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Universal interrelation between dynamics and thermodynamics and a dynamically
driven “c” transition in fluids
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Our very wide survey of the supercritical phase diagram and its key properties reveals a universal interrelation
between dynamics and thermodynamics and an unambiguous transition between liquidlike and gaslike states.
This is seen in the master plot showing a collapse of the data representing the dependence of specific heat on
key dynamical parameters in the system for many different paths on the phase diagram. As a result, the observed
transition is path independent. We call it a “c” transition due to the c-shaped curve parametrizing the dependence
of the specific heat on key dynamical parameters. The c transition has a fixed inversion point and provides a new
structure to the phase diagram, operating deep in the supercritical state (up to, at least, 2000 times the critical
pressure and 50 times the critical temperature). The data collapse and path independence as well as the existence
of a special inversion point on the phase diagram are indicative of either of a sharp crossover or a new phase
transition in the deeply supercritical state.

DOI: 10.1103/PhysRevE.104.034108

I. INTRODUCTION

The basic phase diagram of matter charts the areas where
solid, liquid, and gas exist as physically distinct phases sepa-
rated by transition lines. The three transition lines all emerge
from the triple point, but two of three are finite in length. The
sublimation line terminates at zero temperature or pressure,
and the boiling line terminates at the critical point. The third
line, the melting line, extends to arbitrary temperatures and
pressures, so long as the system remains chemically unaltered.
A large area of the phase diagram lies above the critical point,
representing the supercritical state of matter.

Until fairly recently, there was no reason to survey the state
of matter well above the critical point in any detail. This part
of the phase diagram was thought to be physically homoge-
neous with no discernible differences between liquidlike and
gaslike states [1,2]. Not far above the critical point, persist-
ing critical anomalies can continue to conditionally separate
liquidlike and gaslike states. More recently, experiments and
theory have given indications that the entire supercritical state
may, in fact, be inhomogenous and have states with qualita-
tively different properties.

Going deeply supercritical in the experiment is often
unworkable and, when possible, is limiting in terms of mea-
suring key system properties [3]. We are much less limited in
molecular dynamics simulations.

In this paper, we conduct the widest and most detailed
survey of the supercritical phase diagram undertaken so far:
We extend the parameter range from the melting point and
up to 330Tc and 8000Pc (Tc and Pc are the critical temper-
ature and pressure for argon) and traverse it along different
isobars, isochores, and isotherms. We calculate key thermo-
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dynamic and dynamical properties along different paths on
the phase diagram. We then show that all data collapse on a
single dynamic-thermodynamic “c”-shaped master curve with
a fixed inversion point. The c transition provides an unam-
biguous separation of liquidlike and gaslike fluids, extending
deep into the supercritical state and, therefore, challenging
the existing view of this state as homogeneous and lacking
qualitative transitions. The data collapse and the existence of
a special inversion point on the phase diagram are consistent
with either a sharp crossover or a new phase transition (per-
haps of higher order) operating in the supercritical state of
matter.

II. SIMULATION DETAILS

We simulate a commonly used and well-characterized
Lennard-Jones system describing argon (Ar) (σ =
3.4 Å, ε = 0.01032 eV) along three isobars, isotherms, and
isochores in the deep supercritical state, plus an additional
isobar near the critical point. The supercritical paths are
plotted in Fig. 1 Our highest temperature and pressure, 330Tc

and 8000Pc (about 50 000 K and 40 GPa) are below those
where metallization and ionization start in Ar. Within the
simulated range of state points, the c transition is seen up
to 2000 times the critical pressure and 50 times the critical
temperature.

Equilibration was performed in the NPT ensemble with the
Langevin thermostat in order to generate the mean densities
along the isobars and isotherms. System sizes of 500, 4000,
and 108 000 atoms were used with no discrepancy in calcu-
lated quantities or our results between these sized. Consistent
with the earlier ascertained insensitivity of viscosity to system
size [4], we find that the viscosity (and the heat capacity) for
larger systems of up to 108 000 atoms coincides with that
of the smaller systems we simulated. We selected the time
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FIG. 1. Paths on the phase diagram and pressure and temperature
points explored in this paper. Also labeled are the critical point and
the state points where the transition at the inversion point at cV = 1.9
takes place.

