analytical results given in Eqs. (14) and (16), and these equations are used for comparison in panels (a) and (b), respectively.

For short-time limits, i.e., for t < 1/r, the MSD is (x*(¢)) ~ 2(D,4 + Dy )t, implying a short-time diffusive regime, and it is
the same as the reset-free case. However, in long-time limits (¢ > 1/r), the MSD approaches a constant value, viz., (x*(t)) ~

2(Da+Dr)
r

, which indicates the convergence of density to a stationary distribution.

Here we analyze the distribution for the # — oo limit. In this case, the first and third terms on the RHS of Eq. (10) can be

neglected, and so the distribution becomes

oYl

= [(asm—al(r))
Dr [\ oa(r) —a1(r) ) 2/ (r)

Clearly, Eq. (12) corresponds to the steady-state distribution
which is expressed as the sum of two exponential functions.
To understand its leading behavior, we consider different lim-
iting cases.

A. Different r limits

Let us first consider the limit a” (_ Dy ’) <« 1. So us-

ing the approximation \/[D + 1+ “0 ]2 4at;r s IL))_;, +1-—
Zaor
Da+Dr”

oy 2(

the parameters can be expressed as o) &
-t 1), which leads Eq. (12) to

,
[Da+Dr]?

Jis]
aO DA+DT a
D4+ DT

<DT e

7 P g(x) ~

2610

D
(5 ) <D:>
S

2a0 (Bs 4 1)
In the above equation, the second term on the RHS captures

the behavior near x = 0, and it can be neglected for aUTr < 1.
Here, the first term dominates, and thus the distribution can be
approximated as

1 ;lxl
~Z [— oAy
rss(x) 2\ D, +DT A

Such limiting case can be obtained if » << p and D4 /Dy is
finite. At r — 0, the distribution almost flattens as exemplified

(14)

NG
} (12)

n (Olz(r) - 0l3("))
ax(r) —a(r)) 2/ ax(r)

[
in Fig. 1(a) for » = 0.01. Within this regime, if » > u, then

Dr > Dy, and thus, Prgy(x) ~ § e Vo,

“0’(_ Dirys 1. In this

Now we consider the limit Dy i

2 2
limit, /(2 + 1+ 0 - 2

2 2

asr 2agr

A~ Doy G 0
Dy

Dr  Datd}r’
D
L2D_/;[1 + &1. So the steady-

o A
T L~

1 a@r 1 1
a% DA+a%r a% [1+%]’
state distribution (12) becomes

and oy ~

1 14 £
rss(x) ~ 5

20 (24 L 4 ) J14 £

1+/§ &( > /g,T‘,( )L M
7

1
+_—
2a0 2+ 7 + %)\ Dr

_ /1 _ K
e VI+Fla

15)

Here we can consider a limit, r > u, and Dy /D, is finite. For
such case,

1 Mmook 1 12 r — /= x
Pux)~ ——e « 1—-— — porl. (16
()~ e 0+2( r) DTeVT (16)

aog r

In the above equation, the first term on the RHS can
be ignored, and so the distribution is given by P, (x) =

i /[pre v 77" For large values of r, the distribution is

mostly peaked around xo = 0, in accordance with Fig. 1(b),
as the particle is brought back frequently to the origin and
thus it is mostly found there. For the case where r < u and
Da > Dy, the first term on the RHS in Eq. (15) mostly
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FIG. 2. Plot of the probability distribution functions [Eq. (12)] as a function of displacements for different values of D,/Dr. In panel

(a) Dy > D4, where we have taken D4 = 1.0. In panel (b) D4 > Dy, where Dy = 1.0. Other parameters are r = i

= 5.0. Approximate results

of the PDF given in Eqgs. (17) and (18) represented by the lines with point symbols are in good agreement with the exact one (solid lines) as

shown in panels (a) and (b), respectively.

contributes to the tail behavior, and around x = 0 the second
term gives a delta function, viz., §(x)/(1 + %).

