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We investigate the operator growth dynamics of the transverse field Ising spin chain in one dimension as
varying the strength of the longitudinal field. An operator in the Heisenberg picture spreads in the extended
Hilbert space. Recently, it has been proposed that the spreading dynamics has a universal feature signaling
chaoticity of underlying quantum dynamics. We demonstrate numerically that the operator growth dynamics in
the presence of the longitudinal field follows the universal scaling law for one-dimensional chaotic systems. We
also find that the operator growth dynamics satisfies a crossover scaling law when the longitudinal field is weak.
The crossover scaling confirms that the uniform longitudinal field makes the system chaotic at any nonzero
value. We also discuss the implication of the crossover scaling on the thermalization dynamics and the effect of
a nonuniform local longitudinal field.
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I. INTRODUCTION

There is growing interest in the theory for emergence of
equilibrium statistical mechanics in isolated quantum sys-
tems [1]. The canonical typicality [2], a reincarnation of the
quantum ergodic theory [3,4], assumes that a Hamiltonian
eigenstate is statistically equivalent to a typical state in the
Hilbert space, so a quantum mechanical expectation value
of a local quantity is indistinguishable from the statistical
ensemble average. The eigenstate thermalization hypothesis
[5] makes an explicit and testable ansatz for matrix ele-
ments of a local observable in the Hamiltonian eigenstate
basis to ensure the quantum thermalization. Extensive nu-
merical works have been performed to examine the ansatz
directly (see Ref. [1] and references therein) and its ther-
modynamic implications on, e.g., the fluctuation-dissipation
theorem [6–9].

Dynamical aspects of the quantum thermalization have
also been attracting growing interest. For example, out-of-
time-ordered correlations have been studied with the hope to
uncover a chaotic signature of quantum dynamics [10–14].
More recently, researchers gained insight into quantum chaos
from the operator growth dynamics. Quantum mechanics can
be formulated in terms of the time evolution of an oper-
ator in the Heisenberg picture. An operator, initially local
and simple, becomes nonlocal and complex as it evolves in
time, spreading in the operator Hilbert space. By quantify-
ing and characterizing the complexity of the operator growth
dynamics, one may have a better understanding of quantum
chaos and equilibration dynamics of isolated quantum sys-
tems [15–21].

The operator growth dynamics is intrinsically limited by
an upper bound set by the spatial dimensionality and locality
of interactions. Parker et al. proposed a hypothesis that the
operator growth dynamics in nonintegrable systems follows

a universal scaling law corresponding to the maximal growth
[17]. The hypothesis is supported by analytic and numerical
calculations on the Sachdev-Ye-Kitaev (SYK) model, which
is defined in the infinite-dimensional space. Numerical results
on low-dimensional systems seem to be consistent with the
hypothesis, but more extensive studies are necessary for a
decisive conclusion.

In this paper, we investigate numerically the operator
growth dynamics in the transverse field Ising (t-Ising) spin
chain in one dimension in the presence or absence of a lon-
gitudinal field. The system is useful since one can control the
integrability by varying the longitudinal field [22]. We will
show that the operator growth dynamics follows the universal
scaling law predicted in Ref. [17]. The spatial structure of the
one-dimensional lattice gives rise to a logarithmic correction
in the operator growth dynamics, which is absent in higher
dimensional systems. Our results demonstrate the presence
of the logarithmic correction. It supports that the universal
operator growth hypothesis [17] is valid in low-dimensional
systems. We will also show that the operator growth dynamics
is an extremely useful tool for investigating the transition
from integrability to nonintegrability. The system displays an
interesting crossover as one turns on the uniform longitudinal
field. Using the crossover, we will show that the system is
thermal at any nonzero value of the longitudinal field. As a
byproduct, the crossover also reveals the scaling property of
the thermalization dynamics [23–29], which will be detailed
in Sec. IV.