step of 1 fs, which is under 100 times smaller than the fastest
oscillations in any system, and conserved total energy under
the velocity-Verlet integrator in the NV E ensemble to one part
in 105. Configurations at the target densities on all paths were
then generated, which were then equilibrated with the NV T
ensemble for 50 ps. Following this equilibration, we generated
20 independent initial conditions for each state point using
seeded velocities, and each of these initial conditions were
run for 1 ns in the NV E ensemble during which all properties
were calculated. We calculated cV in the NV E ensemble as
[5]

〈K2〉 − 〈K〉2 = 3

2
NT 2

(
1 − 3

2cV

)
, (1)

with K as the total kinetic energy. From here on out, we set
kB = 1. We plot the calculated heat capacities compared to
National Institute of Standards and Technology (NIST) data
(where available) [3] in Figs. 2(a) and 2(b), demonstrating
good agreement. The high-frequency shear modulus and shear
viscosity were calculated using the molecular stress autocor-
relation function from Green’s-Kubo theory [6,7],

G∞ = V

T
〈σ xy(0)2〉, (2)

η = V

T

∫ ∞

0
dt〈σ xy(t )σ xy(0)〉, (3)

with σ xy as an off-diagonal component of the microscopic
stress tensor. The integration of the long-time tails of auto-
correlation functions is a well known issue with the practical
implementation of Green’s-Kubo formulas [8]. The 20 inde-
pendent initial conditions were used to address this with the
autocorrelation function 〈σ xy(t )σ xy(0)〉 being averaged over

FIG. 2. Comparison of (a) viscosities η and (b) isochoric specific
heat capacities cV (kB = 1) calculated from simulated trajectories
with experimental data from NIST [3]; comparison of viscosities η

calculated from simulated trajectories along the (c) 10 kbar isobar
and (d) 500 K isotherm with experimental data from Abramson [10].
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these initial conditions. The end result for viscosity was in-
sensitive to adding more initial conditions and whether the
autocorrelation function was calculated in the NV T or NV E
ensembles.

III. RESULTS AND DISCUSSION

We zero in on the relationship between thermodynamic
and dynamical properties of the supercritical system. The
specific heat cV is an informative choice for a thermodynamic
property. The choice of a dynamical property is less obvious
because there are several candidates. We first try viscosity η

because there is an obvious distinction between its behavior in
the liquid and gas phases. Indeed, η decreases and increases
with temperature in the liquidlike and gaslike regimes, respec-
tively [9]. In Fig. 2 we observe a good agreement between
calculated and experimental viscosities. This includes good
agreement with high-pressure data range [10] where the NIST
data can be less reliable due to data interpolations used at high
pressure.

We plot the dependence of cV on η for each of our su-
percritical phase diagram paths in Fig. 3. Along isobars and
isochores, cV (η) has clear turning points due to correspond-
ing minima in η, whereas no such minima exist along our
isothermal paths. We observe strong path dependence in the
interrelation between cV and η, and will return to the issue
of path dependence below. Here we note the earlier work
[11] relating viscosity to excess entropy calculated from the
virial expansion at low density. This relation was discussed on
empirical grounds and is unrelated to excitations in the system
considered here.

Our next important choice for the dynamical parameter is
informed by the Maxwell-Frenkel viscoelastic theory [12,13]
where the combined elastic and viscous response of a liquid
is represented as

ds

dt
= σ

η
+ 1

G∞

dσ

dt
, (4)

where s is shear strain, η is viscosity, G is high-frequency
shear modulus, and P is shear stress.

Using (4), Frenkel modified the Navier-Stokes equation to
include the elastic response. A simplified form of the resulting
equation reads [14,15]

c2 ∂2v

∂x2
= ∂2v

∂t2
+ 1

τ

∂v

∂t
, (5)

where v is the velocity component perpendicular to x, c is

transverse wave velocity c =
√

G
ρ

, ρ is density, and τ = η

G∞
is

the liquid relaxation time.
Seeking the solution of (5) as v = v0 exp[i(kx − ωt )] gives

ω2 + ω i
τ

− c2k2 = 0 and ω = − i
2τ

±
√

c2k2 − 1
4τ 2 . If k <

1
2cτ , ω has neither a real part nor transverse propagating
modes. For k > kg = 1

2cτ , v ∝ exp(− t
2τ

) exp(iωrt ), where

ωr =
√

c2k2 − 1
4τ 2 . Here,

kg = 1

2cτ
(6)

FIG. 3. Specific heat cv (kB = 1) as a function of viscosity η,
calculated along three (a) isobars; (b) isotherms; (c) isochores.

defines a gapped momentum state seen in several distinct
areas of physics [15]. In liquids and supercritical fluids, kg is
the important parameter governing the existence of solidlike
transverse waves [15,16].