B. Different limits of (D4 /Dyr)

We first consider the limit g—ﬁ « 1, where
2 2.

\/[gA+1+ w2 4“" ’”|1—%|. For %>1,
2

a(r) =~ 1/a0, and ozz(r) ~ ——. In the other limit, g’r <1,

a1(r) and ay(r) just exchange their values. Therefore for
both cases, Eq. (12) approximates to

Pryy() ~ %‘/DL eV,
T

Here, the thermal contribution prevails over the active one,
and as expected, we recover the well-known result for the nor-
mal diffusion with resetting. This is consistent with Fig. 2(a).

Now we take the limit g—;‘ > 1. So one can do

a7

dalr
0 ~

the fol]owing approximations: \/ [DA +14+2 ]2

2, 2
gﬁ + B~ o e~ 5t + WY, o (r) DA;a - =
2 i +“ Therefore using Eq. (12) one has
1 D r N el
Ps(x) ~ = A 5 5 € \/DAM%r
2\ Dy +agr Dy + agr

n L a% DA aO - /%+ZOT m'
2a0 \ Dy + aO DT

(18)
The first term on the RHS dictates large-x behavior whereas
the second one only contributes to the distribution at x = 0.
aor <<

P g (x)
3 D—’Ae_\/ ﬁlxl, which is of similar form as Eq. (17) with

the only difference being that the thermal diffusivity is now
replaced by the active one. At = o> 1, the second term on the
RHS of Eq. (18) is dominant over the first one, and thereby

Such features can be easily seen in Fig. 2(b). For
1 or ﬁ<< 1, the PDF can be approximated as

the PDF can be given as P, (x) = % /DLT e Vol 8(x).

Now we consider a situation where only the Poisson noise is
present in the system. Therefore, taking Dy — 0 in Eq. (18)
the second term turns to a delta function, and so Eq. (18) can

be recast as
W~ — Loevmes o (L Yo
rvrx T r e +r X).
Zao 1+t 1—1—% 1+%
(19)

III. RELAXATION TO NONEQUILIBRIUM STEADY STATE

Here we analyze how the distribution relaxes to the sta-
tionary one at long times. For this purpose, we approximate
the distribution after doing the inverse Fourier transform of
Eq. (5) as discussed in Appendix C. Two limiting cases for the
distribution given in Eq. (C3) are discussed in the following
sections.

A.1>r>» pand Dy > D,

The integration over ¢ in Eq. (C3) can be done using the
Laplace method, according to which, most nonzero contri-
butions should arise near ¢ = O for the large value of 7. In
this limit, ; Qut'¢) ~ ut'¢p — 0at¢ = 0. For Dy > D, and
1 > u, the second term on the RHS is negligible compared
to the first one. Therefore, P.(x,t) can be asymptotically
given as

x2

¢ 7
VArnDrt”
Taking t' = wt, the above equation can be recast as

172 U dow
«/W Vo

where the large deviatron function (LDF) is (v, w) = rw +
nw + F ~ro+ o— 4D for r > p, and v = x/t. For large
value of 7, the integration over w can be performed using
the saddle-point method. Most contributions to the integration

t
P,(x,t)%r/. dt e 1
0

e—z‘Ql(v.w)’

P(x,t) ~ (20)
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FIG. 3. Comparative plots of analytical results of the complete probability distribution function (PDF) with the numerical one in
logarithmic scale as a function of displacements at different times. The dotted curves are plotted using the data obtained from the numerical
inverse Fourier transform of Eq. (8). The position x*(¢) which distinguishes two regimes is marked by blue dashed vertical lines for different
times. In panels (a) and (b) the plots are for two limiting cases: (a) 4 < 1, Dy > D4 and (b) u > r, D4 /Dr is finite. The values of parameters
used for computations are given by (a) Dy = 20, D4, = 0.1, u = 0.001, r = 0.5 and (b) Dy = 1.0, D4 = 10, u = 40, r = 1.0. The solid lines
corresponds to analytical results given in Egs. (22) and (27) for two respective cases. The black solid (upper) line is for x(#) < x*(¢) whereas

other solid curves (magenta, red) represent the PDFs for large values of # (here we have taken r = 2.5, 5.0, 10) in the region x(¢) > x*(t).