The paper is organized as follows: In Sec. II, we present the
review on the operator growth dynamics. The universal feature
of the operator growth dynamics in some solvable models is
summarized in Sec. III. We present our main results for the
transverse field Ising spin chain in Sec. IV. Summary and
discussions are given in Sec. V.
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II. OPERATOR GROWTH DYNAMICS

We consider a system with Hamiltonian H acting on the D
dimensional Hilbert space. Focusing on operators instead of
state vectors, one can formulate the quantum mechanics with
the von Neumann equation,

∂

∂t
O(t ) = iLO(t ), (1)

for an operator O(t ) in the Heisenberg picture. Here, L is the
Liouvillian superoperator defined as

LA = [H, A], (2)

with h̄ = 1. One can introduce an inner product between two
operators. Then, an operator O(t ) can be regarded as a state
vector, denoted as |O(t )) [30], in the operator Hilbert space
of dimensionality D2. Under this point of view, the quantum
mechanical dynamics describes the spreading or growth of an
initial state |O(0)) in the extended operator Hilbert space.

The operator growth is described conveniently with
the Krylov basis. An initial state |O) spreads within
the subspace spanned by {|O),L|O), . . . Ln|O), . . .},
called the Krylov subspace. The orthonormal basis set
{|O0), |O1), . . . , |On), . . .} can be constructed recursively
using the Gram-Schmidt method. It starts with the normalized
initial state |O0) = |O)/

√
(O|O) and proceeds to generate the

successive basis states via the recursion relations,

|An) = L|On−1) − bn−1|On−2)|On)

= 1

bn
|An) with bn =

√
(An|An), (3)

for n � 1. The operator inner product can be chosen as

(A|B) ≡ 1

D
Tr[A†B]. (4)

It is the infinite temperature average of A†B. One may adopt
a different choice of the inner product [17,18]. In this paper,
however, we will take the simplest choice of Eq. (4).

This procedure, which is usually referred to as the Lanczos
algorithm [31], results in the Krylov basis set and also the
sequence {bn}, called the Lanczos coefficient with b0 = 0. In
computational science, the Lanczos algorithm is one of the
most important numerical methods with which one can reduce
a Hermitian matrix to a tridiagonal form. It also underlies the
recursion method, which is a useful technique for evaluating
the correlation functions in condensed matter physics. For
thorough reviews, we refer the readers to Ref. [32].

Recently, Parker et al. attempted to use the Lanczos algo-
rithm to characterize the operator growth dynamics [17]. An
operator at time t is written as

|O(t )) = eiLt |O0) =
∞∑

n=0

ϕn(t )|On), (5)

where ϕn(t ) = (On|O(t )) is the probability amplitude to be in
the nth Krylov state. The Liouvillian operator is represented
as a tridiagonal matrix Lm,n = (Om|L|On) with Ln,n−1 =
Ln−1,n = bn and Ln,m = 0 for |n − m| �= 1. Thus, the proba-
bility amplitudes satisfy the discrete Schrödinger equation

ϕ̇n(t ) = bnϕn−1 − bn+1ϕn+1, (6)

with the initial condition ϕn(0) = δn0 and b0 = 0. Among all
{ϕn(t )}, ϕ0(t ) is equal to the autocorrelation function CO(t ) =
(O|O(t )). The Schrödinger equation in Eq. (6) describes a
tight-binding system in a semi-infinite one-dimensional lattice
with coordinate n, which will be called a depth in the Krylov
space. Parker et al. showed that the Lanczos coefficient is
bounded above for systems with local interactions in a d
dimensional space. The bounds are

bn =
{

O(n/ ln n) for d = 1
O(n) for d > 1.

(7)

When the bound is achieved, the average depth nt ≡∑
n n|ϕn(t )|2 grows fastest in time. That is, nt grows exponen-

tially in time when bn ∝ n, which signals the chaotic nature of
quantum dynamics. Based on these observations and known
results of solvable systems, they hypothesize that the quantum
systems are chaotic only when the Lanczos coefficient follows
the scaling law in Eq. (7) [17]. There also exists a rigorous
work on the lower bound for {bn} for a specific class of
systems including the chaotic Ising spin chain [33].