It follows from the above discussion and Eq. (6), in partic-
ular, that the solution to the Maxwell-Frenkel viscoelasticity
importantly depends on the dynamical fluid elasticity length
λd = cτ [14]. The physical meaning of this length is that it
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sets the range of propagation of solidlike transverse waves
in the liquid because τ is the time during which the shear
stress is relaxed. Hence, cV should uniquely depend on λd be-
cause (a) λd governs the propagation of transverse modes and
(b) each mode carries the energy T (in harmonic classical
case). Therefore, we will use λd in our subsequent analysis.

Before invoking λd , it is first instructive to look at τ (T )
and cv (τ ) dependencies. We plot the calculated τ = η

G along
our nine supercritical phase diagram paths in Fig. 4 and ob-
serve that τ has minima along isobars and isotherms and
has no minima along isochores. To understand the minima,
we recall that Frenkel’s theory relates τ to the average time
between molecular rearrangements in the liquid [13]. Backed
by experiments and modeling [17,18], this relation has since
become an accepted view [19]. In the low-temperature liquid
regime, τ decreases with temperature. In the high-temperature
gaslike regime, shear momentum transfer takes place via the
collisions of kinetic theory, and relaxation time τ is, therefore,
interpreted as the mean time between collisions in this regime
[13,20]. Then, the minima represent a crossover from a liquid-
like relaxation time commanded by diffusion and oscillation
events [21] to a gaslike relaxation time commanded by colli-
sions [14]. This same crossover takes place along isochores
but manifests differently in τ because τ can only decrease
with temperature on an isochore. Indeed, τ = L

vth
in the gaslike

regime, where L and vth are the particle mean-free path and
thermal velocity in the gaslike state and L = 1

nA , where n
is particle density and A is the particle cross-sectional area.
Hence, τ decreases with temperature at constant n mostly
because vth ∝ √

T increases (A decreases with temperature
weakly). We note that the minima of both η and τ depend
on the path taken on the phase diagram and path parameters.

We next investigate the relationship between dynamics and
thermodynamics by plotting cV as a function of τ along these
nine paths in Fig. 5. Along isobars and isotherms, cV (τ ) has
clear turning points corresponding to the minima in τ . This
turning point occurs close to cV = 2 such that the crossover
in cV from liquidlike to gaslike corresponds to the dynamical
transition in τ . Along isochores, the situation is again more
subtle. However, since the ideal gas limit as T → ∞ corre-
sponds to both cV → 3/2 and τ → 0, the function cV (τ ) in
its gaslike regime must approach 3/2 as τ → 0. Inspection of
Fig. 5(c) reveals that this is indeed the case and that cV (τ )
settles into this limiting behavior again close to cV = 2.

Notably, Figs. 3 and 5 show the significant path depen-
dence of cV on η and τ : cV depends differently on these
parameters along isochoric, isobaric, and isothermic paths as
well as different conditions for each path. Moreover, switch-
ing the dependence of cV from η to the related τ completely
changes the shape of the curves.

We now come to the pinnacle of these analyses. The min-
ima of τ are path dependent as mentioned earlier. Instead of
plotting cV (τ ), we plot cV (cτ ) and as the function of the key
parameter in the solution of Eq. (5) which we have called

the dynamical length λd = cτ (c is calculated as c =
√

G
ρ

as

discussed below Eq. (5)). The physical reason for this depen-
dence is provided by Eq. (6): cτ governs the propagation of
collective modes (phonons) in liquids and supercritical fluids.
Since each phonon carries energy (T in the classical harmonic

FIG. 4. Liquid relaxation time τ of molecular dynamics trajecto-
ries along three (a) isobars; (b) isotherms; (c) isochores.

case), cV is governed by cτ . Moreover, this dependence is
predicted to be unique and path independent, in contrast to
the dependence of cv on η or τ plotted earlier.

