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We study a model for the collective behavior of self-propelled particles subject to pairwise copying interactions
and noise. Particles move at a constant speed v on a two-dimensional space and, in a single step of the dynamics,
each particle adopts the direction of motion of a randomly chosen neighboring particle within a distance R = 1,
with the addition of a perturbation of amplitude η (noise). We investigate how the global level of particles’
alignment (order) is affected by their motion and the noise amplitude η. In the static case scenario v = 0 where
particles are fixed at the sites of a square lattice and interact with their first neighbors, we find that for any
noise η > 0 the system reaches a steady state of complete disorder in the thermodynamic limit, while for η = 0
full order is eventually achieved for a system with any number of particles N . Therefore, the model displays a
transition at zero noise when particles are static, and thus there are no ordered steady states for a finite noise
(η > 0). We show that the finite-size transition noise vanishes with N as η1D

c ∼ N−1 and η2D
c ∼ (N ln N )−1/2

in one- and two-dimensional lattices, respectively, which is linked to known results on the behavior of a type
of noisy voter model for catalytic reactions. When particles are allowed to move in the space at a finite speed
v > 0, an ordered phase emerges, characterized by a fraction of particles moving in a similar direction. The
system exhibits an order-disorder phase transition at a noise amplitude ηc > 0 that is proportional to v, and that
scales approximately as ηc ∼ v (− ln v)−1/2 for v � 1. These results show that the motion of particles is able to
sustain a state of global order in a system with voter-like interactions.
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I. INTRODUCTION

The study of the collective properties of systems composed
by self-propelled individuals has been the focus of intense re-
search in the last two decades [1–3]. The flocking behavior of
a large group of animals is observed in many different species
such as fish, birds, bacteria, and insects, among others. From
a statistical physics viewpoint, the interactions between parti-
cles in a system are responsible of its collective behavior, and
lead to well-characterized classes represented by archetype
models. For the case of flocking, the alignment interaction
among individuals is usually modeled as a local averaging
of moving directions of nearby individuals, plus a noise that
accounts for errors in the average process [4]. A crucial role
in the emergent behavior of the system is played by the dis-
placement of the individuals, which changes dramatically its
ordering properties [5].

Within the context of flocking, the dynamics of collec-
tive alignment in groups of fish was recently studied in [6].
The authors performed experiments with cichlid fish Etroplus
suratensis that swim in a circular shallow tank, in order to
explore how schooling is affected by the fish group size. The
level of group alignment is quantified by a vector order param-
eter M that is the average velocity of fish, also called group
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polarization, in such a way that |M| ∼ 1 corresponds to a
polarized state where fish move in a coherent direction, while
|M| ∼ 0 represents a collectively disordered state—each fish
moving in a random direction. Performing the experiments for
group sizes N = 15, 30, and 60, they found that the collective
alignment |M| increases as N decreases. An insight into this
phenomenon is given by a phenomenological stochastic dif-
ferential equation (SDE) for the time evolution of M, where
its parameters were extracted from the experimental data. It
is shown that group polarization is the result of the interplay
between the drift and the demographic (population) noise
terms in the SDE, that is, the fewer the fish, the greater the
demographic noise and so the greater the alignment level.
Thus, they conclude that schooling (highly polarized and co-
herent motion) is induced by the intrinsic population noise
that arises from the stochasticity related to the finite number
of interacting fish. They derived the SDE for M by means
of a mean-field (MF) model in which particles (fish) interact
by pairs and follow a simple imitation dynamics: each parti-
cle either copies the direction of another random particle or
spontaneously changes its direction, modeled as an external
noise of amplitude η. They also show that other ternary or
higher-order aligning interactions, including local averages
like in the Vicsek-like family of models, are unnecessary to
explain these experimental results. Therefore, they arrive to
the conclusion that the minimal theoretical mechanism that re-
produces the collective alignment properties of fish observed
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in the experiments is that of pairwise interactions with copy-
ing dynamics and noise. We notice that the noiseless version
of this particular alignment dynamics that induces flocking
was first introduced in [7], where the authors study the col-
lective motion of particles on a two-dimensional (2D) space
subject to voter-like interactions, that is, each particle aligns
its direction of motion with that of a random neighboring
particle within an interaction radius.

From the theoretical point of view, an interesting result can
be inferred from the work in [6] by analyzing the SDE for
the group polarization M. That is, this equation predicts com-
plete order (|M| = 1) for zero noise (η = 0) and full disorder
(|M| = 0) for any finite noise amplitude η > 0 in the N → ∞
limit. This observation is in agreement with recent analytical
results obtained in a similar model with a discrete set of S
angular directions, a multistate voter model (MSVM) with
external noise [8], where it is shown that the order parameter
|M|2 approaches 1.0 as 1 − |M|2 ∼ η2N in the η → 0 limit,
and vanishes when N increases as 1/(η2N ) for any 0 < η � 1.
Thus, the partial order obtained with voter interactions and
noise in a MF setup is only a finite size effect that eventually
disappears in the thermodynamic limit. These results suggest
a peculiar order-disorder transition at zero noise, unseen in
related flocking models such as the binary Vicsek model [9]
where each particle averages its direction with that of other
random particle, and the transition happens at a critical noise
larger than zero. However, we notice that the experimental
results obtained in [6] correspond to fish moving on a 2D
setup (tank), while both the SDE and the model in [8] are for a
MF setup (infinite dimension), where every particle interacts
with any other particle, and thus motion plays no role in the
dynamics. It is natural, therefore, to wonder whether these
results hold when particles move on a 2D space. Do space
and motion affect the transition at zero noise?