III. SOLVABLE SYSTEMS

There are a few cases where the operator growth is exactly
solvable. We list the representative cases in Table I. These
cases are also documented in Ref. [32], where the focus is
put on the analytic property of the autocorrelation function.

Consider first an artificial case with constant bn = α (type
I). We are not aware of a local Hamiltonian and an observ-
able having the constant Lanczos coefficient. Nevertheless,
it provides a useful insight on the operator growth dynam-
ics. We can rewrite the recursion relation in Eq. (6) as
ϕn−1 − ϕn+1 = 1

α
ϕ̇n for n � 0, requiring that ϕ−1 ≡ 0. It has

the same form as that of the Bessel functions, Jn−1(x) −
Jn+1(x) = 2J ′

n(x) [34], except for the boundary term at n =
0. The similarity suggests that ϕn(t ) is the linear combi-
nation of the Bessel functions, ϕn(t ) = ∑

m�0 cmJn+m(2αt ),
whose coefficients are determined by imposing that ϕ−1 =
0. The resulting solution is ϕn(t ) = Jn(2αt ) + Jn+2(2αt ) =
(n + 1)Jn+1(2αt )/(αt ) (see Table I). The correlation function
C(t ) = ϕ0(t ) = J1(2αt )/(αt ) decays algebraically as C(t ) �
(αt )−3/2 cos(2αt − 3π/4) in the long time limit. It is straight-
forward to evaluate the average depth (n)t = ∑∞

n=0 nϕn(t )2. It
grows linearly in time as (n)t = 16

3π
αt + o(t ).

The spin-1/2 XY chain exhibits similar behavior. The au-
tocorrelation function of the spin operator in the z direction
is given by C(t ) = J0(2αt )2 � 1

παt cos(2αt − π/4)2 [35,36].
The Lanczos coefficient can be evaluated from the derivatives
of C(t ) at t = 0 [32]. We evaluated numerically the Lanc-
zos coefficient and found that bn = α + O(1/n), where the
correction term has an alternating sign. Since bn converges
to a constant value, the average depth in the Krylov space
scales linearly in time (type I). The finite n correction term
determines the power-law decay exponent of C(t ) in the long
time limit [32].

The second example (type II) is realized when one con-
siders the spin operator in the x direction in the spin-1/2 XY
chain [37]. It also applies to the spin operator in the longitu-
dinal direction in the transverse field Ising spin chain. In this
case, the depth (n)t = (αt )2 follows the quadratic scaling. It
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TABLE I. Lanczos coefficients and the autocorrelation function in exactly solvable cases. (η)n = η(η + 1) · · · (η + n − 1) is the Pochham-
mer symbol.

bn C(t ) ϕn(t ) (n)t = ∑
n n|ϕn(t )|2

Type I α J1(2αt )/(αt ) (n + 1)Jn+1(2αt )/(αt ) 16
3π

αt + o(t )
Type II α

√
n e−α2t2/2 (αt )n√

n!
e−α2t2/2 (αt )2

Type III α
√

n(n − 1 + η) (sech αt)η
√

(η)n
n! (tanh αt )n(sech αt)η η(sinh αt )2

is faster than the linear growth of type I, but still algebraic in
time.

The last example (type III) is characterized by the linear
growth bn ∼ αn of the Lanczos coefficient and the exponen-
tial growth of (n)t ∼ eαt . This case includes the SYK model
[17,38] and the spin system on the two-dimensional lattice
[39]. The exponent α is related to the positive Lyapunov expo-
nent for the out-of-time-ordered correlators [17]. The latter is
a signature of the quantum chaos [10]. Thus, the linear growth
of bn can be regarded as a signature of quantum chaos.