come where Q) (v, w*) = 0, which means w* = 2\}%. One
can distinguish two distinct regimes across w* = 1 as illus-
trated in Ref. [38]. The minimum of (v, w) occurs (i) at
™ in the region w € [0, 1), and (ii) at * = 1 for ®* > 1. So
the distribution can be described by the following LDFs at
large ¢:

DLT|V|, for |v| < v*,

Qi(v,w) = { 21

2
r+gp, forpl >0,

where v* = 2{/Dy r, or equivalently, one can define an asso-
ciated length scale x* as x*(¢) = 2/Drrt. So, in the spatial
region |x| < x*, the density relaxes to a steady state, but it
is still in the transient regime for |x| > x*. This result is
equivalent to one in the normal case, as has been found in
Sec. II B. Doing the integration in Eq. (20) and keeping all
the terms carefully, we find the pre-exponential factor to be
%. Therefore, the complete PDF in the entire space can be
expressed as

1 =t
P(x.1) = O — )3 /DLTe Vel

N2 SV o
+ O(|x] —x )ﬂ e W, (22)
X
where ©(z) is the Heaviside step function. The analytical

result (22) agrees well with the numerical one shown in
Fig. 3(a).

B. © > r > 1and D, /Dr is finite

For large values of t and u, the first term on the RHS of
Eq. (C3) is negligible compared to the second one. Applying
the asymptotic form of /;(z) as mentioned in Appendix C, the

second term can be approximated as
| @1

t o]
Po(x,t)~2r | (utdt / dpe™"" ——
0 0 NZE AT

x2

674r’(0f+DA¢2)
X .
V4t (Dr + Ds¢?)

Now using the saddle-point approximation, the integration
over ¢ can be done as most contributions come from the
saddle point at ¢ = 1. Equation (23) approximates to

(23)

2

12 LT
P(x,t) X" —————— dt —— 24)
4w (Dp + Dr) Jo N

For large ¢, taking t' = wt, one obtains
172 14

P~ e [ S mte (25)

Va4r(Ds+Dr) Jo Vo
where the LDF is given by (v, ) = re + 30525, which

vl
. . 2J/Da+Dr)r”
tify two regimes as follows:

implies w* = Like the previous case, we can iden-

r *
[v], for [v| < v*,
Q — Da+Dr 2
2 @) {r+ —r for [v| > v* (20
4(Da+Dr)”’ ’

where Vv* = 2./(Ds + D7)r, or x* =2./(Ds + Dy)rt. So
putting all terms together, we can write the PDF as

l — — I |x
Px, 1) = OK* — 1))~ | ————— &/ oaimr
2 DA +DT

rt
—e
|x]
In Fig. 3(b), Eq. (27) is compared with the PDF computed
numerically using Eq. (8), and they are in a good agreement
for t+ > 1. The position x* dictates the partition between two

,tz
+ O(|x| — x*)— ¢ " TDarorN 27)
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domains, |x| < x* and |x| > x*, and it moves linearly with
time ¢. As time progresses, the first domain merges to the
second one, and thus the steady state is established in the
entire space. For D4 > Dr, the distribution at the steady state
can be computed using Eq. (27), as P, i(x) = %«/Dzef\/gm s
and the speed at which the first domain grows most/iy depends
on D4, or more specifically, the system reaches quickly to
the steady state as the strength of nonthermal fluctuations
increases.