The result of this master plot in Fig. 6(a) is striking. Despite
the clear difference among paths of the same and different
types seen in Figs. 3–5, the functions cV (cτ ) along all deeply
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FIG. 5. Specific heat cv (kB = 1) as a function of relaxation time
τ , calculated along three (a) isobars; (b) isotherms; (c) isochores.
The solid lines in (c) represent the approach of cV and τ to their
limiting ideal-gas value cV = 3/2 at high temperatures and are meant
as guides for the eye.

supercritical paths converge into the same c-shaped curve in
Fig. 6(a).

The values of cV ≈ 2 and λd ≈ 1 Å at the inversion point
in Fig. 6(a) are physically significant. Brillouin was first to
recognize the significance of cV = 2 [22]. The solid energy
can be written as the sum of energies of one longitudinal
and two transverse modes as 2NT/2 + 2(NT/2 + NT/2),

FIG. 6. (a) cV as a function of the dynamical length, λd = cτ
across nine paths spanning the supercritical state up to 330Tc and
8000Pc. kB = 1. All these paths collapse onto a single curve and
undergo a unified dynamic-thermodynamic transition at the path-
independent point cV = 1.88 and λd = 1 Å; (b) Divergence in dcV

dλd
as a function of cV at the point cV = 1.88. Curves are obtained by
fitting cV (λd ) data from all nine supercritical paths.

where NT/2 is the kinetic and potential energy component
of each mode (the two components are equal according to
the equipartition theorem), T is the energy of one mode in
the harmonic classical case, and N is the number of particles.
Brillouin assumed that liquids do not support solidlike trans-
verse modes, implying that the potential energy component of
these modes NT/2 becomes 0. This gives the energy 2NT and
cV = 2 [22]. Since this contradicted the experimental cV ≈ 3
of liquids at the melting point, a proposition was made that
liquids consist of crystallites with easy cleavage directions so
that liquids have cV = 3 and can flow at the same time. We
now understand that (a) liquids do, in fact, support solidlike
transverse modes, albeit at high k only as in Eq. (6) (or at
high frequency for propagating modes ω > 1

τ
[14,15]) and (b)

these modes do disappear eventually but only well above the
melting point and at very high temperatures where τ becomes
comparable to the Debye vibration period. At this point, kg

in Eq. (6) becomes close to the largest wave vector set by
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the interatomic separation in the system (ultraviolet or UV
cutoff), and all transverse waves disappear from the spec-
trum, resulting in cV = 2. This disappearance of transverse
modes and the condition cV = 2 correspond to the Frenkel
line (FL), which separates two dynamical regimes of particle
motion: combined oscillatory and diffusive motion in the low-
temperature “rigid” liquid (rigid in a sense of its ability to
support solidlike transverse modes); and purely diffusive mo-
tion in the high-temperature nonrigid gaslike fluid [14]. The
loss of the oscillatory component at the FL transition gives
the second dynamical criterion of the line: the disappearance
of the minima of the velocity autocorrelation function (VAF).
The thermodynamic criterion cV = 2 and the dynamical VAF
criterion give coinciding lines on the phase diagram [23].

A change in dynamics implies and is implied by a change
in structure [14], and, stimulated by the FL idea, the tran-
sitions at the FL have been subsequently experimentally
observed in supercritical Ne [24], CH4 [25], N2 [26], C2H6

[27], and CO2 [28] using x-ray, neutron, and Raman scattering
techniques. A crossover in structure has been seen across the
FL in simulated argon [29], using the same potential as in this
paper, however, this crossover is subtle as compared to the
transition presented here.

As mentioned earlier, cV = 2 corresponds to the purely
harmonic case where the mode energy is T . Anharmonicity
can change this result by a relatively small amount [14],
and the disappearance of transverse modes corresponds to
cV = 2 approximately. We also note that similar to solids,
plane waves decay in liquids. The decay mechanisms in solids
include anharmonicity, defects, and structural disorder present
in, for example, glasses. Despite this decay, high-temperature
specific heat in solids is governed by phonons. In liquids,
the additional decay mechanism is related to atomic jumps
[14]. Nevertheless, the propagation length of high-frequency
excitations in liquids and supercritical fluids is on the order
of nanometers as evidenced by experiments and modeling
[16,30–32]. This is similar to room-temperature crystalline
solids where the lifetime of high-frequency phonons is on the
order of picoseconds and the propagation range is on the order
of nanometers [33] and where disorder and/or defects reduce
these values further. This is also similar to glasses which are
structurally similar to liquids [34]. Therefore, phonon excita-
tions govern the specific heat in liquids and supercritical fluids
to the same extent they do in solids.