In one-dimensional systems with local interactions, the
Lanczos coefficient bn cannot grow linearly in n, but is con-
strained by the upper bound shown in Eq. (7). There is no
rigorous result confirming that the upper bound is indeed
achieved in a nonintegrable system. The specific scaling with
the logarithmic correction has not yet been confirmed numer-
ically [17]. We will investigate the scaling behavior of the
Lanczos coefficient in the one-dimensional transverse field
Ising spin chain perturbed by the longitudinal field.

IV. TRANSVERSE AND LONGITUDINAL
FIELD ISING SPIN CHAIN

Consider lattice spins on an infinite one-dimensional lat-
tice. Each spin at site l = 0,±1,±2, . . . is represented by
the Pauli matrix σ a

l with a = x, y, and z. Formally, the local
Pauli matrix σ a

l should be understood as the direct product
· · · ⊗ Il−1 ⊗ σ a

l ⊗ Il+1 ⊗ · · · with the identity operator Ik at
site k. The Hamiltonian of the Ising model with transverse
and longitudinal fields (tl-Ising model in short) is given by

H = J
∑

l

[
σ z

l σ z
l+1 + hσ x

l + glσ
z
l

]
, (8)

where J = 1 is the overall coupling constant, h is a uniform
transverse field, and gl is a site-dependent longitudinal field.
The Ising model with only transverse field (t-Ising model in
short) is equivalent to a free fermion system and integrable.
The longitudinal field breaks the integrability and makes the
system quantum chaotic [22].

It is convenient to work with the basis set composed of the
Pauli strings of the form τ ≡ ⊗lτl , where τl ∈ {Il , σ

x
l , σ

y
l , σ z

l }
is a local operator acting on site l . The Pauli matrices have the
property σ aσ b = δabI + iεabcσ

c with the Kronecker-δ symbol
δab and the Levi-Civita symbol εabc. This property guarantees
that the Pauli strings form the orthonormal set with (τ|τ ′) =
δττ′ . A product of two Pauli strings is also a Pauli string with
a possible phase factor. Furthermore, for any pairs of Pauli
strings τ and τ′, their products τ′τ and ττ′ are equal to each
other up to a sign (−1)χ (τ,τ′ ), where χ counts the number
of sites where τl �= Il , τ ′

l �= Il , and τl �= τ ′
l . Consequently, the

commutator is given by [τ, τ ′] = {1 − (−1)χ (τ,τ ′ )}ττ′. Using
these algebraic properties of the Pauli strings, one can im-
plement the Lanczos algorithm easily. The operator algebra
becomes even simpler by adopting the binary variable repre-
sentation of a Pauli string. We refer the readers to Ref. [40]
and the Appendix of Ref. [17] for more details.

As the initial operator |O0), we take a local one-body
operator Oa ≡ σ a

0 or a two-body operator Oaa ≡ σ a
0 σ a

1 with
a = x, y, z [41]. When one applies the superoperator L to
|O0)n times, the spatial support of the resulting operator is
of size ξ = O(n). Thus, it is given by a linear superposition
of O(4ξ ) Pauli strings. Due to the exponential increase, a
numerical computation of the Lanczos coefficient is limited
by the memory capacity of a computing system. In this paper,
we report our results up to n � nM with nM = 58 for the
t-Ising model and 38 for the tl-Ising model.

A. t-Ising model

We first present the results for the integrable t-Ising model
with h = 1 and gl = 0. Among six observables under con-
sideration, Oy and Oz are characterized by the scaling law
of type II. Figure 1(b) clearly demonstrates that bn ∼ √

n for
Oy and Oz. For the other operators, the Lanczos coefficient
converges to a constant value. Note the t-Ising model with
h = 1 is self-dual under the transformation σ̃ x

l ↔ σ z
l σ z

l+1 and
σ̃ z

l σ̃ z
l+1 ↔ σ x

l+1. Thus, Ox and Ozz have the same operator
growth dynamics. We omit the plot of Ozz in Fig. 1.