IV. FIRST-ARRIVAL PROBLEM

Here we address the first-arrival problem for a particle dif-
fusing in the presence of a target at position x = x,. The parti-
cle was initially at position x = xy (£ xs), and it is under the
Poissonian resetting mechanism which resets the particle to
position x( at random times with a fixed rate r. The probability
of finding the particle diminishes when it encounters the tar-
get, which can be thought of as a trap and is modeled here by
a delta-function sink of strength « [60-64]. The particle dis-
appears on arriving at the sink if the value of x goes to infinity.
The time it takes to reach the sink is a random variable, and for
the reset-free case in a semi-infinite region, the average time
is infinite. But in the presence of resetting, the time is usually
finite and takes a minimum value at some resetting rate r*.
Clearly this leads to a more efficient search strategy. For finite
values of «, the particle is not completely absorbed on its first
arrival at x = x, (partial absorption), and so it visits the sink
multiple times throughout its journey before it gets annihilated
at the sink. As mentioned in Sec. I, there are several cellular
processes where reactants cannot recognize the target site at
all times. For instance, the transcription is initiated when the
protein called the transcription factor (TF) binds to a promoter
site on the DNA backbone, but depending on the folding state
of chromatin, the site becomes “visible” or “hidden” to the
protein. Only in the visible state, the binding happens [65,66].
Such reactions can be conceived as a form of the partial
absorption in the presence of a delta sink with finite «.

We are dealing here with the process which is Markovian
in nature, i.e., the absence of any memory into the dynamics.
For such processes, one can find the first-arrival time density
using the Green’s function method as detailed in [60,63].
Without any resetting, the first-arrival time density (FATD)
is denoted as f7,(¢), and its Laplace transform is given by
fr(s) = fooo dt e fr,(t). So in the presence of a sink of
strength «, the FATD in the Laplace domain can be expressed
as [63,67]

K PO(xSa S|)C0)

f S) = ——%%——77 7,
I = T R, s

(28)
where Py(x, t|xo) is the free propagator, given by Py(x, t|xp) =

»
IE:: emiptx=x0) =PI DA (oo Eq. (2)], and its Laplace
transform is [see Eq. (12)]

. P s(X)],=
P()()C, Sl.Xo) — r,ss(r)|r_s

(o]
= / dt e ¥ Py(x, t]xg)
0

a3(s) — o (5) e Ve ©h—l

<Olz(S) —Oél(s)> 2DrJar (s)
a2 (s) — az(s) e~ Vel
<(¥2(S) - otl(s)> 2D Jar(s)

Let us now invoke the resetting mechanism to the given
problem as described earlier. With resetting, the FATD in the
Laplace domain can be expressed in terms of f,(s) given in
Eq. (28), as [68]

(29)

fi(s) = —— 0D (30)

=+ G+

An important quantity for a search process is the mean
first-arrival time (MFAT) which is basically the first moment
of FATD. So it can be easily calculated using the following
expression:

3 f; 1 1 1
1,0 RS SR S |
as | rfRpr) T
_ 11 +i€150(-xs, rlxs) l 31)
r kPy(xg, r|xg) r

Employing the analysis done in Sec. Il A (for the limiting

case %L; <« 1), one can obtain, for small values of r,
. 1 r _ T _
Po(xs, rlxo) 2 o= | ————e VP th o,

2r DT + DA
Using the above, the MFAT can be approximated as

2p [RrEDa 4

! d 1 1 B s =X
<Ti’) N ——, — =X —(6 I)T+I)A| s—Xo] _ 1)
Fe Normg ol
2 |D D, —L—|x;—x
4 2 PrA D ol )
K r

- i 2 [DriDs , 2
At r— 0, (Tr) = | [igop % — Xol + 2/ =5 + Sl —

Xo|. In the case of complete absorption (x — 00), the MFAT

1
r(Da+Dr)

no resetting case, (T,) diverges as r~/< as r — 0. For the
case where only the thermal noise acts on the particle, i.e.,
D4 — 0, the MFAT given in Eq. (32) transforms to

can be written as (T,) ~ |xs — xo|. As expected, for

172

(T,) ~ l(e«/ﬁ‘xl_x(]‘ _ 1) + z &edﬁlxs—xo\’ (33)
r K\ r
which is equivalent to the one given in Ref. [56]. For D4 >
D7 and small values of r,

1 A X=X 2 |ID Ty —
(T,) ~ ;(e«/D_A“ *l _ 1)+—1/TA6\/;"‘5 wlo(34)

K
For extremely large values of r and finite values of D4 and Dr,

we can have Py(x,, r|xg) ~ % [ p-e v o7 5700l and there-

fore, the MFAT can be described by Eq. (33).