In this article we study a noisy multistate voter model for
flocking in finite dimensions, and we investigate the order-
disorder phase transition in different case scenarios. We start
by analyzing the simplest case of all-to-all interactions or
MF. We then explore the static case where each particle oc-
cupies a site of a square lattice and interacts with its first
nearest-neighbors, and we finally study the dynamic case in
which particles move on a 2D continuous space and change
their direction when they interact with other nearby parti-
cles that are located within a distance R = 1. In the case
that particles are allowed to have only two possible angular
states and interact on a MF setup, the model turns to be
equivalent to the noisy voter model (NVM) introduced in
[10,11], in which each individual of a population holds one
of two states (opinions) that are updated by either copying
the state of a random neighbor or spontaneously switching
state (noise). In the absence of noise, any finite population
eventually reaches full order (consensus) in all dimensions,
as in the original voter model [12,13], with all individuals
sharing the same opinion. However, the addition of a weak
noise leads to a bistable regime in which the system jumps
between two steady states corresponding to a quasiconsensus
in one or the other opinion [10,11], while for strong noise
the system remains disordered. This is in line with the fact
that adding thermal bulk noise in the voter model destroys
global order in any dimension [14], even when the noise is

weak. In square lattices, the NVM is equivalent to a particular
limit of the catalytic reaction model with desorption originally
introduced in [15] and widely studied subsequently [16,17],
which exhibits a finite-size transition induced by noise called
saturation transition [18–20]. More recently, the dynamics of
the NVM has been investigated in complex networks [21–23],
and its version with multiple states has been explored in fully
connected systems [8,24]. Also, an asymmetric variant of the
NVM with long-range interactions has recently been proposed
to study the competition between two species for territory
[25].

While in 2D lattice models bulk noise inhibits the for-
mation of long-range order in the thermodynamic limit, it is
known that in flocking systems the displacement of particles
plays an ordering role. This ordering phenomenon is observed
in the Vicsek model, thought as a nonequilibrium version
of the XY model in two dimensions with particles moving
ballistically in the directions of their spins. That is, while the
Vicsek model can sustain long-range order for finite values
of noise amplitude due to particles’ motion [5], the 2D XY
model is unable to do so [26]. Then, the velocity of particles
in Vicsek-type models leads to steady states associated with
a new ordered phase below a transition noise ηc. However,
voter-type interactions (copying) are different from Vicsek-
type interactions (averaging), leading to different behaviors in
MF and three dimensions: long-range order in the XY model,
and disorder in the NVM. Therefore, in the flocking voter
model (FVM) studied in this article, we expect a nontrivial
competition between the ordering mechanism generated by
particles’ motion and the typical disordering effect induced
by noisy voter interactions that leads to complete disorder in
the thermodynamic limit. Thus, we aim to explore whether the
ordered phase observed in flocking models is still present in
the FVM, or it is rather completely suppressed by noise.

The rest of the article is organized as follows. In Sec. II
we define the model. Section III presents MF results, while
Sec. IV is dedicated to the static version of the model in
one-dimensional (1D) and 2D square lattices. In Sec. V we
study the dynamic version of the model in a continuous 2D
space. We investigate the effects of particles’ velocity in the
transition, with a particular focus on the behavior at low
speeds in the thermodynamic limit. Finally, in Sec. VI we
summarize and give some conclusions.

II. THE MODEL

A set of N particles are allowed to move at a constant
speed v on a 2D square box of side L with periodic bound-
ary conditions. The position and velocity of particle i (i =
1, 2, . . . , , N) at time t are denoted by rt

i = (xt
i , yt

i ) and vt
i =

(v cos θ t
i , v sin θ t

i ), respectively, where v = |vt
i | is the parti-

cle’s speed and θ t
i is its angular moving direction. The density

of particles ρ = N/L2 is fixed at 0.5 in our analysis, unless
stated. Initially, each particle adopts a random position inside
the box and points in a random direction. In a given time step
�t = 1 of the dynamics, each particle i updates it position and
direction according to

rt+1
i = rt

i + vt
i �t, (1a)

θ t+1
i = θ t

j + ξ t+1
i , (1b)
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where θ t
j is the moving direction of a randomly chosen particle

j that is inside a disk of radius R = 1 centered at rt
i , and ξ t

i is a
random angle drawn uniformly in [−ηπ, ηπ ) with amplitude
η (0 < η < 1). This update is performed for all particles at the
same time (parallel update). That is, each particle moves at a
constant speed v following a given straight path and updates
its direction at integer times t = 1, 2, 3, . . ., by adopting the
direction of a random neighboring particle with an error of
amplitude η. If a particle has no neighbors inside its interac-
tion range R, then its direction is changed only by the noise
ξ .

In flocking models, noise—in its various forms—plays a
fundamental role in the behavior of the system. It is known
that the amplitude of noise η induces an order-disorder phase
transition, from a phase where a large fraction of particles
move in a similar direction (order) for small η, to a phase in
which particles move in random directions (disorder) for large
η. To study this phenomenon in the FVM we define the order
parameter (see, for instance, [6,7])

ϕ(t ) ≡ 1

v N

∣∣∣∣∣
N∑

i=1

vt
i

∣∣∣∣∣ = 1

N

√√√√[
N∑

i=1

cos θ t
i

]2

+
[

N∑
i=1

sin θ t
i

]2

(2)
that measures the level of collective alignment in the system
(magnitude of the normalized mean velocity of all particles),
and the susceptibility

χ ≡ N[〈ϕ2〉 − 〈ϕ〉2], (3)

which accounts for the amplitude of fluctuations of ϕ at the
stationary state. Here 〈ϕm〉 is the mth moment of ϕ, and the
symbol 〈·〉 represents the average value of a given magnitude
over many realizations of the dynamics at the steady state.