The scaling behavior of the Lanczos coefficient is consis-
tent with the time dependence of the autocorrelation functions.
Brandt and Jacoby [42] derived that Cx(t ) ≡ 〈σ x

0 (t )σ x
0 (t )〉 =

J0(4t )2 + J1(4t )2 � 1
2πt (1 − cos 8t

8t ). It decays algebraically

0 20 40 60
n
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b n
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0 4 8√
n
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FIG. 1. Plots of bn for the t-Ising model (h = 1 and gl = 0) with
respect to n in (a) and

√
n in (b). bn of Oz is in perfect agreement with

the straight line in (b).
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FIG. 2. Lanczos coefficients for the operator Ox = σ x
0 in the

tl-Ising model with h = 1. (a) The Lanczos coefficients at several
values of the uniform longitudinal fields g are compared. (b) Plots
of n/bn against W (n). Data for n > nc(g) are in agreement with
the straight lines, which indicates that bn ∝ n/W (n) for n > nc(g).
(c) Scaling plot of g−2
bn vs n.

with an oscillating component, which is a characteristic
of the operators of type I. They also derived that Cz(t ) ≡
〈σ z

0 (t )σ z
0 (0)〉 = e−2t2

, which shows that Oz is an operator of
type II with α = 2. The Lanczos coefficient for Oy also scales
as bn ∼ √

n with an alternating finite-n correction. The cor-
rection term indicates a power-law correction to the Gaussian
autocorrelation function [32].

We also studied the t-Ising model with h �= 1. We found
that finite-n corrections become larger, but the qualitative be-
havior does not change. Summarizing the results, the Lanczos
coefficients in the integrable t-Ising model are of type I or II,
depending on the choice of observables.

B. tl-Ising model with uniform longitudinal field

The longitudinal field breaks the integrability of the t-Ising
model [22]. It is accepted that an integrable system becomes
quantum chaotic immediately as a uniform integrability break-
ing field turns on. Various studies on energy-level spacing
statistics [43–46] and on the eigenstate thermalization hypoth-
esis [44,47] confirm that a nonzero integrability breaking field
results in quantum chaos. Furthermore, the fidelity suscep-
tibility measurement suggests that the threshold value of an
integrability breaking field necessary for the onset of quantum
chaos vanishes in the thermodynamic limit [48,49]. We will
investigate the transition to the quantum chaos by the uniform
longitudinal field in the context of the operator growth.

It is conjectured that the operators of the one-dimensional
chaotic systems should follow the scaling law bn ∝ n/W (n)
with the Lambert W function W (n) � ln n [17]. Numerical
data for the tl-Ising model in Ref. [17] seem to be consistent
with the conjecture. However, the logarithmic corrections are
not clearly visible in the data up to n � 30. In this subsection,
we establish the scaling form bn ∼ n/W (n) when the uniform
longitudinal field gl = g is strong. We also investigate the
crossover when g is small.

We first report the results for the observable Ox that ex-
hibits the scaling behavior of type I in the t-Ising model.
Numerical data are presented in Fig. 2. The Lanczos coeffi-
cient increases with n for g �= 0. However, there is an overall
downward curvature suggesting that the growth is sublinear.
It turns out that the logarithmic correction is responsible for
the curvature. In Fig. 2(b), we plot n/bn as a function of

W (n). When g = 1, the data are in excellent agreement with
a straight line. It confirms the proposed scaling bn ∝ n/W (n)
for the one-dimensional quantum chaotic systems.

When the longitudinal field g is weak, we find an inter-
esting crossover at n = nc(g). The operator spreads as in the
integrable system (bn(g) � bn(g = 0)) for small n � nc(g),
then as in the chaotic system (bn ∼ n/W (n)) for n � nc(g).
We have performed a quantitative analysis and found that


bn ≡ bn(g) − bn(0)

bn(0)
∝ g2 (9)

for n � nc(g). Figure 2(c) presents the plot of the scaled
difference at several values of g. The scaling plot demonstrates
that the scaled differences g−2
bn from different values of
g lie on a single curve, represented by a scaling function
Fx(n), until they cross over to the asymptotic behavior at
n � nc(g) [see Eq. (12)]. Figure 2(c) indicates that the scaling
function has an exponential shape Fx(n) ∼ ean for large n so
the crossover depth nc(g) scales as

nc(g) ∼ |ln g|. (10)

The logarithmic dependence can be also inferred from the
plots in Figs. 2(a) and 2(c), where the crossover points nc(g)
are shifted by a constant amount per tenfold increase of g.