Figure 4(a) demonstrates results for the MFAT as a func-
tion of resetting rate r for different values of «. In the limits,
r— 0 and r — oo, (T,) blows up to infinity as can be
understood from Fig. 4. This can be explained as follows:
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FIG. 4. Logarithmic plot of first-passage times versus resetting rate r: (a) for different values of sink strength « taking Dy = 5.0, Dy = 1.0
and (b) for different D, values keeping the thermal diffusivity constant at Dy = 1.0 in the case of complete absorption. The solid curves
are drawn by solving Eq. (31) numerically taking u = 5000 and assuming that the distance between the sink and the source is fixed at
|xs — xo| = 2.50. The dotted curves correspond to Eq. (32) which is a quite approximate result for the limit %ﬁ < 1. In panel (a) the solid

D

curves agree well with the analytical results for the given range of Poisson rate r, whereas the dotted lines are good fits only for small values

of r if D, is large, as shown in panel (b).

For r — 0, some trajectories can never cross the sink due
to almost no resetting, and this leads to infinite MFAT. On
the other hand, if »r — oo, the particle is reset so frequently
that it always remains near the initial position and so it never
reach the sink. In between these extreme limits, (T,) varies
nonmonotonically, namely, the MFAT decreases with r until it
reaches to a minimum. So there exists an optimal resetting rate
r* for which one has % (T,)],=+ = 0. One needs to solve the
previous transcendental equation which, unfortunately, cannot
be done analytically. For different values of « and D,, the
optimal rates r* have been computed numerically and shown
in Fig. 5. From Fig. 5(a), one can notice that * increases with
Kk, but it reaches to a fixed value in the large-« limit which
basically corresponds to the complete absorption. For the case
of the partial absorption (i.e., « is small) the particle can easily

2.2}
2.0p
1.8f
* 1.61
1.4
1.2f

1.0

(.

jump over the sink without getting absorbed, and thus it can
avail the entire space. This suggests that the particle can reach
the target from both sides in one-dimensional space. However,
for large «, the absorption happens mostly from one side, and
thus the process is required to reset more frequently in order
to achieve an optimal rate. Figure 4(a) shows the plot of the
MFAT as a function of sink strength. Notice that the MFAT is
lower for large values of « as the chances of survival for the
particle decrease if the sink has a higher strength.

In Fig. 4(b), it has been shown that the MFAT, as usual, is
a nonmonotonic function of r for any value of D,4. But for a
bath with a fixed thermal diffusivity, the MFAT decreases if
the strength (or diffusivity) of athermal noise is large. This
is easy to understand because these extra fluctuations push
the particle away from its initial position and thus help to

35 (o)

30} )
25}
20}
15}
10

5.

ol!

0 20 40 60 80 100

K

0 20 40 60 80 100
Da

FIG. 5. (a) Plot of optimal rate »* as a function of the sink strength «. The other parameters are D4 = 5.0, Dy = 1.0. (b) The optimal
rate r* for complete absorption is plotted against D4 considering Dy constant at Dy = 1.0. The curves are obtained by solving the equation

dr

L (T.)|,—= = 0. Solid lines correspond to the exact results computed with the aid of Eqs. (31) and (29), and approximate result given in

Eq. (32) is used to draw the dashed lines. For both panels (a) and (b), the other parameters taken for numerical calculation are given here:

|xs — xo| = 2.50, ap = 0.02236.
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locate the target quickly. However, for such acceleration of the
process, one has to bear the cost of its opposing mechanism,
i.e., Poissonian resetting. This means that the density which
is transferred far away from the sink in the opposite direction
due to robust diffusive mechanism needs to be brought back to
the initial position repeatedly so that the particle can restart its
journey toward the sink. So the optimal rate r* is an increasing
function of Dy, as pictorially depicted in Fig. 5(b).