Our aim is to explore via computational simulations and
scaling theory how space and motion affects the phase tran-
sition in the FVM. For that, we first study the model in MF
(R = L), we then explore the static case v = 0 in lattices,
and we finally investigate the dynamic case v > 0 in two
dimensions.

III. MEAN FIELD

In order to gain an insight into the behavior of the FVM,
we start by analyzing in this section the simplest case scenario
of all-to-all interactions or MF, which corresponds to the large
interaction range limit R → L of the model defined in Sec. II.
In this case, the dynamics of the angular directions of particles
θ is independent of the positions of particles, and thus it is
entirely determined by Eq. (1b). That is, each particle sim-
ply adopts the direction of another randomly chosen particle
in the system, with the addition of noise. This dynamics is
equivalent to that of the multistate voter model with imperfect
copying introduced and studied in [8], in the limit of contin-
uum angular states. In a single time step �t = 1/N , a particle
i with state θi is picked at random, then it copies the state θ j of
another randomly chosen particle j, and this state is slightly
perturbed:

θi(t + �t ) = θ j (t ) + ξi(t + �t ). (4)

We note that we are implementing here a random update
(also called sequential update), in which one random particle
updates its state in a time step, unlike the parallel update
where all N particles are updated at once. However, we have
verified that the behavior of the macroscopic variables ϕ and χ

under the parallel update is recovered by making the substitu-
tion N → 2N in the results obtained with the random update,
as mathematically proved by Blythe and McKane [27] for
population genetic models akin to the voter model. Inversely,
the transformation N → N/2 allows us to obtain the behavior
under the random update from the results with parallel update.
Implementing a random update allows a direct comparison
of the simulation results in MF with the theoretical results
obtained in [8].

Figure 1 shows simulation results for the model in MF.
Data points correspond to average values in a time interval
after the system reached the stationary state, between times
t = 106 and t = 2×107, and over 10 independent realiza-
tions. In Fig. 1(a) we observe that the order parameter ϕ

continuously decreases as η increases, and that approaches
the value ϕ = 1 (full order) as η → 0, which corresponds
to the absorbing consensus state obtained in the zero noise
case η = 0, as is known from previous works of the multistate
voter model [7,8,28,29]. We also see that, for a fixed value of
η > 0, ϕ vanishes as the system size N increases, suggesting
that ϕ → 0 for any η > 0 in the N → ∞ limit. Indeed, an
expression for the scaling of 〈ϕ〉 with η and N that confirms
this assumption can be obtained from analytical results of
this model recently presented in [8], for an order parameter
ψ = ϕ2. It was shown in [8] that 〈ψ〉 ∼ (η2N )−1 for η � 1
and η2N � 1, and thus assuming 〈ϕ〉 ∼ 〈ψ〉1/2 we obtain the
approximate MF behavior

〈ϕ〉MF ∼ (η2N )−1/2 for η � 1 and η2N � 1. (5)

In the inset of Fig. 1(a) we plot the data as a function of
the scaling variable xMF ≡ η2N , where we can see that 〈ϕ〉MF

obeys the power-law decay from Eq. (5) for η2N � 1 (dashed
line). We also observe a good collapse of the curves for differ-
ent system sizes in the entire range of xMF, showing that the
order parameter is a function of xMF, 〈ϕ〉MF = f (η2N ), with
f (xMF) ∼ x−1/2

MF for xMF � 1.
The results above imply that in the absence of noise η = 0

the system reaches full order (ϕ = 1), but a tiny amount of
noise η > 0 is enough to drive the system to complete dis-
order (ϕ = 0) in the thermodynamic limit, which suggests a
transition at zero noise. To study this in more detail, we show
in Fig. 1(b) the behavior of the susceptibility χ with η. We
observe that the curve for a given system size N exhibits a
maximum that is an indication of a transition that depends on
N , between an ordered phase for η < ηc(N ) and a disordered
phase for η > ηc(N ), where the transition point ηc(N ) is es-
timated as the location of the peak. In Fig. 2(a) we plot the
transition noise ηc vs N (circles), where we can see that ηc

vanishes as N increases following a power-law behavior N−α ,
with a best fitting exponent α = 0.5 ± 0.015. This implies a
transition value ηc(∞) = 0 in the thermodynamic limit. In
Fig. 2(b) we see that the maximum value of the susceptibility
increases with N as χmax ∼ Nγ , where γ 	 1.01 ± 0.01 is the
best fitting exponent.
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FIG. 1. Results of the FVM in MF. (a) Average value of the order parameter ϕ at the stationary state as a function of noise amplitude η

for the system sizes N indicated in the legend. Inset: Collapse of the data points when they are plotted as a function of the scaling variable
xMF = η2N . The dashed line has slope −1/2. (b) Susceptibility χ vs η for the same system sizes as in panel (a). Inset: Collapse of the data
when it is plotted vs xMF and the y-axis is rescaled by N−1. Averages were done in a time window �t ∼ 107 over 10 independent realizations.