The significance of the propagation range λd reaching
about 1 Å at the inversion point in Fig. 6(a) is that it corre-
sponds to the shortest distance in the system (UV cutoff), the
interatomic separation on the order of angstroms in condensed
matter phases. This distance is fixed by fundamental physical
constants in the form of the Bohr radius which, together with
the Rydberg energy, sets the viscosity minimum [9]. The UV
cutoff puts the upper limit for k points for propagating waves
in the system. Recall that kg in Eq. (6) sets the range of
transverse waves. When kg becomes comparable to the largest,
Debye, and wave vector, all transverse modes disappear from
the system spectrum. We have calculated the Debye wave
vector kD = (6π2n)1/3 [1], where n is the particle density, to
be about 1.0 Å−1 at the inversion point. Equating it to 1

2cτ in
Eq. (6) gives λd = cτ ≈ 0.5 Å. This is consistent with about
1 Å at the inversion point in Fig. 6(a), given the approximate

nature of Debye model and that (6) applies to the linear part
of the dispersion relation only but not to the range where ω(k)
flattens off close to the zone boundary at k = kD.

In the gaslike state, the quantity cτ increases towards the
ideal limit of cV = 3/2 in Fig. 6(a). In the gaslike state, cτ
is related to the particle mean free path since the speed of
sound c is proportional to the thermal velocity vth and τ is
related to the average time between particle collisions [13].
The decrease in heat capacity from 2 to 3/2 in the gaslike
regime of fluid dynamics can be explained in terms of lon-
gitudinal modes at a short distance in the fluid vanishing as
cτ exceeds their wavelength [14]. The collapse of all curves
in the gaslike regime in Fig. 6(a) implies that cτ is the only
parameter necessary to characterize the loss of these degrees
of freedom in this regime.

We reiterate to make explicit the significance of this effect
in Fig. 6(a): paths in the supercritical region, separated by
orders of magnitude in temperature and pressure, all sport the
same cV vs cτ curves. The heat capacity, usually defined as
a function cV (T, P) of both temperature and pressure, is here
reduced to a near-universal function of the single dynamical
fluid elasticity length λd = cτ which sets the range of propa-
gation of solidlike transverse modes as discussed above. What
is more, the apex, or the inversion point, of this unified curve
takes place at cV ≈ 1.9, close to the key value of cV = 2 at the
FL and to the UV cutoff length of the system.

We plot temperature and pressure points at which cV = 1.9
at the inversion point on all paths as stars in Fig. 1. We observe
that the location of these points varies by orders of magnitude
on the phase diagram, yet they all coincide on our master plot
in Fig. 6(a).

This curve cV (cτ ), therefore, represents a dynamically
driven transition between liquidlike and gaslike states which
is present across the supercritical region and is path indepen-
dent. We call this transition a c transition due to the shape
of Fig. 6(a). The inversion point of all coinciding curves in
Fig. 6(a) is well defined and, therefore, serves as an unambigu-
ous transition point between liquidlike and gaslike states in the
supercritical region. The inversion point does not depend on
a theory, such as that underlying the thermodynamic criterion
of the FL cV = 2 and the dynamical VAF criterion.

The transition is further illustrated in Fig. 6(b): we fit the
data in Fig. 6(a), calculate the derivative dcV

dλd
and plot the

derivative vs cV , observing the divergence at cV close to the
key value of cV = 2 at the FL.

An alternative way to collapse the data from different paths
is informed by the theory of liquid thermodynamics. In this
theory, the liquid energy at low temperatures where transverse
waves exist below the FL depends on the ratio of kg in Eq. (6)

and the Debye wave vector kD: kg

kD
[14,16,35] (or, alternatively,

on ωF
ωD

for propagating waves [14], where ωF = 1
τ

and ωD is the
Debye frequency). The physical picture here is that shorter τ

at high temperatures results in progressive disappearance of
transverse waves from the system spectrum [14] [this theory
has undergone a detailed and rigorous test for several different
liquids in a wide temperature and pressure range [36] and
explains the decrease of cV with temperature in Fig. 2(b)].
However, this disappearance of transverse modes can only
proceed up to the largest k-point kD, set by the UV cutoff in the
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FIG. 7. cV as a function of cτkD where the curves similarly
converge in the liquidlike state at the path-independent point close
to cV = 2.