V. CONCLUSION

We have investigated the effect of Poissonian resetting
on a diffusing particle in a nonthermal bath. In contrast to
the thermal case, the steady-state distribution is described
by two exponential functions, one for the central region and
another depicting the tail behavior. At transient periods, we
have identified two distinct regimes, and have shown how the
transient regime gradually relaxes to the stationary one over
time, and the speed at which the relaxation occurs depends
on the strengths of the noises. In the presence of a target,
it has been found that the existence of additional noise aids
the particle to find the target easily, although in order to get
an optimal search rate, the particle is required to reset more
frequently.

Searching under a resetting protocol appears to be an ef-
fective strategy for a plethora of systems [38]. In particular,
for biological systems where a reaction often starts after a
reactant finds a target, the invocation of the resetting mech-
anism to a reaction becomes very much relevant. Our study
essentially focuses on similar aspects where the first arrival of
a particle to the sink denotes the beginning of a reaction and
its reversibility is captured via the sink strength. Therefore,
our findings bring out a generic perspective of any Markovian
biophysical processes under resetting. However, for a non-
Markovian process (e.g., see Refs. [12,13,24]), one requires
a different formalism which can be investigated in future.
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APPENDIX A: DERIVATION OF EQUATION (2)

Poisson white noise (PWN) can be realized as sum of
pulses g(#;) with amplitude a; at different times ¢; as

E) =) a;glt —1).

The number of delta pulses n over a time period [0, t] are
drawn from the Poisson distribution with a Poisson rate pu,
Viz.,

=00

P(ntu:Z

n=0

,bLt )n

(AL)

For such noise, the characteristic functional can be expressed
as [69]

i fodn p(tEa(t) — =t fy A {1=WL [y dry p(t2)g(t1—02)]}
(e ) =e

&at) (A2)
where W[y] = fj;o da P(a)e'™ .
The probability distribution of a is P(a), and if we consider
P(a) as the Laplace distribution with scale parameter ag (> 0),
_lal lal
ie., P(a) = —e “w, we get W[y] = joo dae ® ¢V =
; +a% 7 Using thlS in Eq. (A2), one obtalns

A
w S dr a%[_/oltdrz pliy)gt 1)
O a3 dey plipetey )12 .

<eif(;dtl p(zl)EA(tl)>$A(tl) —e (A3)

Now taking g(r) = 8(t), one has [;'dt p(t)g(t; — 1) =
p(t1), and so Eq. (A3) becomes

. _ a I’(fl)
(eijo dn p(t )EA(t])>$A(t1) — “fO 1+2 Gra? (A4)
For our model, the dynamical equation reads
x(t) =nrt) + 8a(t), (A5)

which means that we can write the Fourier transform of the
PDF as

F)o(P, 1) = <eipx> = <€ipf(; dtmT(tl)>nT(ll) (eipfol dtlEA(tl)>§A(ll)'

(A6)

For thermal noise, (eipf(; dnnry, o= e~Dri? Jydt — p=Drp’t
and for noise &4 (), by virtue of Eq. (A4) one has

3

in (! —ut >
<elp‘/0 dl]éA(tl)kA(fl) —e 1+afp? ) (A7)
So one can write the Fourier transform as

2
_DTPZ ut 07 )

Pyp,t)=e B (A8)

which is the same as Eq. (2) (Ds = uaé). Note that in Sec. II
we get the result solving the Fokker-Planck equation (1)
which is equivalent to the Langevin equation (AS5). Taking the
derivative of the above with respect to time ¢, one has