These scalings can be nicely verified by assuming that χ

is also a function of the scaling variable xMF = η2N for ϕ in
Fig. 1. Indeed, rescaling the y-axis of Fig. 1(b) by N−1 and
plotting the resulting data vs xMF we find a good collapse of
all curves for different N values (see inset), showing that the
MF susceptibility behaves as

χMF = Ng(η2N ), (6)

where g(xMF) is a smooth function of xMF. From Eq. (6)
we have that at the MF transition point ηMF

c is χmax
MF /N =

g[(ηMF
c )2N] = constant and, therefore,

ηMF
c ∼ N−1/2, (7)

in agreement with numerical results [Fig. 2(a)].
In summary, the mean-field version of the FVM exhibits

an order-disorder phase transition at zero noise ηc = 0 in

the thermodynamic limit, between a perfectly ordered phase
where ϕ = 1 for η = 0 and a completely disordered phase
where ϕ = 0 for η > 0.

IV. STATIC CASE v = 0 IN ONE AND TWO DIMENSIONS

In this section we analyze the static version of the FVM
in finite dimensions. For that, we consider that each particle
occupies a site of a square lattice of length L and d dimensions
(N = Ld sites), and interacts with its 2d nearest neighbors
only. We have simulated the dynamics of the model under the
random update described in Sec. III on lattices of dimensions
d = 1 and d = 2 with periodic boundary conditions. In a
time step �t = 1/N , a randomly selected particle copies the
angular state of a first neighbor chosen at random, with the
addition of an error of amplitude η. Implementing a random

FIG. 2. Results of the FVM in MF (circles) and in square lattices of dimensions d = 1 (diamonds) and d = 2 (squares). (a). Transition
noise ηc vs system size N . Straight lines are best power-law fits ηc = A N−α with exponents α = 0.5 ± 0.015 (MF), 0.99 ± 0.02 (d = 1) and
0.56 ± 0.01 (d = 2). Inset: ηc for d = 2 (squares) and the effective noise η̂c = ηc

√− ln ηc (circles). The upper solid line is the best power-law
fit η̂c 	 B N−1/2, with B = 1.3 ± 0.04, while the bottom solid curve is the approximation ηc 	 1.8(N ln N )−1/2 from Eq. (15c). (b) Maximum
value of the susceptibility χmax vs N . Best power-law fits χmax ∼ Nγ (straight lines) have exponents γ = 1.01 ± 0.01 (MF), 0.997 ± 0.005
(d = 1) and 0.99 ± 0.01 (d = 2).
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FIG. 3. Results of the static version of the FVM in one dimension. (a) Average value of ϕ at the stationary state vs η for the system sizes
N indicated in the legend. Inset: Same data vs the scaling variable x1D = ηN showing the collapse of curves for different N values. The dashed
line has slope −1/2. (b) Susceptibility χ vs η for the same system sizes as in panel (a). Inset: x- and y-axis are rescaled by N and N−1,
respectively, to show the collapse of the data.

update allows a direct comparison with known numerical and
analytical results of the two-state VM on lattices (see below),
and provides the analytical background to obtain the scalings
of ϕ and χ for the MSVM. We have run simulations and
verified that the behavior of ϕ and χ , and the scaling of ηc

under the parallel update are the same as those obtained for
the random update after the system size rescaling N → N/2,
as happens in MF (Sec. III).

Figure 3 shows simulation results for the FVM in one
dimension. The behavior of 〈ϕ〉 and χ are similar to those
of the MF model, with a scaling variable x1D ≡ ηN in this
1D case. The variable x1D was obtained from the behavior
of the transition noise η1D

c with N given by the peak of χ

in Fig. 3(b). We found η1D
c ∼ N−α , with α = 0.99 ± 0.02

[Fig. 2(a)], while for the peak of the susceptibility we found
the scaling χmax ∼ Nγ , with γ = 0.997 ± 0.005 [Fig. 2(b)].
Therefore, assuming the scalings

η1D
c ∼ N−1 and (8)

χmax ∼ N, (9)

we arrive at the following scaling for the susceptibility:

χ1D = Ng1(ηN ), (10)

and thus the scaling variable is x1D = ηN , as stated above.
Indeed, we can check in the insets of Fig. 3 the collapse of the
curves for different system sizes when the data are plotted vs
x1D, and the y-axis in Fig. 3(b) is rescaled by N−1. Also, in the
inset of Fig. 3(a) we show that the order parameter scales as
〈ϕ〉1D ∼ x−1/2

1D for x1D � 1 (dashed line), which exhibits the
same behavior with respect to the scaling variable as that of
MF [Eq. (5)], i.e., a power-law decay with exponent 1/2.

The scaling relation (8) shows that the transition noise
vanishes with N , and, therefore, we conclude that the static
version of the FVM in one dimension exhibits an order-
disorder transition at zero noise in the thermodynamic limit,
as happens in MF.

We repeated the same analysis for the FVM model on 2D
lattices. Simulation results are presented in Fig. 4, where the
data collapse was obtained by means of two different scaling

variables, as we describe below. As happens for the MF and
the 1D cases, the transition noise (given by the maximum of
the susceptibility) decays as a power law with the system size
N as η2D

c ∼ N−α [square symbols in Fig. 2(a)], with a best
power-law fitting exponent α 	 0.56 ± 0.01. Even though
this exponent is different from the MF and 1D exponents 0.5
and 1, respectively, this numerical scaling implies an extrapo-
lated transition noise η2D

c = 0 in the N → ∞ limit. The peak
of the susceptibility χmax seems to increase linearly with N as
in MF and 1D, with a best-fitting exponent γ 	 0.99 ± 0.01
[Fig. 2(b)]. Based on these results, we plot 〈ϕ〉 and χ/N
as a function of η2N1.1 in Figs. 4(a) and 4(b), respectively,
where we observe a good collapse of curves for different
system sizes. For the sake of simple comparison, we have
also collapsed the same data using the MF scaling variable