The crossover has an implication on the operator growth
dynamics in the Krylov space. At short times until (n)t reaches
nc, the operator spreads as in the integrable systems. Since
the mean depth grows as (n)t ∼ t in the type-I dynamics,
the system reaches the crossover depth nc(g) at the crossover
time tc

tc(g) ∼ nc(g) ∼ |ln g|. (11)

Afterward, the generic spreading dynamics of the noninte-
grable systems sets in.

The crossover explains the mechanism for the transition
from prethermalization to thermalization. When an integrable
system is perturbed by an integrability breaking field, an ob-
servable temporarily remains at a nonthermal value predicted
by the generalized Gibbs ensemble, and then tends to the
thermal equilibrium value in the long time limit [23–29]. The
thermalization dynamics is characterized by the rate which
is proportional to the integrability breaking field strength
squared [25,26]. The thermalization rate is manifest in the
quadratic scaling in Eq. (9). Besides the thermalization rate,
to the best of our knowledge, the crossover time following the
scaling law of Eq. (11) has not been reported yet.

We also report the results for the operator Oz = σ z
0 in

Fig. 3. The operator exhibits the scaling behavior of type II
in the integrable t-Ising model. Figures 3(a) and 3(b) confirm
that the Lanczos coefficient scales as bn ∼ n/W (n) when the
integrability breaking field g is large enough. The crossover
also occurs for small g. It is less trivial to locate the crossover
depth nc(g) from the numerical data in Figs. 3(a) and 3(b).
Nevertheless, we find that the scaling law in Eq. (9) is also
valid for the operator Oz, which is confirmed with the scaling
plot in Fig. 3(c). The scaling implies that the thermalization
rate is also given by ∼g2. Note that the scaling function for
Oz has a complicated shape with oscillatory behavior, which
makes it difficult to locate the crossover depth nc(g).
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FIG. 3. The same plots as in Fig. 2 for the operator Oz = σ z
0 .

C. tl-Ising model with a longitudinal field at a single site

Integrability can be broken with a local perturbation
[48,50–52]. For the integrable XXZ spin chain perturbed with
a local magnetic field applied to a single site, the fidelity
susceptibility measurement reveals that the system becomes
chaotic at any nonzero value of the magnetic field in the
thermodynamic limit [48]. The t-Ising model has been also
studied with a local longitudinal field applied to a single site
[52].

In the perspective of the operator growth, it is surpris-
ing that the local perturbation leads to the quantum chaos.
The operator growth in the Krylov space is accompanied
with the spatial growth of the operator support. With local
perturbation, the support is affected minimally by a local per-
turbation. We investigate the impact of the local perturbation
on the operator growth dynamics in the tl-Ising model with
the Hamiltonian in Eq. (8) with h = 1 and gl = gδl0.

Figure 4 presents the Lanczos coefficient for the operator
Ox = σ x

0 when the local field strength g � 10−1 is weak. The
operator Ox follows the growth dynamics of type I without the
longitudinal field. Figure 4(a) looks similar to Fig. 2(a). The
system undergoes a similar crossover at the depth n = nc(g) ∝
| ln g|. On the other hand, bn(g) for n > nc(g) shows a more
pronounced downward curvature than in Fig. 2. To character-
ize the asymptotic scaling behavior of bn, we plot the Lanczos
coefficient with respect to

√
n in Fig. 4(b). The data for large n

are well fitted to a straight line, which implies that bn ∼ √
n,

characteristic behavior of type-II dynamics. The asymptotic
behavior, however, is not consistent with the quantum chaotic