2.2

J -
—P(p,t) = JW

ot i|l~)0(p’t)

—~ [Drp2 + 1

o0
= —Drp*Po(p.1) — pagp® ) (~agp) " Pop.1).
n=0
(A9)
On doing the inverse Fourier transform, we have

32 % =, o 32"
7Po(x,t)+DAﬁZ(ao) a—xz

0
—Py(x,t)=D
5 0(x, 1) T

n=0
x Py(x, 1)
92 2
= Dr g5 A1) + Dar 5 P ).
1 - e
(A10)

which is the same as Eq. (1).
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APPENDIX B: SOLVING EQUATION (5)
To solve Eq. (5), first Eq. (4) is rewritten as

3If’ (p.t)+ |Drp* +D —p2 +r|B(p, 1) = re P
at r £ T A l +a(2)p2 r £ .
Multiplying both sides by the integrating factor,

2

rt+Drtp*+Dat —2— 0 ~ rt+DTtp +Dyt —2— p
1+ a}p?

rt4+Drt p*+Dyt —2—
e 1+z:017 8[Pr(p’ t) l+u0h |:DTP +DA r A

]+a pz *lpxo

- r]ﬁr(p, 1) =re

which implies
0 [ rt4+Drt p 4Dyt rt+DTtp +Dpt —2—
ot

Integrating the above, one can obtain

]+02p2P (p7 l‘)] l+u ,;2 e*lPXO (B1)

2
2 o
r(t—t1)+Dy p=(t—11)+Dx 1+ (¢ ll)e—iﬂxo

- - —Drtp?—D d
Pr(p’t) _Pr(P, O)e D D e 1+L,2p2 = V/ d[lé‘
0

. . ~ DTpt Dyt —5—= .
Taking xo = 0, and using Eq. (2), Py(p,t) = ¢ 1+“0” , one can arrive at Eq. (5).

APPENDIX C: LONG-TIME BEHAVIOR OF EQUATION (10)
Following the procedure described in Ref. [8], we rewrite Eq. (5) as

t oo n\n n
ﬁr(p, = e —Dyp*t— D/\f]+a T r/ dt' e e_DTI’Z"—/”’ Z (ut") ( 1 )
0

—~ nl 1 + a3 p?

2 t t o \n n
. —Drp*t—Dast —— P BV ot D2 iy (uty 1
—e e SR | dr e P gy N () (e
0 0 n! 1 + ajp?

n=1

For large ¢, the first term on the RHS diminishes to zero. So we only consider the other terms and rewrite Eq. (C1) as

< / n+1
- o _ _ g (ut'y=! 1
Pr DR dt/ rt’ =Dy p*t' —ut' + V/ dl/ rt'=Drp*t' —ut
P /o 0 X:(; (n+ DI\T+ a3p?

1 +a5p

%I’/ dt' e —rt'=Drp*t'—pt’ +r/ dt' e —rt’ DTFZI'—Mt’iM{<_i>n/ d¢ (2¢/‘Lt Ye~ > ut' (B+aip*) } )
0 0 = (n+1)!n! B =1

(C2)
On performing the inverse Fourier transform of the above and doing the derivative with respect to 8 at 8 = 1, we have
2
t 4DT,/ t 2(n+1) 42n+1 T uDr+Dp0Y)
P(x.1) ~ r/ dr’ e’ 2 / dr’ / dep e~ 1! =t Z )¢ ¢
0 «/4nDTt’ —  (+ Dl JAxi(Dr + Dagp?)
' , ~ b7 S =y 5
~r / di' et £ f (ut')dt’ / dgp e =10 [ 2t gy . (C3)
0 4nDTt’ Va4t (Dr 4 Da¢?)

In the second step, the sum over n results in ;(z), which is the modified Bessel function of the first kind. Two useful limiting
values of /;(z) are I1(z) ~ 5 for z < 1, and I;(z) ~ \/— asz> 1.
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