FIG. 4. Static version of the FVM in 2D lattices. (a) Average
order parameter 〈ϕ〉 and (b) normalized susceptibility χ/N vs the
scaling variable η2N1.1 for the system sizes N indicated in the legend.
(c) 〈ϕ〉 and (d) χ/N vs the scaling variable x2D = η̂2N for the same
system sizes as in panels (a) and (b), with η̂ = η

√− ln η. Dashed
lines in panels (a) and (c) have slopes −0.45 and −1/2, respectively.
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η2N instead, and found that the data points do not fall into
a single curve but they look rather disperse (plot not shown).
Therefore, we conclude that the 2D case appears to have its
own scaling variable, which is proportional to a nontrivial
power of N .

A more appealing scaling variable can be obtained from
known results of the behavior of the surface-reaction model
introduced by Fichthorn, Gulari, and Ziff (FGZ) in [16]
and studied later in [18,18–20], akin to the two-state NVM
[10,11], which be believe it belongs to the same class of
the MSVM for flocking studied here. In the FGZ model, N
particles of two different species A and B occupy the sites
of a square lattice that simulates a catalytic substrate. In a
single step, two possible reaction events can take place: (1)
With probability pd one particle is chosen at random and
desorbs, and the vacant site is immediately occupied with a
particle of species A or B with the same probability 1/2. This
corresponds to the external noise of the NVM that switches
the state of a particle with probability pd/2. (2) With the
complementary probability 1 − pd a pair of neighboring sites
is chosen at random, and, if it is an AB pair, both particles
desorb and are replaced with an AA or a BB pair, equiprobably.
This represents the copy dynamics of the NVM. The control
parameter of the FGZ model is the desorption probability pd

(noise amplitude). The steady state at pd = 0 is a poisoned
absorbing state with a coverage equals to 1.0 (all particles
in state A or B), which is analogous to complete order for
η = 0 in the FVM. For pd > 0 the coverage is smaller than
1.0, depending on the values of pd and N , similarly to the
partial order in the FVM.

It turns out that the scaling variables that we obtained for
the FVM in MF and one dimension are the same as those of
the FGZ model, by making a suitable change of variables. In
the FGZ model they obtained analytically the scaling vari-
ables XMF = pd N in MF (d = 3) and X1D = p1/2

d N in one
dimension [18,19], while in the FVM are xMF = η2N in MF
and x1D = ηN in one dimension. Thus, the scaling variables
of both models match if we make the substitution pd → η2.
Finally, 2D is a marginal dimension in the FGZ model, with
a scaling variable similar to that of MF with a logarithmic
correction in pd , that is, X2D = pd ln(1/pd )N . Therefore, for
the FVM in two dimensions we expect a scaling variable
x2D = η̂2N , where we have defined an effective noise ampli-
tude η̂ ≡ η

√− ln η.
Figures 4(c) and 4(d) show 〈ϕ〉 and χ/N plotted as a

function of the scaling variable x2D, where we see a good data
collapse. Even though this collapse with x2D seems as good as
that with η2N1.1 [Figs. 4(a) and 4(b)], the advantage of using
x2D = η̂2N is twofold: we are not fitting any parameter and
we recover the linear dependence on N found in MF and 1D
scaling variables xMF and x1D. Additionally, Fig. 4(c) shows
that the order parameter scales as 〈ϕ〉2D ∼ x−1/2

2D for x2D � 1
(dashed line), consistent with the power-law decay found in
MF and one dimension. In comparison, 〈ϕ〉2D decays as a
power law of η2N1.1 with a nontrivial exponent −0.45 [dashed
line in Fig. 4(a)]. Finally, from the scaling relation for the
susceptibility

χ2D = Ng2(η̂2N ), (11)

where g2 is a smooth function of x2D [see Fig. 4(d)], we obtain
the effective transition noise

η̂2D
c 	 B N−1/2 (12)

in two dimensions, where B is a proportionality constant.
Interestingly, the exponent α̂2D ≡ 1/2 in the 2D case agrees
with that of the MF case [Eq. (7)]. In the inset of Fig. 2(a) we
compare the effective transition noise

η̂2D
c = η2D

c

√
− ln η2D

c (13)

from simulations (circles) with the approximate scaling given
by Eq. (12) (upper solid line), with a best fitting constant
B = 1.3 ± 0.04. The good agreement between simulations
and Eq. (12) shows that the transformation of the original
noise η2D

c into the effective noise η̂2D
c leads to power-law

decay in N with a MF exponent α̂2D = 1/2.
We can now obtain an approximate expression for the

transition noise assuming that it has the power-law behavior
η2D

c 	 A N−α as found numerically [squares in Fig. 2(a)],
where the exponent α depends on N and A 	 0.96 is a con-
stant obtained from the fitting of the data. Starting from the
relation Eq. (13) between the effective and original noise, we
apply the logarithm at both sides and replace ln η̂2D

c by ln B −
1
2 ln N from Eq. (12) and ln η2D

c by ln A − α ln N , which leads
to

(2α − 1) ln N − 2 ln (A/B) − ln (ln N ) − ln α = 0, (14)

after doing some algebra and rearranging terms. We
have also considered the expansion ln(− ln A + α ln N ) =
ln α + ln(ln N ) + O[(ln A)/(α ln N )] to zeroth order in
(ln A)/(α ln N ) � 1, as we can check for N � 102, A 	 0.96,
and α � 1/2. Then, as we expect α to be similar to 1/2
(α 	 0.56 from the fitting of the 2D data in Fig. 2),
we replace ln α in Eq. (14) by the Taylor expansion
ln α 	 ln(1/2) + 2α − 1, and solve for α. We finally arrive
at the following approximate scaling for the transition noise
with N :