system as discussed earlier. As a result, kg

kD
enters the equation

for the liquid energy. We calculate kD as (6π2n)1/3 [1] and plot
cV as a function of dimensionless product cτkD in Fig. 7. We
observe that the curves from all paths collapse in the region of
large cV down to about cV = 2, showing that cV below the FL
depends on the product cτkD only as predicted theoretically.
This is followed by the divergence of cV below cV = 2 in the
gaslike state along different paths, presumably because the
solidlike concepts underlying kD become progressively less
relevant in the gaslike state at high temperatures.

The key result of this paper is visible in both scaling graphs
in Figs. 6(a) and 7: the data collapse in either the large or the
small-value range of cV ; the curves diverge from each other in
the other range; and this divergence takes place near the key
value of cV = 2.

As mentioned earlier, the dynamical VAF criterion of the
FL corresponds to the disappearance of the oscillatory com-
ponent of particle motion. In Fig. 8, we plot the line calculated
using the VAF criterion, together with the c-transition line
determined by (P, T ) at the inversion point where cV ≈ 1.9 in
Fig. 6. We also plot the critical isochore for comparison. The
FL from the VAF criterion and the inversion point are close
and run parallel to each other. This serves as a self-consistency
check for our theory and implies that the inversion point can
serve as a hallmark and a definition of the supercritical tran-
sition between the liquidlike and the gaslike states at the FL.
As mentioned earlier, the inversion point is unambiguously
defined in Fig. 6 and does not depend on a theory, such as
that underlying the thermodynamic criterion cV = 2 and the
dynamical VAF criterion.

We note that near the critical point, such as along the
100 bar isobar, the dynamical and thermodynamical properties
are strongly affected by near-critical anomalies [2,37], and the
function cV (cτ ) is affected as a result. The function cV (cτ )
calculated along this path does not collapse onto the inversion
point. On the other hand, our master curve in Fig. 6 is deeply

FIG. 8. Phase diagram showing the inversion points of the c
transition corresponding to cV ≈ 1.9 in Fig. 6, the FL determined
by the VAF criterion [23], the critical point, and the critical isochore.

supercritical and is, therefore, free of the near-critical anoma-
lies.

The collapse of all curves up to the key value of about
cV = 2 and divergence of curves along different paths beyond
this value has two further implications. First, it suggests that
the inversion point cV = 2 is a special point on the phase
diagram. Second, if a thermodynamic property has a wide
crossover, the behavior of different properties strongly de-
pends on the path taken on the phase diagram. On the other
hand, the observed collapse of all paths at the special inversion
point close to cV = 2 and λd = 1 Å indicates either a sharp
crossover or a dynamically driven phase transition related to
the c transition between liquidlike and gaslike states. By sharp
we mean more abrupt that previous transitions observed over
the FL (see, e.g., Ref. [24]), possibly involving discontinuities
in higher-order thermodynamic derivatives. Within the uncer-
tainty set by fluctuations in our simulations, we do not observe
an anomaly of cV in Fig. 2(b) at temperatures and pressures
corresponding to the inversion point (our simulations put an
upper boundary of about 0.05kB on the value of a possible
anomaly of cV ). This does not exclude a weak thermody-
namic phase transition, similar to a percolation transition, or
a higher-order phase transition seen in higher derivatives of
thermodynamic functions.

IV. SUMMARY

To summarize, we have discovered a universal, striking,
and demonstrative inter-relation between dynamics and ther-
modynamics using the specific heat cV and the dynamical
parameter of the fluid elasticity length λd = cτ . This connec-
tion provides a clear and path-independent transition between
liquidlike and gaslike supercritical states, which we call a
c transition. Our c-shaped master curve provides an unam-
biguous and path-independent criterion for the separation
of liquidlike and gaslike states, calculated from accessible
quantities in molecular dynamics simulations. The collapse
onto this master curve occurs in the supercritical state up to
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T = 330Tc and P = 8000Pc, meaning the transition, and the
distinct states it separates, exist over a far larger range of
temperatures and pressures than the boiling line which sep-
arates subcritical liquids and gases. The collapse is indicative
of either a sharp crossover or a new phase transition operating
in the supercritical state.
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