FIG. 4. Lanczos coefficients for the operator σ x
0 in the tl-Ising

model with h = 1 and gl = gδl0 with g � 0.1. (a) The Lanczos coeffi-
cients at several values of the local longitudinal fields g are compared.
There is a crossover from the type-I behavior. (b) Plots of bn against√

n. The straight line represents a linear fit of the data with g = 0.1
for n � 13. (c) Plots of n/bn against W (n). The straight line also
represents a linear fit of the data with g = 0.1.
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FIG. 5. Lanczos coefficients for the operator σ x
0 in the tl-Ising

model with h = 1 and gl = gδl0 with g � 0.1. The data are plotted in
the same way as in Fig. 4.

scaling bn ∼ n/W (n). In Fig. 4(c), we present the plots of n/bn

against the Lambert W function W (n). The convex curvature
invalidates the scaling form bn ∼ n/W (n). Thus, we conclude
that the weak local perturbation is not sufficient to lead to
the quantum chaos. It only modifies the the operator growth
dynamics from type I to type II.

We also investigate the scaling behavior of bn when the
local field strength is large. As g increases, an oscillatory be-
havior sets in, which obscures the asymptotic scaling behavior
(see Fig. 5). The oscillatory behavior is reminiscent of the one
observed in Fig. 3. We speculate that the oscillatory behavior
is a signature to a transition from the scaling of type II to
the quantum chaotic scaling. However, a decisive conclusion
cannot be drawn from the numerical data.

We conclude that the weak local longitudinal field applied
to the t-Ising chain does not give rise to the quantum chaos:
The threshold gc of the quantum chaos transition, if any,
should be nonzero. It is in contrast to the XXZ spin chain
which undergoes an immediate transition to the quantum
chaos [48].

V. SUMMARY AND DISCUSSIONS

We have investigated the operator growth dynamics in the
one-dimensional transverse-field Ising model perturbed with
the uniform and local longitudinal field. Without longitudi-
nal field, the Lanczos coefficient bn converges to a constant
(type I) or scales as O(

√
n) (type II), depending on the choice

of local operators. When the longitudinal field is uniform and
strong enough, the Lanczos coefficient grows as O(n/ ln n),
which corresponds to the the maximum growth for a one-
dimensional system with local interactions. Our extensive
numerical data in Figs. 2 and 3 confirm the existence of the
logarithmic correction to the linear scaling. We were able to
detect the logarithmic correction with the help of the scal-
ing analysis on the numerical data bn for large values of n.
These results support the hypothesis of Ref. [17] that the
operator growth dynamics is a universal indicator of quantum
chaos.

We have also discovered that the operator growth dynamics
exhibits a crossover scaling as the system undergoes a transi-
tion from an integrable nonergodic state to a nonintegrable
quantum chaotic state. When the uniform longitudinal field
strength g is small, the Lanczos coefficients bn for n � nc(g)
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follow the scaling form

bn(g) − bn(0)

bn(0)
= g2FO(n), (12)

with an operator-dependent scaling function FO [see
Figs. 2(c) and 3(c)]. For n � nc(g), bn crosses over to the
scaling form O(n/ ln n). The crossover scaling is the ir-
refutable evidence that the integrability breaking transition
occurs gc = 0. The crossover scaling form is related to the
prethermalization dynamics. Since the Lanczos coefficient
has the dimension of the inverse time, the scaling factor g2

corresponds to the thermalization rate. The crossover depth
scales as nc(g) ∼ | ln g| for the operator σ x

0 . The implication
of the crossover depth on the thermalization dynamics has to

be studied further. The crossover scaling analysis also reveals
that a local longitudinal field at a single site does not give rise
to the quantum chaos immediately.

In conclusion, we establish that the operator growth dy-
namics faithfully reflects the quantum chaos in the transverse
field Ising spin chain. Furthermore, we show that it is a useful
tool to characterize the transition of the integrable system to
the quantum chaos induced by the integrability breaking field.
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