η2D
c 	 A N−α, with (15a)

α(N ) 	 1

2
+ ln

[
A
B

(
1
2 ln N

)1/2]
ln N − 1

or (15b)

η2D
c 	 1.8(N ln N )−1/2 for N � 1, (15c)

using B 	 1.3. In the inset of Fig. 2 we can see that the ap-
proximation from Eq. (15c) (bottom solid curve) reproduces
very well the behavior of η2D

c vs N from simulations (squares).
The second term in the exponent α(N ) [Eq. (15b)] leads to a
very slow curvature in log-log scale with an effective exponent
α 	 0.56 in the shown range of N , which approaches very
slowly the value 1/2 as N increases. Finally, from Eq. (15c)
we can see that the transition point η2D

c vanishes in the N →
∞ limit.

Summarizing the results of this section, the static version
of the FVM in 1D and 2D lattices exhibits an order-disorder
transition at zero noise in the thermodynamic limit.
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FIG. 5. Results of the dynamic version of the FVM in a 2D continuous space with particles’ speed v = 0.1 (a) and v = 1.0 (b). The main
panels show the susceptibility χ vs noise amplitude η for the system sizes indicated in the legend. The insets show the average of the order
parameter 〈ϕ〉 vs η. Vertical dashed lines indicate the estimated location of the transition noise ηc (maximum of χ ).

V. DYNAMIC CASE v > 0 IN TWO DIMENSIONS

When particles are allowed to move over the space, their
speed v becomes a relevant parameter that drastically changes
the behavior of the system respect to the static case analyzed
in Sec. IV, as we shall see below. Simulations were done on a
2D continuous space (square box) using the parallel dynamics
defined in Sec. II; the standard update used in flocking dy-
namics [1]. As happens in MF, 1D, and 2D lattices, we expect
to find similar results for a random update. We remark that
interactions are local, that is, each particle can only interact
with other particles that are less than a distance R = 1 apart,
by copying the direction of one of them chosen at random.

In Fig. 5 we plot the susceptibility χ and the order pa-
rameter 〈ϕ〉 (inset) vs noise amplitude η for speeds v = 0.1
[Fig. 5(a)] and v = 1.0 [Fig. 5(b)]. In principle, we observe a
behavior similar to that of MF and the 1D and 2D static cases
studied previously where 〈ϕ〉 decays monotonically with η,
and χ exhibits a maximum at a value ηc that decreases with
N , as we can clearly see for v = 0.1. However, an inspection
of the v = 1.0 plot reveals that ηc appears to decrease and
saturate at a minimum value ηc 	 0.05 as N increases, unlike
in MF and the static cases where ηc vanishes with N . Also, if
we compare the level of order 〈ϕ〉 and its fluctuations χ for the
two speeds, we can see a larger order with smaller fluctuations
for the largest speed v = 1.0, suggesting that the speed has an
ordering effect.

To look at this in more detail, we plot in Fig. 6 the transition
noise ηc(v, N ) vs the system size N for different speeds.
Indeed, for a given speed v � 0.2, we can see that ηc exhibits
a decay similar to a power law for small values of N , and
saturates at a minimum value ηc(v,∞) > 0 for large N , which
decreases as v decreases. We also plot for comparison the
transition noise η2D

c (N ) for the static case v = 0 in 2D lattices
(empty circles). For the sake of clarity, the dashed line has
been shifted in the y-axis to match the estimated asymptotic
behavior of ηc(v, N ) in the zero speed limit v → 0, as we do
not expect η2D

c (N ) and ηc(0, N ) to be exactly the same. This is
because some macroscopic magnitudes of the dynamic model
(〈ϕ〉, χ and ηc) depend on other variables besides v and N ,
such as the density of particles ρ.

The numerical results described above show that, in the
thermodynamic limit, there is an order-disorder transition at
a finite noise amplitude ηc > 0 that increases with the speed
v. To study this transition in more detail, we investigate below
the scaling behavior of ηc with the speed and the system size.

Since we have learned in Sec. IV that working with an
effective noise η̂ in 2D lattices leads to scalings with simple
MF exponents, it seems reasonable to explore the data of
Fig. 6 for an effective transition noise

η̂c(v, N ) ≡ ηc(v, N )
√

− ln ηc(v, N ), (16)

which incorporates a correction factor
√− ln ηc to the original

noise ηc. The approximate power-law decay of ηc for small
N and its saturation for large N [Fig. 6(a)] suggests that the
scaling behavior of η̂c(v, N ) could be described by the follow-
ing standard Family-Vicsek function with two independent
exponents β and z [30]:

η̂c(v, N ) ∼ vβ f (vzN ), (17)

where f is a scaling function with the asymptotic properties

f (x) ∼
{

x−α for x � 1,

constant for x � 1.
(18)

We can check that Eq. (17) exhibits the two limiting behaviors

η̂c(v, N → ∞) ∼ vβ (19)

in the thermodynamic limit, and

η̂c(v → 0, N ) ∼ N−α (20)

in the zero speed limit, where the exponent α satisfies the
relation

β = z α. (21)

By means of the scaling relation Eq. (17) we can collapse the
data points of Fig. 6 into a single curve. For that, we first
estimate the exponents β, α and z. From the plot η̂c(v,∞)
vs v in the inset of Fig. 6 (squares) we find the best power-
law fitting C vβ (straight line), where C = 0.095 ± 0.01 and
β = 1.01 ± 0.02. Then in the zero speed limit we assume that
α takes the value α = α2D = 1/2 of the 2D static case, and
thus we obtain z = 2.02 ± 0.04 from Eq. (21). Based on these
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FIG. 6. (a) Transition noise ηc vs system size N for the speeds v indicated in the legend. The empty circles correspond to the 2D static case
(v = 0) on square lattices. The horizontal dashed lines indicate the asymptotic values ηc(v,∞) for large N . Inset: Transition noise ηc(v, ∞) vs
v (circles) obtained from the main panel, and effective transition noise η̂c(v,∞) vs v (squares). The straight line is best power-law fit C vβ of
η̂c(v,∞) for v � 0.75, with resulting constant C = 0.095 ± 0.01 and exponent 1.01 ± 0.02. (b) Collapse of the curves for the different speeds
of panel (a) by means of η̂c(v, N ). The exponents z = 2 and β = 1 in the x- and y-axis, respectively, correspond to the scaling Eq. (22). The
dashed line with slope −1/2 indicates the power-law regime for v2N � 2. The inset shows ηc vs N for v = 0.1. The dashed line has slope
−1/2.

exponents, we propose the following scaling for the effective
transition noise:

η̂c(v, N ) ∼ v f (v2N ), (22)

with f (x) ∼ x−1/2 for x � 1 and f (x) ∼ const for x � 1.
Figure 6(b) shows a good data collapse obtained with the
scaling Eq. (22). Remarkably, this result required only the
estimation of the best fitting exponent β of the η̂c(v,∞) vs
v data, and assuming that the scaling of the transition noise
with N in the zero speed limit is the same as that of the 2D
static case.

The effective transition noise given by Eq. (22) scales
linearly with the speed in the thermodynamic limit,

η̂c(v,∞) 	 C v, (23)

where C = 0.095 is the best fitting constant for low speeds
v � 0.75 [straight line in the inset of Fig. 6(a)]. An approx-
imate power-law scaling ηc(v,∞) 	 D vβ for the original
noise can be obtained by following the same approach de-
scribed in Sec. IV to obtain the scaling of η2D

c with N
[Eq. (15)]. For that, we start from the relation between η̂c

and ηc in logarithmic scale ln η̂c = ln ηc + (1/2) ln(− ln ηc)
and replace ln η̂c by ln C + ln v [Eq. (23)] and ln ηc by ln D +
β ln v. After rearranging terms and making the approxima-
tion ln(− ln D − β ln v) 	 ln β + ln(− ln v) to zeroth order in
(ln D)/(β ln v) < 1 we arrive at

2(β − 1) ln v − 2 ln(C/D) + ln(− ln v) + ln β = 0. (24)

As we expect β to be similar to 1.0 [circles in the inset of
Fig. 6(a)], we use the linear approximation ln β 	 β − 1 in
Eq. (24) and solve for β. We finally obtain the following
approximate expressions for the transition noise:

ηc(v,∞) 	 D vβ, with (25a)

β(v) 	 1 + ln
[

C
D (− ln v)−1/2

]
ln v + 1/2

or (25b)

ηc(v,∞) 	 C v(− ln v)−1/2 for v � 1. (25c)

The second term in Eq. (25b) gives an effective expo-
nent β(v) � 1 that decreases and approaches the value 1
very slowly as v decreases. Equations (25) are valid only
for low speeds due to the fact that the approximate expan-
sion of the logarithm that we used in Eq. (24) assumes that
(ln D)/(β ln v) < 1, which happens for v � 0.08. Unfortu-
nately, the comparison of Eq. (25) with simulation results is
not possible because to obtain the numerical value ηc(v,∞)
for speeds v < 0.2 is extremely costly in terms of simulation
running times.

Equation (22) also implies the scaling

η̂c(v, N ) ∼ N−1/2 for v2N � 1, (26)

which is confirmed in Fig. 6(b), where the collapsed data
exhibit an approximate power-law decay with exponent −1/2
for v2N � 2, denoted by the dashed line. Finally, in the inset
of Fig. 6(b) we compare the curve ηc vs N for the lowest
speed v = 0.1 with the N−1/2 scaling (dashed line). A good
agreement is observed only at intermediate values of N , while
for small or large sizes a deviation from the slope −1/2
becomes clear. We understand that the discrepancy for small
N is due to the absence of the logarithmic correction

√− ln ηc

that becomes more relevant as ηc decreases, while for large
N we expect that ηc reaches a saturation at a minimum
value ηc(0.1,∞) > 0. This asymptotic value of ηc(0.1, N )
is reached for system sizes outside the shown range and, in
general, the approximate system size from where we start to
see a plateau in ηc seems to diverge as v approaches zero
[see Fig. 6(a)]. An insight into this can be given in terms
of the crossover size Ncross that separates the two limiting
behaviors of ηc(v, N ) for small and large N . For N � Ncross
the effective transition noise decays with N as η̂c ∼ N−1/2,
while for N � Ncross is η̂c ∼ v. At the crossover size, these
two limiting scalings should match, leading to Ncross ∼ v−2.
This simple relation shows that, as v approaches zero, the
crossover size diverges very fast, and so we need to run
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simulations in very large systems to observe the asymptotic
value of ηc(v, N ).

In summary, we showed in this section that the FVM in a
2D continuous space exhibits and order-disorder phase transi-
tion at a finite noise amplitude ηc > 0 that is proportional to
the speed v of particles. For low speeds, ηc is linear in v with
a logarithmic correction that leads to an effective power law
with a v-dependent exponent slightly larger than 1. Thus, the
transition at a finite noise ηc > 0 induced by particles’ motion
is in contrast with the zero-noise transition found in MF and
the static version of the model in lattices.

VI. SUMMARY AND CONCLUSIONS

We studied a model for the flocking dynamics of self-
propelled particles with pairwise copying interactions and
noise. This model can be considered as a version of the noisy
voter model with infinite number of angular states, which
also incorporates the motion of particles over the space. We
focused on the ordering properties of the system by explor-
ing the order parameter ϕ that measures the global level of
alignment of particles. We found that the system undergoes
a transition as the noise amplitude η overcomes a threshold
ηc, from an ordered phase for η < ηc where a fraction of
particles are aligned and thus ϕ > 0, to a disordered phase
for η > ηc characterized by each particle moving in a random
direction, leading to ϕ = 0. We performed a numerical anal-
ysis to investigate how the speed of particles, the space and
its dimension affect the order-disorder phase transition. We
started by the simplest case of all-to-all interactions or infinite
dimension or MF, followed by the static case of fixed particles
on 1D and 2D square lattices, and ending with the dynamic
case of particles moving on a bounded continuous 2D space.
The transition point ηc was determined by the location of
the peak of the susceptibility, which depends on the system
size N . By doing suitable finite size scaling analysis we were
able to infer the scaling behavior of the relevant magnitudes
in the thermodynamic limit, including the transition noise.

In the MF case we showed that the transition noise vanishes
with N as ηMF

c ∼ N−1/2, which is related to known analytical
MF results of the MSVM. In the static case (v = 0) we found
the scalings η1D

c ∼ N−1 in one dimension and η̂2D
c ∼ N−1/2

in two dimensions, where η̂2D
c = η2D

c

√− ln η2D
c is an effective

noise amplitude. This effective noise with a logarithmic cor-
rection in η2D

c was found by drawing an analogy between our
FVM and the FGZ model for catalytic reactions with desorp-
tion probability pd , and making the transformation pd → η2.
Our scaling results on MF and lattices are compatible with
those predicted theoretically for the FGZ model, which is a
version of the noisy two-state voter model.

We therefore conclude that, in MF and 1D and 2D static
cases, the FVM displays an order-disorder transition at zero
noise in the thermodynamic limit. This result means that any
finite noise suppresses completely any level of order in the
thermodynamic limit. That is, even a tiny amount of noise is
enough to bring the system to complete disorder.

The behavior of the model in the dynamic case, where
particles move at a finite speed v > 0 on a 2D box, is very
different from that of the MF and static cases. We observed
that, for a fixed density of particles ρ = 0.5 and a given

noise η > 0, increasing the speed leads to a larger value of ϕ

with smaller fluctuations (smaller susceptibility χ ), eventually
inducing a stationary state of collective order for high enough
speeds. We understand that this ordering effect produced by
particles’ motion is analogous to that found in Vicsek-type
models, and, as a consequence, the system exhibits an ordered
phase below a finite transition noise amplitude ηc(v) > 0 that
depends on the speed. For low speeds, the behavior of the ef-
fective transition noise η̂c = ηc

√− ln ηc with v and N is well
described by a scaling function with two simple exponents.
On the one hand, this leads to the scaling behavior η̂c ∼ N−1/2

for v2N � 1, which agrees with that of the 2D static case, and
also with the theory developed for the saturation transition in
the FGZ model [18,19]. On the other hand, the effective noise
reaches an asymptotic value as N increases, which behaves
as η̂c ∼ v in the N → ∞ limit. This results in a transition
noise with a superlinear dependence on the speed of the form
ηc ∼ v(− ln v)−1/2 for v � 1, in the thermodynamic limit.
For the sake of comparison, it was recently found that in
the Vicsek model the transition noise scales as ηc ∼ v0.45 in
the low-density and low-speed regime [31]. We also note that
the transition noise for a given speed and density ρ = 0.5 in
the FVM is much smaller than that of the Vicsek model.

In summary, we found that the collective motion of self-
propelled particles on a 2D space with noisy voter interactions
exhibits an order-disorder transition at a finite noise amplitude
ηc proportional to the speed of particles. This is a surprising
result within the literature of the voter model, as it is known
that adding an external noise to the copying dynamics of
the model wipes up collective order in the thermodynamic
limit, and in this article we showed that order can indeed be
sustained by particles’ motion.

It seems that the effect of motion is to correlate distant
particles generating a state of global order, as happens in the
Vicsek model. Thus, it might be interesting to study the corre-
lations between particles’ velocities and positions in order to
understand the mechanisms that lead to flocking in the model.
We also note that the MF approximation, which predicts a
transition at zero noise, fails for the full version of the FVM
with particles moving at a finite speed, showing the impor-
tance of taking into account the space and motion of particles
in real-life situations, as happens, for instance, in the recent
experiments with fish [6] described in Sec. I. It would be
worthwhile to develop a mathematical description of the FVM
that goes beyond MF and accounts for correlations between
particles, which could correctly capture the ordering effect of
motion. Finally, within the context of the experiments in [6],
the results we obtained in the present article suggests that a
group of fish could eventually reach an asymptotic polarized
state when the group size increases, depending on the relation
between the amplitude of the spontaneous directional change
(noise) of fish and their speed.
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